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Abstract

This dissertation is a feasibility study on the use of a velocity-based moving mesh finite element

method, based on a conservation principle constant in time, to approximate the dynamical behaviour

of the Cahn-Hilliard equation. The method is implemented in both 1-D and 2-D. In the 1-D case,

both a mass monitor and an arclength monitor are assessed and
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Chapter 1

Introduction

In this section, I introduce the Cahn-Hilliard equation, its general form and the methods applied

in previous papers. I will also refer to a reduced version of the equation which I use in the project,

along with the relevant imposed boundary conditions. The equation is investigated in both 1-D and

2-D form, generating the equation and imposing the relavent boundary conditions for both cases.

1.1 The Cahn-Hilliard Equation

Phase field models have become a large area of research in math





1.2 Difficulties

There are multiple problems associated with the Cahn-Hilliard equation. Initial treatment of

the interfaces is difficult since the positions of these inter



with the width of the transition layer. Most of the previous methods used (certainly in the case of



Introducing zero flux boundary conditions as a restriction on the outward flux at the boundaries,

∮

∂φ

∂n
ds = 0, (1.14)

ensuring that the left hand side of equation 1.12 equates to zero. We then arrive at the following

statement displaying conservation of the phase field integral,

∫

Ω
ϕ1dΩ = constant in time. (1.15)

In the following Chapters I introduce the methods that I will be using to solve the Cahn-Hilliard

equation numerically. Firstly, I will broadly discuss moving mesh methods, highlighting the velocity-

based method, upon which this feasibility study is based, which I intend to use in conjunction with

a finite element approach to model the Cahn-Hilliard equation. The middle Chapters (3, 4, 5 &

6) then guide the reader through the moving mesh finite element formulation to generate a linear

system, which when solved will provide the solution, along with supplementary material discussing

potential problems and methods used to overcome these issues. The final Chapters (7 & 8) then

analyse the results of the model and take a critical view of the velocity-based moving mesh method

as a valid approach to tackling the tricky dynamics of the Cahn-Hilliard equation.
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Chapter 2

Adaptive Mesh Method



This method is more accurate between the nodal values in comparison to h-refinement. However, in-

terpolation in the cells is limited by the degree of the polynomial chosen and hence cannot accurately

model dynamics occuring in between nodes.

2.2 Velocity Based Methods

An alternative Lagrangian-based approach is to use a specified number of nodes, moving them to

the areas of interest where the fast dynamics of the solution occur. This method is commonly re-

ferred to as r-refinement and is divided into Mapping-based and Velocity-based techniques. These

methods have been chronicled in a number of papers, most notably by Huang (14) and Budd (6).

Both velocity and mapping based methods are dependent on a suitable monitor function. The most

common types of r





Chapter 3

Application to the Cahn-Hilliard

Equation



Since, for the Cahn-Hilliard system, we know that the integral,
∫

Ω ϕ1d



Remark

Care should be taken when introducing either Dirichlet or periodic boundary conditions on ϕ1

(or Φ) (15). In order to ensure the hat functions remain a part



θ is defined as θ =
∫

wϕ1dx. Analogously to 3.3 we use,

1

θ

∫ 1

0
wi

√

1 +

(

∂ϕ1

∂x

)2

dx = ai = constant, ∀



Chapter 4

1-D Cahn-Hilliard Equation using a

Conservation of Mass Monitor

Taking the Cahn-Hilliard system of equations derived by Ceniceros, et al. (10) we have the following

1-D system,

∂ϕ1

∂t
=

∂2ϕ2

∂x2
+ g(ϕ1) (4.1)

ϕ2 = τϕ1 − ε2 ∂2ϕ1

∂x2
(4.2)

where

g(ϕ1) =
∂2

∂x2
(f ′(ϕ1) − τϕ1). (4.3)

We apply periodic boundary conditions, as used in (10) over the interval from 0 to 1. Applying

Liebnitz Integral Rule to the left hand side of equation 4.1, we can generate an expression for a

velocity v, on which I can base my r-refinement strategy,

d

dt

∫ 1

0
wiϕ1dx =

∫ 1

0
wi

∂ϕ1

∂t
dx +

∫ 1

0
wi

∂(ϕ1v)

∂x
dx (4.4)

=

∫ 1

0
wi

[

∂2ϕ2

∂x2
+ g(ϕ1)

]

dx +

∫ 1

0
wi

∂(ϕ1v)

∂x
dx (4.5)

where v is the velocity, which we now write as ẋ.

4.1 Calculating the ∂ϕ1

∂t
Term

Applying the distributed conservation of mass principle (equation 3.3) ensures that the left hand

side of equation 4.4 is zero, giving the following weak form for equation 4.1,

d

dt

∫ 1

0
wϕ1dx = 0 =

∫ 1

0

∂

∂t
(wϕ1)dx +

∫ 1

0

∂

∂x
(wϕ1ẋ)dx (4.6)

=

∫ 1

0

[

w
∂ϕ1

∂t
+ ϕ1

∂w

∂t
+ w

∂

∂x
(ϕ1ẋ) + ϕ1ẋ

∂w



This allows us to reduce equation 4.7 to

0 =

∫ 1

0

[

w
∂ϕ1

∂t
+ w

∂

∂x
(ϕ1v)

]

dx (4.9)

=

∫ 1

0

[

w

(

∂2ϕ2

∂x2
+ g(ϕ1)

)

+ w
∂

∂x
(ϕ1v)

]

dx (4.10)

= w
∂ϕ2

∂x

∣

∣

∣

∣

1

0

−

∫ 1

0

∂w

∂x

∂ϕ2

∂x
dx +

∫ 1

0
wg(ϕ1)dx +

∫ 1

0
w

∂

∂x
(ϕ1v)dx. (4.11)

Taking w = Wi to be a member of the set of linear hat functions, and v =
∑

i Wivi to represent

the velocity, we obtain

0 = Wi
∂ϕ2

∂x

∣

∣

∣

∣

1

0

−

∫ 1

0

∂Wi

∂x

∂ϕ2

∂x
dx +

∫ 1

0
Wig(ϕ1)dx +

∫ 1

0

∑

j

Wi
∂

∂x
(ϕ1Wjvj)dx ∀i, (4.12)

We now consider the terms of equation 4.12 separately. The fir



Applying this to the remaining half of the integral, we finally obtain an expression for the ith

row of the B matrix weighted by ϕ1 to be 1
2(Φi−1 − Φi+1), which in matrix form is represented as,

B(ϕ1) =















0 −Φ1

2 . . . . . .

Φ0

2 0 −Φ2

2 . . .
...

. . .
. . . −

ΦN+1

2
... ΦN

2 0















(4.21)

This unsymmetric matrix, however, can be problematic to invert, and so we decided to take an

alternative approach by introducing a velocity potential, Ψ, where v = ∂Ψ
∂x

. Introducing this into the

equation 4.14, and expanding Ψ =
∑

j ΨjWj , we get the following representation for the Velocity

Term,
∫ 1

0
ϕ1

∂Wi

∂x

∑

j

Wjvjdx =

∫ 1

0
ϕ1

∂Wi

∂x

∑

j

∂Wj

∂x
Ψjdx ∀i, (4.22)

in matrix form,

K(ϕ1)Ψ, (4.23)

where K(ϕ1) is the symmetric stiffness matrix weighted by ϕ1. We obtain v from Ψ by minimising

the error between the velocity and the gradient of Ψ via

∫ 1

0
Wi

(

v −
∂Ψ

∂x

)

dx = 0, ∀i. (4.24)

By expanding the velocity and velocity potential using a series of linear hat functions

∫ 1

0
Wivdx =

∫ 1

0
Wi

∂Ψ

∂x
dx (4.25)

∫ 1

0
Wi

∑

j

Wjvjdx =

∫ 1

0
Wi

∑

j

∂Wj

∂x
Ψjdx (4.26)





∫ 1

0
Wi

∑

j

Wjdx



 v =





∫ 1

0
Wi

∑

j

∂Wj

∂x
dx



Ψ, (4.27)

or, in matrix form,

Mv = BΨ. (4.28)

where the matrix B is the unweighted version of B(ϕ1) in equation 4.21.

ϕ2 Term

Coming back to equation 4.12, we now evaluate the ϕ2 term, expanding ϕ2 as
∑

i Wiϕj , giving

∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
ϕjdx =





∫

Ω

∂Wi

∂x

∑

j

∂Wj

∂x
dx



ϕ ∀i, (4.29)

which in matrix form can be expressed as

Kϕ, (4.30)
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where K is the standard stiffness matrix, the elemental form of which (between nodes i − 1 and i)

is given as

Ke
i =

1

(xi − xi−1)

(

1 −1

−1 1

)

. (4.31)

Remark

Again, great care should be taken when introducing the periodic boundary conditions into the

system. This requires a reduced system with the test functio



Once the velocities v have been found from equation 4.37, the new positions of the nodes are

calculated by integrating the mesh forward in time with a simple Forward Euler method,

xn+1 − xn

∆t
= v. (4.38)

With the new nodal positions known, the new ϕ1 solution is obtained by solving the mass

conservation equation 3.5, with the elements of the mass matrix recalculated using the new nodal

positions.

4.2 Calculating ϕ2



Figure 4.1: 2-D stencil representing nodes at n and n+1 time levels, displaying an explicit timestep-

ping approach.

4.3.1 Explicit Adaptive Timestep Method

We introduce an explicit adaptive timestep method based on an explicit Euler approach to the

relationship between velocity and the subsequent velocity potential Ψ, in the form

v = ẋ = Ψx. (4.43)

Fig.4.1 gives a graphical representation of the stencil for the explicit method.

By applying the index n to represent the timestep, we then get an explicit form of thi



This restriction on the timestep ensures that no xn+1
i -values move beyond xn

i−1 or xn
i+1. There-

fore, in order for the system to have monotonically increasing x-values, it is sufficient to reduce the

∆t to ∆t
2 . By using this as a non-tangling strategy in tandem with a suitably small initial timestep

we can get a good idea of the initial dynamics.

4.3.2 Implicit Adaptive Timestep Method

With the explicit adaptive timestepping method, ∆t often tends to be greatly restrictive. In order

to eradicate this, we considered an implicit adaptive timestepping method to model the properties

of solutions generated by the Cahn-Hilliard equation. Fig. 4.2 gives a graphical representation of



monotonically increasing set of x-values for any ∆t.



maintain the coordinate sequence, we decided to further restrict the timestep to an interval which

culminated in the first of two consecutive points in the sequence coinciding. At this stage in time

we merged the two points, giving the resultant point new ϕ1, ϕ2 and Ψ values, taken to be the

average of the values from the colliding points. These new values ensured that we reverted back

to the piecewise continuous solutions for ϕ1, ϕ2 and Ψ that we had had prior to the discontinuity

present just before merging.

Figure 4.3: Graph representing a discontinuity present in the piecewise solution.

The process of merging itself is of course undesirable, since the process requires the removal of

nodes from generated singularities, which contradicts the thoughts behind the velocity-based adap-

tive mesh method, reducing the resolution.

Remark

A further point can be made on the presence of the hyperbolic term within the coupled Cahn-

Hilliard system. For specific cases, where one models the thickness of the interfacial layers with

ε → 0 along with a certain bulk energy density f(φ), a Hamilton-Jacobi system can be a direct

outcome of the Cahn-Hilliard system we are using. In more gene



were beyond this value, then additional nodes were added, evenly spaced between the initial nodes

in question. These additional values were then given values of initial data via linear interpolation,

ensuring the original piecewise data remained the same.

A further solution to this problem could be from introducing smoothing into the model, to ensure

the elements are not too close together. However, this is again an undesirable process as it attempts

to remove or reduce the presence of steep fronts which are a characteristic of the solution. Unfortu-

nately, the presence of additional nodes does not remove the issue of node-tangling present in the

1-D mass monitor model. So we seek an alternative approach, deciding to introduce an arclength

monitor to gain a better distribution of the nodes and restrict overlapping.
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Chapter 5

1-D Cahn-Hilliard Equation using an

Arclength Monitor

In review of the dynamics displayed by the solution of the Cahn-Hilliard equation, it was envisaged

that an alternative monitor function may be more effective to



where both θ̇ and v are unknown, and θ̇ = dθ
dt

. One can then find the value for θ̇ by summation over

all i,

θ̇ =

∫ 1

0

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx +



v

√

1 +

(

∂ϕn
1

∂x

)2




∣

∣

∣

∣

∣

∣

1

0

. (5.6)

Since the velocities are zero at the boundaries, the boundary term involving the velocity becomes

zero, giving

θ̇ =

∫ 1

0

∂ϕn
1

∂x

∂2ϕn
1

∂x∂t
√

1 +
(

∂ϕn
1

∂x

)2
dx. (5.7)

We can now substitute in for ∂ϕ1

∂t
using the previously defined equation 4.1, i.e.

∂ϕ1

∂t
=

∂2ϕ2

∂x2
+

∂2

∂x2
(ϕ3

1 − (τ + 1)ϕ1), (5.8)

to give

θ̇ =

∫ 1

0

∂ϕn
1

∂x
∂

∂x

(

∂2ϕn
2

∂x2 + ∂2

∂x2 [(ϕn
1 )3 − (τ + 1)ϕn

1 ]
)

√

1 +
(

∂ϕn
1

∂x

)2
dx. (5.9)

Upon integration element by element

θ̇ =
∑

elementsk















∂ϕn
1

∂x

∣

∣

∣

k− 1

2

(

∂2ϕn
2

∂x2 + ∂2

∂x2 [(ϕn
1 )3 − (τ + 1)ϕn

1 ]
)∣

∣

∣

k

k−1
√

1 +
(

∂ϕn
1

∂x

)2
∣

∣

∣

∣

∣

k− 1

2















. (5.10)

Coming back to equation 5.5, we now have only one remaining unknown, v. In order to include

the newly determined θ̇





where K is the standard stiffness matrix, g = (Φ3 − (τ + 1)Φ) and B(ϕ1) is the weighted B matrix,

both previously referenced when formulating the Cahn-Hilliard system using a mass monitor by

equations 4.31 and 4.21 respectively. Having found the change in σ values with respect to time,

expressed as σ̇, we can then find the new σ values using the standard Eulerian formula,

σn+1
i = σn

i + σ̇i
n∆t, ∀i. (5.21)

Finally, in order to calulate the new ϕ1 values, we can use the following relation for the internal

values,

MΦ = σ, (5.22)

where M is the standard mass matrix and Φ and σ



Chapter 6

The 2-D Cahn-Hilliard Equation

6.1 Grid Structure

Since we are using finite elements to solve the equation, in order to produce a simple formulation

of the problem in 2-D, a triangular grid is used with piecewise linear approximation (16). The most

effective method to produce a triangulation of the region is a Delaunay triangulation, due to the

definitions of the criteria used to create the triangles. Using this method, and considering a set of

nodes, no nodes lie inside the circumcircle of each triangle generated, and there are no mesh points

in the interior of any element circumcircles. When creating the triangular elements this property

ensures that the smallest angle inside each triangle is maximised. This is extremely important

since small angles are known to cause ill-conditioning in stiffness matrices, as I will verify later on

when generating the stiffness and mass matrices for a generic triangle. With this in mind, triangular

elements were produced using a Delaunay triangulation of the region [0,1]×[0,1] with (N+1)×(N+1)

nodes in an initially uniform grid, and repeated once new nodal coordinates were generated in each

timestep.

Figure 6.1: A 2-D triangular element.

By splitting the grid into a series of small elemental triangles, the formations of the stiffness

matrix and the mass matrix are comparatively simple in 2-D. In order to understand the structure

of an elemental stiffness matrix, consider an arbitrary triangle in space, represented by the nodes

30



A, B & C (Fig.6.1), with corresponding angles, α, β & γ, and lengths, AB = a, BC = b & CA = c.

The angles can be found using the cosine rule, i.e.

cosα =
a2 + c2 − b2

2ac
. (6.1)



6.2.2 Generating Nodal Velocities

In the 2-D case, only the conservation of mass monitor was implemented, due to time constraints.

This version was similar in construction to the 1-D case. In 2-D, the Cahn-Hilliard system developed

by



where



In order to approximate the velocity, we use the standard finite element matrix relationship between

the velocity and its potential

Mv = BΨ (6.32)

where the B matrix in 2-D has the following formulation

Bij =

∫

Ω
Wi.∇WjdΩ =

∑

elements around i

∫

∆
Wi.∇WjdΩ =

∑

elements around i

∇Wj

∫

∆
WidΩ.(6.33)

This method is only used on internal points, since one of the boundary conditions imposed on the

problem is that boundary nodes have zero velocity, and remain static nodes. However, this method

was not implemented due to time constraints, and a much coarser 2-D central difference approach



Chapter 7

Numerical Results

All of the 1-D and 2-D models were computed using MATLAB. Throughout the course of the

dissertation, the programs were particularly sensitive an



(a)

n=22,

m=70,

L2-

norm=0.7288



Since this method contained the use of an adaptive timestepping method, where ∆t alters for

each timestep, each run was simulated to a different point in time. The factors affecting ∆t was



(a)

n=22,

L2-

norm=0.0398
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7.3 2-D Case

In the 2-D case, the smooth periodic initial data used was of the form,

ϕ1 = sin(4πx)sin(4πy). (7.2)

Unfortunately, due to time constraints an analytic solution along with Forward Euler timestepping

of the initial data, with which one could compare the solution from the numerical method, was

not computed. The initial grid used was a unit square of equally spaced nodes with the Delaunay

triangulation in Fig.7.3,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.3: Delaunay triangulation of the unit square grid

From observations of results from the mass monitor program in 1-D, one may expect the 2-

D mass monitor program to have similar problems of node-tangling as well as the generation of

singular matrices. However, these issues were not so prevalent and the method appeared to be more

stable than the 1-D programs, allowing for a larger timestep to be used. In this case a timestep of
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Chapter 8

Conclusions and Further Work

8.1 Summary

In this chapter I will be evaluating and discussing the findings and methods used, suggest possible

improvements and further avenues to pursue. In this feasibility study, a velocity-based moving mesh

method based on a monitor function was applied in tandem with a finite element method to model

the fast dynamics of the fourth order Cahn-Hilliard equation.

In Chapter 1 the system was introduced and its properties were discussed. We also discussed

the applications of the Cahn-Hilliard equation and introduced some previous approaches taken to

model it. In Chapter 2, we reviewed the various approaches available for grid adaptation, focussing

on the velocity-based approach on which the feasibility study was centred as well as discuss the

properties and advantages over the more widely used Eulerian (static-grid) approach. In Chapter 3

we discussed the most suitable monitor functions upon which to base the finite element moving mesh

method upon. Initially, we started by discussing a mass conservation approach to model the Cahn-

Hilliard equation, proven to be conservative over the region, and discussed the possible advantages



8.2 Remarks and Further Work

8.2.1 Timestepping

Throughout the dissertation, it was apparent that significantly small timesteps were required in

order to display a solution to the Cahn-Hilliard equation and avoid node tangling. Unfortunately,

node tangling and mesh racing (6) became a very important issue to plague all of the models. This

was overcome briefly in the 1-D models by the introduction of an explicit adaptive timestep method

to generate a maximum timestep size, used to ensure no overtaking occurred in the grid. Applying

this method, one could soon find the severe limitations of the current set-up, with timesteps of the

order 10−14 being presented as maximum timesteps in the 1-D conservation
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