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Chapter 1

Introduction

Nanoscale devices are an upcoming advancement in the field of technology which

has been a large topic of research over the past decade within academia. Nanotech-



evolution on a material substrate. Figure 1 shows the basic procedure that takes

place in the evolution process.

Figure 1.1: Island evolution on a material substrate

An island is a group of nanoparticles, Figure 1, considered as one entity and vary-

ing in size. Once these islands have formed and with no addition of nanoparticles

added to the system, i.e a set amount of material on the surface, we look to see

how the islands evolve over time. The evolution process involves particles moving

about from different islands where the number of islands starts to decrease and at

some point will slow down enough that we can say that it is reached a quasi-steady

state. Note that the ripening process does not stop and islands will continue to

disappear where all depends on the temperature of the system although we will

not consider this variable in our calculations. The movement is due to different

types of interactions [3] that can be driving the evolution, of which part of the

research in this area is trying to study.

In this project we look at two properties of island evolution, the growth rate

equation for an island and the distribution function. The growth rate equation

describes how an island can possibly evolve and the distribution function is a

measure of islands over the whole surface. Firstly, we look at the origin of the

growth rate equation.
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1.1 Origin of the Growth Rate Equation

1.1.1 Lifshitz and Slyozov

The equations that we look at have their origin in a paper written by Lifshitz and

Slyozov [1] in 1961. They look at the diffusion effects of the precipitate formed in a

supersaturated solid solution. These diffusion effects bring about the formation of

grains of a new phase in the solution. The grains arise due to the supersaturated

part of the solution and then grow due to the coalescence effects brought about





volume distribution of grains in the solution. The volume distribution function is

an unknown quantity that we wish to find and is related to the growth law via

the continuity equation,

∂f(ρ3, t)

∂t
+

∂

∂ρ3
(V̇ f(ρ3, t)) = 0. (1.7)

The first term is the time rate at which the distribution increases and the second

term tells us the accumulation of material due to the grain growing or dissolving

in the solution. Note that the equation is essentially one-dimensional although

the quantities considered are three-dimensional in nature.

Conservation

A conservation property must hold for this system. As a grain grows the amount

of supersaturation must reduce to compensate for the growth. The grain grows

due to the over saturation of the solution. The total initial supersaturation of the

solution is

Q0 = ∆0 + q0, (1.8)

where the initial supersaturation ∆0 is as before and also a term q0 which allows

for the initial volume of material already in the grains. This term is quantified

through

q0 =
4

3
πR3

c0

∫

∞

0

fρ3dρ3 (1.9)

which is the volume of a grain multiplied by the first moment of the volume

distribution function. Also as we already know, the number density, n, of grains

(number of grains per unit volume) is represented by the area under the curve

which is the normalised zeroth moment
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n =

∫

∞

0

fdρ3. (1.10)

Lifshitz and Slyozov then use the normalisation to unit volume to relate a one-

dimensional distribution function F (ρ, t) to the three-dimensional volume distri-

bution function via

F (ρ, t)dρ = f(ρ3, t)dρ3. (1.11)



1.1.2 Hillert

Further to Lifshitz and Slyozov [1], Hillert [2] approached the problem of grain

growth from a different view point but ultimately ending up with a similar growth

equation. This was done deliberately so that the method of Lifshitz and Slyozov

could be implemented when coming to solve the continuity equation. The grain

growth equation was

dR2

dt
= 2αMσ

(

R

Rc
− 1

)

, (1.14)

where M , α and σ are parameters controlling how and when grains come together.

Note here that the growth equation describes the rate of change of grain size rather

than grain volume, as Hillert found this to be easier to study theoretically. The

scaled distribution function, P (u), then comes out to be

P (u) = (2e)



The Monte Carlo data look at two types of evolution; the pedophagous effect (PE)

and the non-pedophagous effect (NPE). The PE effect is when a particle escapes

from an island but the same island is then able to capture it back, thus enabling it

to absorb its own offspring, while the NPE is when this is not allowed to happen.

The results found were that the Hillert growth law in the 2-D form

ṡ =
ds

dt
=

r

r(t)
− 1,



asymptotic nature of the solution. The conclusion reached is that a spatial order

of islands arise due to the PE but not in the NPE case. The growth rate equations

of Hillert and Tarr and Mulheran are the ones we go on to study.
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Chapter 2

Asymptotic Analysis

2.1 Tarr and Mulheran

The quasi-steady state solution as t → ∞, i.e the scaled distribution function, has

been the preferred choice for solving the continuity equation since an analytical



number density of islands, N(t). Note that the volume of material, Ω should



Tarr’s Law then takes a special case and chose f(0) = f0 = c/k = 1 where f(0)

comes from

Ṅ = −k
Ω

ct2
= lim

s→0

(

ds

dt
F (s, t)

)

= −k
Ω

c2t2
f(0) (2.7)

which describes how islands are able to disappear as s → 0 with a rearrangement

giving the required special case. Thus, the ODE reduces to

−f − f ′ = 0 (2.8)

which has the solution

f(v) = exp(−v). (2.9)

However, other solutions may exist by solving the original ODE 2.6 with a general

c/k = f0



f(v) = f0[1 − (1 − f0)v]
1−2f0

f0−1 . (2.13)

So Tarr’s Law [4] finds two solutions to the continuity equation of which the special

case seems to be the solution of choice experimentally and the one that also should



∂F (s, t)

∂s
=

Ω

c3t3
f ′(v), (2.18)

from equation 2.4. Now, using equation 2.18 the complete size derivative in the

continuity equation we find

∂

∂s

[

(v1/2 − 1)F (s, t)
]

=
Ω

c3t2

[

(v1/2 − 1)f ′(v) +
f(v)

2v1/2

]

. (2.19)

Substituting equations 2.17 and 2.19 into the continuity equation 2.16 we find the

ODE

f [1 − 4cv1/2] + f ′[2(v − v1/2) − 2cv3/2] = 0, (2.20)

where separation of variables gives

∫

df

f
=

∫

1 − 4cv1/2

[2(v − v1/2) − 2cv3/2]
dv. (2.21)



and if 4c > 1

f(v) = A(cv − v1/2 + 1)−2 exp

{

−2√
4c − 1

arctan

[

2cv1/2 + 1√
4c − 1

]

}

(2.25)

where in both cases we have converted back to the scaled island size, v, with A

integration constant is dependent on the allowed values for v. We can also find a

solution when 4c





By setting the term in the square brackets to zero the characteristics are given by

the growth rate equation 2.1 where the constant k has been scaled into the time

derivative. The function u is not constant on the characteristics due to the total

derivative of u(s, t) being non zero

du

dt
= −u

s
. (2.35)

The characteristic equation is analytically solvable for the quasi-steady state of

the system when we replace s with t, in this case taking c = 1 for simplicity. The

growth rate equation becomes

ds

dt
=

s

t
− 1 (2.36)

which can be solved using the integrating factor t−1 to give

d

dt
(t−1s) = −t−1. (2.37)

Integrating we find

s = −t ln t + Bt, (2.38)

where B is a constant of integration.

However, since u is not constant on the characteristics, i.e u̇ 6= 0, we can solve

equation 2.35 as well, again with s = t, which tells us what happens on the

characteristics. This is trivial coming out to be

u = At−1, (2.39)

where A is a constant of integration.
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Chapter 3

Numerical Schemes



un



to give

utt =
ṡ

(s)2
u +

ṡ

(s)2
su +

1

s
((ṡu)s) + ṡ(ṡuss +

2ṡ

s
us). (3.12)

Finally substituting the above into 3.5 we obtain

u(s, t + ∆t) = u(s, t) − ∆t(ṡu)s

+
(∆t)2

2

[

ṡ

(s)2
u +

ṡ

(s)2
sus +

1

s
((ṡu)s) + ṡ(ṡuss +

2ṡ

s
us)

]

. (3.13)

However ṡ is non trivial and is calculated from the initial s value given by equation

2.2, using the product rule to give

ṡ =

∫

∞

0
suds

(
∫

∞

0
uds)2

∫

∞

0

(ṡu)sds −
∫

∞

0
s(ṡu)sds

∫

∞

0
uds

. (3.14)

Calculating the integrals, ṡ becomes in computable form

ṡ =

∫ N
0

suds

(
∫ N
0

uds)2
[ṡu]N0 − 1

∫ N
0

uds

(

[ṡsu]N0 −
∫ N

0

(ṡu)ds

)

, (3.15)

where the integration limits are now on the finite region [0,N] so as to be com-

putable. The scheme is thus achieved, as in the L-W schemes, by discretising 3.13

using central differences, giving

un+1
j = un

j − ∆t

[

(ṡu)n
j+1 − (ṡu)n

j−1

2∆s

]

+
(∆t)2

2

{

ṡ

(s)2

[

un
j + sn

j

(

un
j+1 − un

j−1

2∆s

)]

+
1

s

[

(ṡu)n
j+1 − (ṡu)n

j−1

2∆s

]

+
2ṡj

s

(

un
j+1 − un

j−1

2∆s

)

+ ṡ2
j

(

un
j+1 − 2un

j + un
j−1

(∆s)2

)

}

. (3.16)

This is longer than the standard L-W scheme but is still computable.
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3.2.1 The CFL Stability Condition

We cannot perform the usual fourier stability analysis for this scheme so we look

to the CFL stability condition which is a necessary condition for stability for

numerical schemes of this sort [5, 6]. The stability condition we require is

∣

∣

∣

∣

ṡ
∆t

∆s

∣

∣

∣

∣

≤ 1, (3.17)

where

ṡ =
s

s
− 1. (3.18)

Initially when s is large, depending on what domain size is taken, the value of ṡ

can be very large. Therefore, if the ratio ∆t/∆s is not small enough the stability

condition can be violated. By choosing a smaller time step, ∆t, we can avoid this

problem in the case of large s but at small s the condition is always satisfied.

Note that initially s is 1 but increases as time evolves which keeps the stability

condition satisfied from the initial time step.

3.3 Conservation

Numerically we can lose conservation of material if the correct boundary conditions

are not implemented but for this system we can always check the property

∫

∞

0

su(s, t)ds = 1 (3.19)

which tells us that the volume of material is constant. Notice that the integral is



Chapter 4

Numerical Results

4.1 Tarr and Mulheran Growth Law: Gaussian

We now have a second order L-W like numerical scheme that we can use to solve

the continuity equation 2.30. The conditions we start with are a Gaussian initial

condition with peak centered at s



Figure 4.1 shows what happens as we evolve to t = 1 where the initial Gaussian

condition is also shown for comparison.
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Time N(t) Ω s
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Figure 4.2 shows the solution obtained at t = 5. Note that the initial condition

has been omitted so that the solution can be seen more clearly. Here the solution

has started to look more like an exponential solution, as we expect, and N(t) has

also reduced in size from Table 4.1. There is a slight problem with the scheme

though. In Figure 4.2 there are very small oscillations that are just about visible

at about s = 2 which is because of the central difference nature of the numerical

scheme [5] where we know the L-W scheme generates oscillations.

However, they do not cause any problems since the linear relationship of s ∝ t

has been achieved in Figure 4.3 so now we can change to the solution from the

characteristic equations.
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Figure 4.3: This graph shows the linear relationship s ∝ t has been attained by

evolving to a time of t = 5

Before we calculate this we can make another comparison to check our numerical

results by converting to the scaled variables, f



and

v =
N(t)

Ω
s, (4.5)

where N(t) and Ω represent the integrals defined above. Figure 4.4 shows the

scaled distribution function at t = 5 and also at t = 10 and t = 20 to show that

the exponential solution found by the scaling solution is sl



by rearranging the characteristic equations

u = At



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1





0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

t

A
ve

ra
ge

 Is
la

nd
 S

iz
e

Figure 4.9: This graph shows the linear relationship s ∝ t has been attained by

evolving to a time of t = 5
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Time N(t) Ω s

0.0000000 0.50002300 0.49799765 0.99594947

0.9999975 0.16687689 0.49600964 2.97230861

1.9999949 0.10030785 0.49402960 4.92513360

2.9999924 7.1781E-02 0.49205745 6.85496147

3.9999899 5.5932E-02 0.49009317 8.76219618

4.9999874 4.5846E-02 0.48813672 10.6472200

Table 4.3: Table of Momens413(3)0.051473(:)-0.24841601(M)-0.111898(o)-0.38944.3492351(.)-0.248413(3)0.014730.9091 Tf
.0492351(7)0.0492351(2)0.0492351(2)0.0492378 189.790.389408751(7)0.049260497Q
4225 7099 4.04688 189.719 re
f
1717 7095 2510.1 4.04688 re
f
1715 17.842
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Chapter 5

Conclusions and Further Work

Taking the Tarr and Mulheran growth rate equation we found that the assumption

where the average island size grows linearly with time in the



the Tarr and Mulheran growth rate equation. A general power could be used

here along with a numerical scheme that can sufficiently deal with the continuity

equation produced.
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Appendix A

Conservation Property

There is a conservation property we can check to ensure that w



where we can take out the time derivative to yield the conserving property A.1 in

the first term

d

dt

∫

∞

0

(

sF (s, t)
)

ds +

∫

∞

0

s
∂

∂s

(

ṡF (s, t)
)

ds = 0. (A.5)

The first integral on the left is the conservation property which we have said should

be constant. Therefore, the conservation property holds if

∫

∞

0

s
∂

∂s

(

ṡF (s, t)
)

ds = 0. (A.6)

We can integrate by parts to give

[

sṡF (s, t)
]

∞

0
−

∫

∞

0

ṡF (s, t)ds (A.7)

and substituting ṡ with the growth rate equation 2.1 we get

[

sṡF
]

∞

0
−

∫

∞

0

(

sF

s
− F

)

ds (A.8)

which can be written as

[

sṡF
]

∞

0
− 1

s

∫

∞

0

sFds −
∫

∞

0

Fds, (A.9)

since s(t) is only a function of time. Substituting the integral form of s(t) 2.2 we



This term is zero since we know that F (∞, t) tends to zero quicker than any other

term. Hence from A.5

d

dt

∫

∞

0

(

sF (s, t)
)

ds = 0 (A.12)

and this conservation property is valid.
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