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Figure 1: The semistrip S

and we will analyze boundary value problems posed in the semi-in�nite strip

S = f0 < x <1; 0 < y < Lg;

where L is a positive �nite constant. The sides



2 Spectral analysis under the assumption of existence

In what follows we assume that (1.1) is supplemented with appropriate boundary conditions
on the boundary of the semistrip S so that the existence of a unique solution q(x; y) can be
assumed. Furthermore, we assume the following:

q(x; L); qy(x; L); q(x; 0); qy(x; 0) 2 L1(R+);
xq(x; L); xqy(x; L); xq(x; 0); xqy(x; 0) 2 L1(R+); (2.1)
q(0; y); qx(0; y); yq(0; y); yqx(0; y) 2 L1([0; L]):

The sine-Gordon equation is the compatibility condition of the following Lax pair for the
2� 2 matrix-valued function 	(x; y; �), � 2 C:

	x +

(�)

2
[�3;	] = Q(x; y; �)	; (2.2)

	y +
!(�)

2
[�3;	] = iQ(x; y;��)	; (2.3)

where


(�) =
1
2i

�
�� 1

�

�
; !(�) =

1
2

�
�+

1
�

�
; (2.4)

Q(x; y; �) =
i

4

0@ 1
� (1� cos q) qx � iqy + i sin q

�

qx � iqy � i sin q
� � 1

� (1� cos q)

1A ; q = q(x; y): (2.5)

Equations (2.2) and (2.3) can be written as the single equation

d
�

e(
(�)x+!(�)y)
cσ3
2

�
	(x; y; �) = W (x; y; �); (2.6)

where the di�erential form W is given by

W (x; y; �) = e(
(�)x+!(�)y)
cσ3
2 (Q(x; y; �)	(x; y; �)dx+ iQ(x; y;��)	(x; y; �)dy) ; (2.7)

and c�3 acts on a 2� 2 matrix A by

c�3A = [�3; A]:

Remark 2.1 Note that


(��) = �
(�) = 
(
1
�

); !(��) = !(�) = !(
1
�

):

2.1 Bounded and analytic eigenfunctions

We de�ne three solutions 	j(x; y; �) j = 1; 2; 3; of (2.6) by

	j(x; y; �) = I +
Z (x;y)

(xj ;yj)

e−(
(�)x+!(�)y)
cσ3
2 W (�; �; �); (2.8)
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2.2 Spectral functions

Any two solutions 	, ~	 of (2.6) are related by an equation of the form

	(x; y; �) = ~	(x; y; �)e−(
(�)x+!(�)y)
cσ3
2 C(�): (2.12)

We introduce the notations

S1(�) = 	1(0; L; �); S2(�) = 	2(0; 0; �); S3(�) = 	1(0; 0; �): (2.13)

Then equation (2.12) implies the following equations:

	1(x; y; �) = 	2(x; y; �)e−(
(�)x+!(�)y)
cσ3
2 e

ω(λ)
2 Lc�3S1(y):

2 Lc



� a1(�(�



where the matrices 	± and J are de�ned as follows:

	+ =
�

	(12)
1 ;

1
a3(�)

	(1)
3

�
; arg(�) 2 [0;

�

2
];

	− =
�

	(12)
1 ; 1

a1(�)	(2)
2

�
; arg(�) 2 [

�

2
; �];

	+ =
�

1
a3(��)

	(3)
3 ;	(34)

1

�
; arg(�) 2 [�;

3�
2

];

	− =
�

1
a1(−�)	(4)

2 ;	(34)
1

�
; arg(�) 2 [

3�
2
; 2�];

J(x; y; �) = J�(x; y; �); if arg(�) = �; � = 0;
�

2
; �;

3�
2
; (2.24)

where, using the global relation, we �nd

J0 =

0B@
a2(�)

a1(−�)a3(�)
b3(−�)
a3(�) e−�(x;y;�)

� e�ω(λ)Lb1(�)
a1(−�) e�(x;y;�) 1

1CA ;

J�=2 =

0@ 1 b2(−�)
a1(�)a3(�)e−�(x;y;�)

0 1

1A ; J3�=2 =

0@ 1 0

b2(�)
a1(−�)a3(−�)e�(x;y;�) 1

1A
and

J� = J3�=2(J0)−1J�=2; (2.25)

where
�(x; y; �) = 
(�)x+ !(�)y: (2.26)

All the matrices J� have unit determinant: for J�=2 and J3�=2 this is immediate, whereas
for J0 we �nd

det(J0) =
a2(�) + e−!(�)Lb1(�)b3(��)

a1(��)a3(�)
=
a1(��)a3(�)
a1(��)a3(�)

= 1;

where we have used the equation

a2(�) = a1(��)a3(�)� b3(��)b1(�)e−!(�)L; � 2 R: (2.27)

Equation (2.27) is a consequence of equations (2.21) and (2.22) (see also equation (4.19)
below).

The function 	(x; y; �





The inverse problem

Rewriting the jump condition, we obtain

	+ �	− = 	+ �	+J� = 	+(I � J)) 	+ �	− = 	+
~J; (2.32)

where ~J = I � J: The asymptotic conditions (2.10)-(2.11)) imply

	(x; y; �) = I +
	∗(x; y)

�
+O

�
1
�2

�
; j�j ! 1: (2.33)

Equations (2.32) and (2.33) de�ne a Riemann-Hilbert problem.
The solution of this RH problem is given by

	(x; y; �) = I +
1

2�i

Z
�

	+(x; y; �′) ~J(x; y; �′)
�′ � �

d�′; � 2 �; (2.34)

where
� = R [ iR:

Equations (2.33) and (2.34) imply

	∗ = � 1
2�i

Z
�

	+(x; y; �) ~J(x; y; �)d�: (2.35)

Using (2.33) in the �rst ODE in the Lax pair (2.2), we �nd

� i
4

[�3;	∗] = i
qx � iqy

4
�1 ) qx � iqy = 2(	∗)21 = 2 lim

�→∞
(�	21); (2.36)

(�1, �3 denote the usual Pauli matrices).
In order to obtain an expression in terms of q rather than its derivatives, we consider the
coe�cient of the term �−1. The (1,1) element of this coe�cient yields

cos q(x; y) = 1 + 4i(	∗x)11 � 2(	∗)2
21: (2.37)

3 Spectral theory assuming the validity of the global
relation

3.1 The spectral functions

The above analysis motivates the following de�nitions for the spectral functions.

The spectral functions at the y = 0 and y = L boundaries

De�nition 3.1 Given the functions q(x; L), qy(x; L) satisfying conditions (2.1), de�ne the
map

S1 : fq(x; L); qy(x; L)g ! fa1(�); b1(�)g
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by �
a1(�)
b1(�)

�
= [�1(0; L)]1; � 2 C+;

where [�1(x; L)]1 denotes the �rst column vector of the unique solution �1(x; L) of the
Volterra linear integral equation

�(x; �) = I �
Z ∞
x

e
(�)(�−x)
cσ3
2 Q(�; L; �)�(�; �)d�; (3.1)

and Q(x; L; �) is given in terms of q(x; L) and qy(x; L) by equation (2.5).

Proposition 3.1 The spectral functions a1(�), b1(�) have the following properties.

(i) a1(�), b1(�) are continuous and bounded for Im(�) � 0, and analytic for Im(� > 0.

(ii) a1(�) = 1 +O
�

1
�

�
, b1(�) = O

�
1
�

�
as �!1; Im(�) � 0:

(iii) a1(�) = cos q(x;L)
2 +O (�), b1(�) = i sin q(x;L)

2 +O (�) as �! 0; Im(�) � 0:

(iv) a1(�)a1(��)� b1(�)b1(��) = 1, Im(�) � 0.

(v) The map Q1 : fa1; b1g ! fq(x; L) qy(x; L)g, inverse to S1, is given by

cos q(x; L) = 1 + 4i lim
�→∞

(�Mx)11 + 2 lim
�→∞

(�M)21;

qy(x; L) = �iqx(x; L) + 2 lim
�→∞

(�M)21;

where M is the solution of the following Riemann-Hilbert problem:

* The function

M(x; �) =
�
M+(x; �) � 2 C+

M−(x; �) � 2 C−

is a sectionally meromorphic function of � 2 C:
* M = I +O

�
1
�

�
as �!1, and

M+(x; �) = M−(x; �)J1(x; �); � 2 R;

where

J1(x; �) =

 
1 � b1(−�)

a1(�) e−
(�)x

b1(�)
a1(−�)e
(�)x 1

a1(�)a1(−�)

!
; � 2 R: (3.2)

* The function a1(�) may have N1 simple poles �j in C+.
* Let [M ]i denote the i-th column vector of M , 1 = 1; 2. The possible poles of M+

occur at �j, and the possible poles of M− occur at ��j in C−, and the associated
residues are given by

Res�j [M(x; �)]2 =
e−
(�j)x

_a1(�j)b1(�j)
[M(x; �j)]1;

Res−�j [M(x; �)]1 =
e
(�j)x

_a1(��j)b1(��j)
[M(x;��j)]2: (3.3)
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The spectral functions



(v) The map Q2 : fa2; b2g ! fq(0; y) qy(0; y)g, inverse to S2, is given by

cos q(0; y) = 1 + 4i lim
�→∞

(�My)11 + 2 lim
�→∞

(�M)21;

qx(0; y) = iqy(0; y) + 2 lim
�→∞

(�M)21;

where M is the solution of the following Riemann-Hilbert problem:

* The function

M(y; �) =
�
M+(y; �) Re� � 0
M−(y; �) Re� � 0

is a sectionally meromorphic function of � 2 C:
* M = I +O

�
1
�

�
as �!1, and

M+(y; �) = M−(y; �)J2(y; �); � 2 iR;

where

J2(y; �) =

 
1 � b2(−�)

a2(�) e−!(�)x

b2(�)
a2(−�)e!(�)x 1

a2(�)a2(−�)

!
; � 2 iR:

* M satis�es appropriate residue conditions at the zeros of a2(�).

Proof of propositions (3.1)-(3.3)

The proof of properties (i)-(iv) follows from the discussion in Section 2.2. In particular,
property (iii) follows from the asymptotic behaviour at � !



Regarding the rigorous derivation of the above results, we note the following: If fq(x; L); qy(x; L)g,
fq(x; 0); qy(x; 0)g and fq(y; 0); qx(y; 0)g are in L1, then the Volterra integral equations (3.1),
(3.4) and (3.5) respectively, have a unique solution, and hence the spectral functions faj ; bjg,
j = 1; ::; 3, are well de�ned. Moreover, under the assumption (2.1) the spectral functions
belong to H1(R) , hence the Riemann-Hilbert problems that determine the inverse maps
can be characterized through the solutions of a Fredholm integral equation, see [10, 49].
QED

3.2 The Riemann-Hilbert problem

Theorem 3.1 Suppose that a subset of the boundary values fq(x; L); qy(x; L)g; fq(x; 0); qy(x; 0)g,
0 < x < 1, and fq(y; 0); qx(y; 0)g, 0 < y < L, satisfying (2.1), are prescribed as bound-
ary conditions. Suppose that these prescribed boundary conditions are such that the global
relations (2.21) and (2.22) can be used to characterize the remaining boundary values.
De�ne the spectral functions faj ; bjg, j = 1; ::; 3; by de�nitions (3.1)-(3.3). Assume that the
possible zeros f�jgN1

j=1 of a1(�) and f�jgN2
j=1 of a3(�) are as in assumption 2.28.

De�ne M(x; y; �) as the solution of the following 2� 2 matrix Riemann-Hilbert problem:

* The function M(x; y; �) is a sectionally meromorphic function of � away from R[ iR.

* The possible poles of the second column of M occur at � = �j, j = 1; :::; N2, in the �rst
quadrant and at � = �j, j = 1; :::; N1, in the second quadrant of the complex � plane.

The possible poles of the �rst column of M occur at � = ��j (j = 1; :::; N1) and
� = ��j (j = 1; :::; N2).

The associated residue conditions satisfy the relations (2.31).

* M = I +O
�

1
�

�
as �!1, and

M+(x; y; �) = M−(x; y; �)J(x; y; �); � 2 R [ iR;

where M = M+ for � in the �rst or third quadrant, and M = M− for � in the second
or fourth quadrant of the complex � plane, and J is de�ned in terms of faj ; bjg by
equations (2.25).

Then M exists and is unique, provided that the H1 norm of of the spectral functions is
su�ciently small.
De�ne q(x; y) is terms of M(x; y; �) by

qx � iqy = 2 lim
�→∞

(�M)21; (3.7)

cos q(x; y) = 1 + 4i( lim
�→∞

(�Mx)11)� 2( lim
�→∞

(�M)21)2: (3.8)

Then q(x; y) solves (1.1). Furthermore, q(x; y) evaluated at the boundary, yields the func-
tions used for the computation of the spectral functions.

Proof: Under the assumptions (2.1), the spectral functions are in H1.
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In the case when a1(�) and a3(�) have no zeros, the Riemann-Hilbert problem is regular
and it is equivalent to a Fredholm integral equation. However, we have not been able to
establish a vanishing lemma, hence we require a small norm assumption for solvability.
If a1(�) and a3(�) have zeros, the singular RH problem can be mapped to a regular one
coupled with a system of algebraic equations [22]. Moreover, it follows from standard ar-
guments, using the dressing method [47, 48], that if M solves the above RH problem and
q(x; y) is de�ned by (3.7)-(3.8), then q(x; y) solves equation (1.1). The proof that q evalu-
ated at the boundary yields the functions used for the computation of the spectral functions
follows arguments similar to the ones used in [24].
QED

4 Linearizable boundary conditions

We now concentrate on the particular boundary conditions (1.2).
In this case, equations (2.17)-(2.19) simplify as follows:�
A1(x; �)
B1(x; �)

�
=

�
1
0

�
� 1

4

Z ∞
x

�
qy(�; L)A1(�; �)

e
(�)(x−�)qy(�; L)B1(�; �)

�
d�;

0 < x <1; Im(�) � 0; (4.1)�
A2(y; �)
B2(y; �)

�
=

�
1
0

�
+

1
4

Z L

y

 
� (1−cos d)

� A2(�; �) + [qx(0; y)� i sin d
� ]B2(�; �)

e!(�)(y−�)
h
qx(0; y) + i sin d

� ]A2(�; �) + (1−cos d)
� B2(�; �)

i ! d�;
0 < y < L; � 2 C; (4.2)�

A3(x; �)
B3(x; �)

�
=

�
1
0

�
� 1

4

Z ∞
x

�
qy(�; 0)A3(�; �)

e
(�)(x−�)qy(�; 0)B3(�; �)

�
d�;

0 < x <1; Im(�) � 0: (4.3)

In equations (4.1) and (4.3), the only dependence on � is through 
(�). Thus, since 
(� 1
� ) =


(�), it follows that the vector functions (A1; B1) and (A3; B3) satisfy the same symmetry
properties. Hence,

aj(�
1
�

) = aj(�); bj(�
1
�

) = bj(�); j = 1; 3; Im(�) � 0: (4.4)

It turns out that the vector function (A2; B2) also satis�es a certain symmetry condition, as
stated in the following proposition.

Proposition 4.1 Let qx(0; y) be a su�ciently smooth function. Then the vector solution of
the linear Volterra integral equation (4.2) satis�es the following symmetry conditions (where
we do not indicate the explicit dependence of A2, B2 on y):

A2(
1
�

) =
1

1� F (�)2
[A2(�)� F (�)B2(�) + F (�)e!(�)(y−L)B2(��)� F (�)2e!(�)(y−L)A2(��)];

B2(
1
�

) =
1

1� F (�)2
[B2(�)� F (�)A2(�) + F (�)e!(�)(y−L)A2(��)� F (�)2e!(�)(y−L)B2(��)];

0 < y < L; � 2 C; (4.5)
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where the function F (�) is given by

F (�) = i
1� �2

1 + �2
tan

d

2
: (4.6)

Proof: Let the 2� 2 matrix valued function �2(y; �) be de�ned by

�2(y; �) =
�
A2(y; �) B2(y;��)
B2(y; �) A2(y;��)

�
; 0 < y < L; � 2 C: (4.7)

Then �2 satis�es the ODE

(�2)y +
!(�)

2
[�3;�2] = iQ(0; y;��)�2; 0 < y < L;

�2(L; �) = I; (4.8)

where Q(x; y; �) is de�ned in (2.5), and q(0; y) = d.
Letting

�2(y; �) = �2(y; �)e
ω(λ)

2 �3(y−L) (4.9)

it follows that �2 satis�es the ODE

(�2)y = V �2; (4.10)
�2(L; �) = I; 0 < y < L; Re(�) � 0;

where

V (y; �) =
1
4

�
�(�+ cos d

� ) �qx(0; y) + i sin d
�

�qx(0; y)� i sin d
� �+ cos d

�

�
: (4.11)

We seek a non singular matrix R(�), independent of y, such that

V (y;
1
�

) = R(�)V (y; �)R(�)−1: (4.12)

It can be veri�ed that such a matrix is given by

R(�) =
�

1 �F (�)
�F (�) 1

�
; (4.13)

where F is de�ned by (4.6).
Replacing in equation (4.10) � by 1

� , and using (4.12), we �nd the following equation:



This equation and equation (4.9) imply

�2(y;
1
�

) = R(�)�2(y; �)
�

e!(�)
cσ3
2 (y−L)R(�)−1

�
: (4.14)

The �rst column vector of this equation implies (4.5).
QED

Remark 4.1 Recalling that a2(�) = A2(0; �), and b2(�) = B2(0; �), equations (4.5) imme-
diately imply the following important relations:

a2(
1
�

) =
1

1� F (�)2
[a2(�)� F (�)b2(�) + F (�)e−!(�)Lb2(��)� F (�)2e−!(�)La2(��)];

b2(
1
�

=
1

1� F (�)2
[b2(�)� F (�)a2(�) + F (�)e−!(�)La2(��)� F (�)2e−!(�)Lb2(��)];

Im(�) � 0: (4.15)

In summary, the basic equations characterizing the spectral functions are:

(a) the symmetry relations (4.4) and (4.15);

(b) the global relations (2.21) and (2.22);

(c) the conditions of unit determinant.

It tur-4.1Cbou(It)-299ha 3.87y 0 Td t.874 0 Td [(�)]TJ/F8 9.9626 Tf 5.812 38.-19.925 Td [((a))-500(the)-333(symmetry)-334(relations)-333((4.4))-333(and)-334((4.15);)]TJf5);ry r(504.15))]TJ -371.391 -.15 5.4825;ry r(504.15))]TJ -371.391 -.15 5.4825;ry r(504.15))]TJ -371.391 -.15 5.4825;r1ufTd [(ibl(r(504.to.4825;rro15�vid(r(504.4.1(504.1xplic391 -.15c15�ation)1(s)9626 T]TJ 091 - 5.482551;)]TJfal)]TJ/F82.21))-333(and)-333((2.22);)]TJ 3(in]TJ/F82(r()]TJ 3(51;)]TJf((b�giv15�en33(and)-3st4.15�[(F)]TJ/F8 9.9626 Tf5[(e:)]TJ 7.1dsic)-333(equations)-18tions)-33.sic)-3523(equationsTf 2.00334((4.15�Pro33332d [4(+339.96 Tsic)-3463(equations8f 566 Tf 6.64As0.5050b16371.350b16371050b163.22);)]rizing)-333(the)-3115m 41)-500(thf6 -19.925 Td [((a))-500(thad [()])]TJ/F11 96 Tf 7.79 0.874 0 j()]TJ/F11 9.9626 1 6.79 0.874 0  Td [(()]TJ/F11 9.9626 Tf 3.875 0 Td [(�)]TJ/F8 9.9626 Tf 5.811 0 Td [())]TJ/F11 9.9626 Tf 3.875 0;)-167I)-78(m)51])]TJ/F11 98.7047.79 0.874 0 j((



Proof: for simplicity, we will use the notations

f = f(�); f̂ = f(��): (4.22)

Replacing � with �� in (2.21) and solving the resulting equation and equation (2.22) for
a2



The left hand side of (4.29), using (4.16) with j = 1, simpli�es as follows:

a1

b1
+ â1b1 �

a1

b1
(1 + b1b̂1) = â1b1 � a1b̂1:

Thus, equation (4.29) becomes

b1â1 � b̂1a1 = e−!(�)L(b3â3 � b̂3a3) + e−!(�)LF � F: (4.30)

Replacing in this equation � by �� yields

�(b1â1 � b̂1a1) = �e!(�)L(b3â3 � b̂3a3) + e!(�)LF � F: (4.31)



Indeed, equation (4.17) yields

b̂1 =
1
a1

(G+ â1b1):

Replacing b̂1 in equation (4.16) with j = 1 by the above expression, and making use of
(4.34), we �nd the �rst of equations (4.36). The second of equations (4.36) can be obtained
in a similar way by eliminating â1 instead of b̂1.

Remark 4.5 The equations satis�ed by a3 and b3 can be obtained from equations (4.36)
by replacing G(�) by G(��). Hence

a3(��) =
1

h(�)
(a3(�)�G(�)b3(�)) ; b3(��) =

1
h(�)

(b3(�)�G(�)a3(�)) ; � 2 R;

(4.37)
where G is given by (4.21) and h(�) is given by (4.35).

Remark 4.6 The function G is an entire function, thus each of equations (4.36) de�nes
the jump condition of a scalar RH problem. However, it will be shown in section 5 that
equations (4.36) and (4.37) are su�cient to determine the jump matrix (2.25).

Remark 4.7 Equations (4.17)-(4.20) imply the following identity:

e!(�)L[a1(�)2�b1(�)2]+e−!(�)L[a1(��)2�b1(��)2] = (e!(�)L+e−!(�)L)(1�F 2)+2F 2; � 2 R:
(4.38)

Indeed, equations (4.19)-(4.20) imply

e!(�)L(a2
2 � b22) = e!(�)Lâ2

1(a2
3 � b23)� e−!(�)Lb21(â2

3 � b̂23)� 2â1b1(a3b̂3 � â3b3) (4.39)

Replacing in this equation � by ��, adding the resulting equation to equation (4.39) and
using equation (4.30) we �nd

e!(�)L(a2
2�b22)+e−!(�)L(â2

2�b̂22) = (e!(�)L+e−!(�)L)(a2
1�b21)(â2

1�b̂21)+2(a1b̂1�â1b1)(a3b̂3�â3b3):)
(4.40)

Using (4.32), the right hand side of (4.40) equals the following expression:

(e!(�)L + e−!(�)L)� (a1b̂1 � â1b1)
h
(e!(�)L + e−!(�)L)(a1b̂1 � â1b1)� 2(a3b̂3 � â3b3)

i
:

Using equations (4.17) and (4.18) the last expression becomes the right hand side of (4.38).

5 Spectral theory in the linearisable case

In the case of the linearisable boundary conditions (1.2), it is possible to express q(x; y) in
terms of the solution of a RH problem whose jump matrices are computed explicitly in terms
of the given constant d. Indeed, recall that the jump matrices of the basic RH problem of
section 2.4 are de�ned as follows:

J�=2 =

0@ 1 I(�)e−�(x;y;�)

0 1

1A ; J3�=2 =

0@ 1 0

I(��)e�(x;y;�) 1

1A ; I(�) =
b2(��)

a1(�)a3(�)
;
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J0 =

0B@ R(�) b3(−�)
a3(�) e−�(x;y;�)

� e�ω(λ)Lb1(�)
a1(−�) e�(x;y;�) 1

1CA ; R(�) =
a2(�)

a1(��)a3(�)
;

and
J� = J3�=2(J0)−1J�=2; (5.1)

Equation (4.19) and (4.20) imply that

R(�) = 1� e−!(�)L b̂3
a3

b1
â1
; I(�) =

b̂3
a3
� e!(�)L b̂1

a1
: (5.2)

Thus in the linearisable case, the jump matrices involve only the rations b̂3
a3

and b̂1
a1

, evaluated
at � and at ��. Equations (4.35) and (4.34) imply that these rations are given by

b̂3
a3

= �G
h

+
b3
a3h

;
b̂1
a1

=
G

h
+

b1
a1h

: (5.3)

Hence the jump matrices depend on the known function G
h as well as on the unknown

functions b1
a1h

and b3
a3h

. Using the fact that these unknown functions are bounded and
analytic in C+, it is possible to formulate a RH problem, equivalent to the basic one de�ned
by (5.1), in terms of the known function G

h only. This new RH problem is therefore de�ned
by the following jump matrices:

~J�=2 =

0@ 1 ~I(�)e−�(x;y;�)

0 1

1A ; ~J3�=2 =

0@ 1 0

~I(��)e�(x;y;�) 1

1A ; ~I(�) = �G
h

(1+e−!(�)L);

~J0 =

0B@ ~R(�) �Gh e−�(x;y;�)

e�ω(λ)LG
ĥ

e�(x;y;�) 1

1CA ; ~R(�) = 1� G2

hĥ
e−!(�)L;

and
~J� = ~J3�=2( ~J0)−1 ~J�=2; (5.4)

Theorem 5.1 Let q(x; y) satisfy equation (1.1) and the boundary conditions (1.2).
Then q(x; y) is given by equations (2.36)-(2.37) with 	 replaced by ~	, where ~	 is the solution
of the Riemann-Hilbert problem (2.23) with the jump matrix J replaced by the matrix ~J
de�ned as follows:

~J(x; y; �) = ~J�(x; y; �); if arg(�) = �; � = 0;
�

2
; �;

3�
2
; (5.5)

where

~J0 =

0B@ 1� G2(�)
h(�)h(−�)e−!(�)L �G(�)

h(�) e−�(x;y;�)

e−!(�)L G(�)
h(−�)e�(x;y;�) 1

1CA ;
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~J�=2





Thus the above Riemann-Hilbert problem (5.7) is regular.
We now prove that the Riemann-Hilbert problem de�ned by (5.7) is uniquely solvable. It
can be veri�ed that when d 2 R, then h(�) = h(��). In this case, the jump matrices ~J (�)

satisfy the following conditions: the matrices are Schwarz invariant on the imaginary axis
and have zero real part on the real axis of the complex � plane. Under these assumptions,
it follows from general results ( see e.g. [10, 29, 49]) that the so-called \vanishing lemma"
holds. This guarantees the existence of a unique solution.
QED

6 Conclusions

We have studied boundary value problems for the elliptic sine-Gordon posed on a semistrip.
In particular we have shown that if the prescribed boundary conditions are zero along the
unbounded sides of the semistrip and constant on the bounded side, then it is possible to
obtain the solution in terms of a Riemann-Hilbert problem which is uniquely de�ned in
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