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Abstract

A review is given of the Galerkin, iterated Galerkin and re-iterated Galerkin
methods for finding approximate solutions to integral equations of the second
kind. The process of re-iteration, first described by Porter  Stirling, is applied
to the Kantorovich method to produce two new re-iteration methods. The first,
the modified iterated Kantorovich method, is a straightforward application of the
re-iterated Galerkin method to a regularized Kantorovich equation. The second
method differs by applying the Kantorovich regularization at each iteration. This
second method is tested on some example integral equations and its convergence
compared with that of the re-iterated Galerkin method. Finally it is shown how

the presence of an eigenvalue can affect the convergence of these methods.
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In certain problems it is not uncommon to encounter equations in which the un-






We wish to find approximations to the solution of integral equations of the form
- 4 (13)

in some Hilbert space , such as (0 1).
To do this we look for an approximation , to in some finite dimensional

subspace , of . by solving the equation

in ,, where , is an orthogonal projection of  onto .



Ch pter 2

G lerkin Methods

2.1 The Galerkin Method

If our approximation p, is chosen such that Ap, — f is orthogonal to the subspace

FE,, then we have
(Ap. — foxg) =0, j=1,....n
= (Apn, ) =(f1x5), J=1....n
where the y;’s are the orthonormal basis functions of F,,.
Using our definition of p, from equation (1.5) and A =1 — K (taking A =1

in equation (1.3) for convenience) we arrive at

n

Zai{(XhXj) — (Kxi,xi)b=(fixg), 7=1,....n (2.1)

=1

This system of n equations can be solved simultaneously, provided the deter-
minant of coefficients is non-zero, to obtain the «;’s which, via equation (1.5),
provide us with our approximation p, to the solution ¢ of our integral equation.

In terms of the projection P, of H onto F,,
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Notice that this equation is identical to the expression for the ’sin Galerkin’s

method, so the ’s are the same for both methods. However, n = ,. In fact
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in the initial (non-iterated) Galerkin approximations we find, (taking n = 0),

ro = [+ Kpo—po
= ﬁo—po
= (I—KP)'f—(I-P.K)'P.K

= (I-P)(I—-KP,)f,

which leads us to

rA
s K|
70l ’

(2.9)

ie. the ratio of the residual of the iterated Galerkin approximation, over the

norm of the residual of the Galerkin approximation, provides a lower bound on

the norm of the operator K. Whereas this quantity has no direct consequences

for the convergence of the method, it is however valuable information to know

about the kernel, and comes relatively free.
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The re-iterated Galerkin method provides a means of calculating an approxima-
tion to the solution of an integral equation, providing certain conditions are met,
to any desired accuracy. The number of re-iterations required to reach a specific
accuracy depends upon the rate of convergence of the method, which, in turn,
depends upon the size of the subspace used. An increase in the size of , will
result in faster convergence, but requires more calculations.

Is there a way in which the re-iteration process can be made more efficient,

increasing the rate of convergence whilst minimising the number of calculations?



Equation(3.1) represents the application of the operator K to both sides of
the original integral equation ¢ = f + K¢.
We get a clue that we may have improved matters by considering the Neumann

series for our equation, given by
p=f+Kf+Kf+...+K"f+... (3.2)

The Kantorovich method gives ¢ = f + K f + K1, compared to ¢ = f + K¢
for Galerkin, and so contains an extra term of the Neumann series.

We approximate @ by finding the Galerkin solution of the equation ¢ =
Kf+ K, ie.

e BiXis
=1

where ¢, F,, a subspace spanned by the orthonormal basis yi,..., %X, .

We want to choose ¢, so that Ay» K f is orthogonal to F,,, where A =1 K.

Therefore

(Ag, Kf,x;) =0, j=1,....n

(Agusxy) = (Kf,x5), j=1....n

S xg) (Bxaoxg) = ((Kfxg), J=1,...m
Notice that the ;’s given by the system of equations above differ from the
;’s given by Galerkin’s method because we have a different free term in the
integral equation, instead of . The solution to our original problem is
therefore approximated by %W =+ ., which is different from the n

of Galerkin’s method.

The benefit of making the substitution in the Kantorovich method becomes

clear when we compare the differences between the approximations and

14



(I — K)~'f. If we denote by P, the orthogonal projection onto F,,, we see that
po— 6= (I = PuK) (P, = DI = K)7'F, (33)

and
pn—0¢=(—-P,K)"(P,K — K)(I—-K)'f. (3.4)
The difference between the two errors is that for the first, P, has to be chosen
such that (P, — I)(I — K)™'f is small, so the choice depends on f, whereas, for
the Kantorovich method, it is only necessary to choose P, such that |P, K — K||
is small, independently of f, which is more easily satisfied (see Sloan [6]).
Another advantage of the Kantorovich method is that it removes f from the
calculations, replacing it by K f. This is desirable if f is not a particularly smooth
function. The application of K to f has the effect of smoothing the free term.
K f is then used in the calculations to approximate ¥, with f being added on

afterwards to give p, the approximation to ¢.

3.2 The Iterated antorovich Method

Sloan [6] demonstrated that the principle of iteration, which he first applied to
Galerkin’s method, could also be brought to bear on Kantorovich’s method.
We wish to find the solution ¢ = f 4+, where 1 satisfies the integral equation

v = Kf 4+ K. The Galerkin approximation to i gives
prq=1-PK)'PKf = ¢=po=[+q.

It we apply the iteration process to ¢q, by replacing ¢ in the equation, we
arrive at
Go=Kf+ Kqo

15



ie.
Go=I—-KP,)'Kf

= ¢~ po= [+ o
The error in the approximation of ¥ is given by

Go—th = (I—KP)'Kf—(I—K)'Kf
= (I=KP) (K = KPy)(q0 =)

= S(g—1), where S=(I—-KP,)""(K - KP,),

which in turn implies
}%0_45: S(po — ).

The operator S is the same as that encountered in the iterated Galerkin
method , which is as one might expect considering that the two methods differ
only in the choice of free term. As with the Galerkin method, iteration will
improve the Kantorovich approximation if the norm of the operator S is less than
one, which can be guaranteed by a suitable choice of subspace. The advantage
of the iterated Kantorovich method over the iterated Galerkin method lies in the

possibility that ¢» = ¢— f will be smoother than ¢, and thus easier to approximate.

3.3 The Modified Iterated antorovich Method

Although it has not previously been demonstrated, it seems fair to suppose that,
since Kantorovich’s method benefits from iteration, it might equally benefit from

the process of re-iteration.

16



The iterated Kantorovich method is obtained by applying the iterated Galerkin
method to the equation ¢» = K f + K, where ©» = ¢ — f. The iterated approxi-
mation ¢y exhibits an error which can be compensated for by adding a correction

term, 1y say, so that
= qo+ 1.

By substituting 1 into the modified integral equation we see
V1= Kf+ Ko —qo+ Ky
= 720 + I(¢17

where 7 is the residual error incurred in approximating ¥ by o.

We now have an integral equation to solve for ¢, with free term

As before, the ratio of the residual norms of the iterated and non-iterated ap-
proximations estimate || K]||.
Once again we can use iterated Galerkin to find an approximation ¢; to ¢,

and hence our new approximated solution to the modified equation becomes

YV~ Go+ 1,

where ¢, = (I — KP,)™ "%, which has an error

Qo+q—1 = (I—KP) "o+ (Go— 1)
= —(I = KP)™ (I = K)(Go— ) + (4o — 1)

17



ie. 7 = (o ), where 1= 4+ "o+ 1. So "9+ 7 is an improved
approximation to  if 1, which we have previously assumed.

As before, this process can be repeated by noting that

=0+ "1+ 2

where , is a correction term which satisfies the equation

~

where "1 = % ( )1 =( w)( 2) " 0, the residual error in

~

o+ "1. As with the re-iterated Galerkin method, the ratio of successive residual

|7l

norms, =y, gives an underestimate for the norm of

In general, then, we have ot = + o+...4+ ", where each correction
term , is determined by using iterated Galerkin on , = ",_; + ny EIVING
= n) 1, where %, = ( )"7=L. The error in the current
approximation being given by "/ . = ("l )= (G ).

The benefits of re-iteration for the Kantorovich method are the same as for the



generally smaller than that for the re-iterated Galerkin method, | . Al
subsequent approximations, however, improve by the same factor, , for both
methods. So the rates of convergence are virtually the same.

The improvement in the initial approximation, brought about by the Kan-
torovich "regularization” of the original equation, leads us to wonder whether

subsequent approximations might also benefit from similar regularization.

Suppose, once again, that we wish to solve

= + (3 5)

in a Hilbert space |, where is a compact linear map on is given,
and s sought. We first perform a Kantorovich "regularization” on the above

equation, whereby we write the solution as

= + (36)

where = satisfies the equation
= + (37)
We seek a Galerkin approximation 5 to  in a subspace , of | so that
o= ( » )Y ., where  is the orthogonal projection of  onto .

Our Kantorovich approximation, g, is therefore



giving us the iterated Kantorovich approximation

where
}%0_ ¢ = S(};O - 45)

As we have seen before, iteration improves the initial approximation by a
factor ||.S]| for both the Kantorovich and Galerkin methods, the Kantorovich
method having the possible advantage that py has better convergence properties
than pg, since it relies upon | P, K — K| — 0 as n — oo, rather than (P, — I)({ —
K)™' - 0asn— oo.

We can utilise this convergence property in a re-iterative method by perform-
ing a Kantorovich regularization at each iteration. Instead of finding a correction
term 1y to &NO, to form ¢ = &NO—I—L/Jl, as we did for the modified iterated Kantorovich
method, we now look for a correction term for ¢.

We know ¢ =~ }%0 =+ &NO, so this implies that

¢ = po+ 1, (3.8)

which in turn implies that
o1 = o + Ko, (3.9)
where 7o = f — (I — K)}%O = Kry.
This method differs from the modified iterated Kantorovich method in that

we now perform a second Kantorovich regularization, this time to equation (3.9).

Let K¢y = 9, then ¢ = 79 + 101, where 1y satisfies

Y = Krg + K.

20



The Galerkin solution to this is

The correction term  is therefore given by

>
>

1 1— 0 + 1
1
0 1
0 1 0 1 0
-1 -1
0 n 0
-1 2
n n
-1
n n 0
0 0
0 1 0 0



where ¢5 is a correction term which satisfies the equation

$2 =71 + K¢y, (3.11)
where " = ( )("o+ 1) = 1. Performing a Kantorovich regularization
on the above equation gives us

2= "1+ 2
where 5 satisfies

2= 1t 2
Applying Galerkin’s method gives us 5 "5 = ( . )7' . 1, and upon
iteration, - 22 = 14+ = S

So now

2 — 22 = Al + 22

which implies that
ot it

The error in this approximation can be shown to be

20‘|’A~1‘|’A~2 = n)_l( n) (AN0‘|’AN1 )
= (20 + 21 )
so that
SR SN
provided, once again, that 1.
In general, if ="y 4...+ ,and ", = ( )7 pane denotes

the residual after the nth iteration, then the correction term , = ",_1 + ,,is

22



approximated by ~, = ",_; + ,, where ~, = ( 2)7h “a_y is the iterated
solution of the regularized equation , = ", + n-
This gives
~n+1 An
rekant rekant
_ n+1 *
= 0
n+1 ~

Note that the operator controlling the convergence of this method is )
rather than produced by the re-iterated Galerkin and modified iterated Kan-
torovich methods. This gives us a new condition on the size of the subspace .
We now require that , is chosen such that 1.

As commented on previously, these norms give a weaker bound on the con-

kant 0 7

7
rekant 0 7



Then, for i=0,
oo = [+ Kpo,
Opune = [+ K[+ K.
6t = K[+ Ko,
and for i=1,
&;al = f+Kf+ Kpy+ Kpy,

Gtae = [HKf+ K2 f+ K0+ Kq,

Grepart = JHEf+ K f+ K[+ K4+ Kqu.

In general, for i=n,

n n
a-;al = Z [(]f + Z [(j-l-lpn—jv
=0 =0

n+1 ] n
AT — < & .
Tpant — Z K f + Z A]-I—lQn—]v
=0 =0
2n+1 n

Gt = > KIS KA,
=0 =0

From this we can see that after n iterations, the re-iterated Galerkin approx-
imation contains the first n4+1 terms of the Neumann series for ¢ = f + Ko,
the modified iterated Kantorovich approximation contains the first n+2 terms,
and the re-iterated Kantorovich approximation contains the first 2n+2 terms of
the Neumann series, twice as many as for the re-iterated Galerkin method. This
property appears to suggest that, under suitable conditions, the re-iterated Kan-
torovich method will have a much faster rate of convergence than the other two
methods. In reality, if ||K|| is greater than one, the Neumann series diverges,
and it is the other terms which have to compensate. The Neumann series itself

cannot therefore be responsible for the rate of convergence.
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In the following chapters we will be comparing the efficiency and accuracy of
the re-iterated Galerkin method with the new re-iterated Kantotovich method.
The modified iterated Kantorovich method has not been considered further due
to the belief that any improvement over the re-iterated Galerkin method will be

minimal.

25



Ch pter

Numeric 1 Consider tions

4.1 Numerical Integration

The process of calculating successive corrections to previous approximations, a
feature of all the re-iterative methods, ensures that the accuracy of the numerical
solution can be increased until it is of the same order as the computational accu-
racy of the method. Once the residual 7, reaches this accuracy there is no point
in continuing the iteration, as no further improvement can be made. The main
factor governing the computational accuracy is the method of numerical integra-
tion used. In all the cases described here modified Gauss-Legendre quadrature
was employed, using 10 points and 20 subintervals. In this way, the value of every
function used in the method is known at each of the two hundred Gauss points
in the interval.

Numerical integration routines tend to encounter difficulties when dealing with

kernels containing slope discontinuities, such as



which has such a discontinuity at =

The problem may be remedied by noting that

C)0) = C )0

This reformulated equation has a first term with a continuous first derivative, and
a second term that may be evaluated exactly. (See Chamberlain [1], who used

this device in the case where ()= L ( ) ()

In order to keep calculations as simple as possible, attention is restricted to finding
approximations in subspaces of minimal dimension. Provided that the subspace

is of sufficient size to ensure the conditions ( ) land ( ) 1 are satisfied,



would be a good approximation to . For this reason we conclude that we ought to
be looking for approximations belonging to the n-dimensional subspace spanned
by 2 ... "' _Indeed, it has been shown (Porter  Stirling [3]) that
this constitutes the optimal choice of subspace.

For our one-dimensional case, therefore, we are looking for Galerkin approx-
imations of the form = | 1, where 1 is chosen to be the free term of the
integral equation. For the re-iterated Galerkin method this is obviously ; =
What is perhaps not so obvious is what we mean by the free term for the Kan-
torovich method.

Whilst it is true we are trying to find satistying = + , which would
suggest taking 1 = , the Kantorovich regularization effectively removes from
the approximation, so that we are instead seeking to approximate , where
satisfies = + . Here the free term is not , but , 0 we should
perhaps take our trial function to be = instead.

Since the aim of this project is to give a comparison of the different methods, it

seems sensible that they should use the same subspaces. On the other hand, each









0
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2

3

4

l|7l
[l

o 1 2500001 | 2627627 | 3032719 | 3785712 4 996088 0 356

"2t 1 813364 1927510 2 283396 2 926562 3932512 || 0179 | 0 354

At 1 791510 1905215 2 259509 2 899160 3 898587 || 0179 | 0 354

"8t 1 790809 1904501 2 258744 2 898282 3897500 || 0 179 | 0 354

8 11790787 | 1904478 | 2258719 | 2898254 | 3897465 || 0179 | 0354

o 11790786 | 1904477 | 2258718 | 2898253 | 3897464 || 0179 | 0354
() 1790786 1904477 | 2 258718 2 898253 3 897464
Table 5.2: Re-iterated Kantorovich approximations ( = )
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the projection P,, and thus the choice of subspace, is approximated as 0-058.
This is smaller still than is obtained by taking y = f. As we might expect,
therefore, the approximations to ¢, given by 67, . = }%0 + -+ }%n, converge
to an accuracy of six decimal places after only seven iterations. (Naturally the
rate of convergence for all three methods would be improved by taking a higher
dimensional subspace.)

The value given here for ||K|| is noticeably different from that given in the
two previous tables. It isn’t immediately obvious why this should be; K hasn’t
changed, so the reason must be linked to the choice of subspace. In order to see
what is happening we need to look at the Rayleigh quotient, denoted R(¢).

If T"is a bounded, self-adjoint linear map from a Hilbert space, H, to itself,

then the Rayleigh quotient

gives a lower bound on the largest positive eigenvalue of T', denoted uf (T'). That
is
pi (1) = sup{Ri(¢): ¢ # 0}
= max{Ri(6) : £ 0} i} (T) £0.

Also
17| = max{|Rx(¢)] : ¢ # 0}.
(See Porter  Stirling [3] Lemma 5.1)

If we take ¢ = r,, and T' = K?, we see that

(Kry, Kry,)

(s )

Ric(r,) = < |IK|? = i (),

32



where [ denotes the largest positive eigenvalue of , with | being the corre-

sponding eigenvector. This implies that

2 A2
n _ n 2
2 2
n n
_|_
n 1
[[7nl]
(Il " 0 0
n
_|_
n 1
0
1
0 I 0
0 0



where

(@] )

"

[eh ]









The results in the previous chapter lead us to wonder in what cases the Kan-

torovich based re-iterative methods are better, in the sense of convergence rates,



6.1 The ernel 2\max(x,t)

The first equation we consider is

$(z) =1+ )\/01 2 max(e,)é()dt, 0<a <1 (6.1)

+ rekant kf

regal
rekant f

Irh/]r|

convergence limit

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0 55 6.0

lambda

Figure 6.1: Convergence of methods for k(z,t) = 2A max(x, 1)

Figure (6.1) illustrates the variation in M (written as |rh|/|r|in the Figure)

for each of the methods, with A taken in the range, 0 < A < 6. The most striking
feature of the graph is the spike which occurs at around A = 0-7. It seems
reasonable to suppose that this spike in some way represents the presence of an
eigenvalue, since the ratio of the residual norms approximates the spectral radii

of the operators S and SK.
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There is a process by which it is occasionally possible to calculate, analytically,

—

|
-
—
—



Finally,
S=(I KP)Y K KpP)=1 (I KP)' I K),

SO

(SN) = [@) (@) (BNE)+ M1+ [0y (KN)0) d

= (KN + A+ f0defnde 23 max(s,t)ds

= 2Amax(x, 1) + eA(1 + :1;2) c)\2(1 + :1;2)(1 + tz) f(t)dt,

0

ie. (Sf)(x) = 1 2 max(x,t) + A1 +2°)(1 A M) f(t)dt.

0

To find the eigenvalues of 5, let ¢ now satisty ¢ = AS¢,

e, 6(z) = AN ad()di+ 20N to()dt M1+ 2?)  (MELA 1)e(t)dt

0 z 0
z 1

o'(x) = 20N o(t)dt 2wcAN (AP H A 1)e(t)dt

0
1

o'(x) = 2AXé(x) 2eAN AP+ N 1)é(t)dt

where '0)=0 "y= (1)
Now,
SO =0 rma ) (D04

= A s ()
Hence

. - A 7

1Ay O = A )

and so,

‘() 2 (=20 gAY O 2AC (O =2



Suppose A 0, and write 2A = *( R)
Then
() = cos( )+ sin( ) .
= cos( ) .

(since ’(0) = 0). Therefore

a
w
!
1-A 1 2
w 2A
2 2
2 2
n n
—1 12 —2)
n 2\ N n w2




Let the roots of this equation be 7, (7,  0) for IN, and denote the smallest
root by 7.
The spectral radius of the operator is therefore given by

2

()= 2 (64)

where 1 =min("y "1).

In order to determine the minimum of *; and 7 it is necessary to explore the
behavior of the roots of equations (6.2) and (6.3). Such analysis is quite involved
and so only the results are given here.

For 0 0 5 equation (6.3) has no non-trivial roots, unlike equation (6.2),

and so we take | = "y, giving ( )= % which increases linearly as  tends to

05.

For 0 5 0 75 equation (6.3) has one root which starts off being very
large, but which tends to zero like I (where ) as 0 75. This results
in () as 7y 0, giving ()= 2.

2\

w1



eigenvalue of the operator K (ie. for A = %n, where p, is an eigenvalue of K),
the numerical method would not be able to find an approximation and hence
would not converge. This would result in the ratio of the residual norms, and
therefore p(.5) and p(SK), exceeding the convergence limit, and in fact, becoming
infinite. If so, the spikes in Figure (6.1) would appear to mark the presence of an
eigenvalue of the kernel operator K, given by u = % Since A is positive in the
examples, and K has only one positive eigenvalue, the graphs seem to provide a
means of obtaining the maximum positive eigenvalue of K.

Unfortunately the graphs do not tend to infinity at the same point. The
RIG and RIK(y = f) methods both become infinite at A = 0 - 75, whilst the
RIK(y = Kf) method becomes infinite at a value closer to A = 0-72. The
problem is that we are not actually solving ¢ = f+ K¢, but rather an approximate
equation lying in a reduced space. The eigenvalues we are locating, therefore, are
not of the original equation, but belong instead to the approximate equation.

The approximate eigenvalues arise from the initial Galerkin method and are

unaltered by iteration or re-iteration. Thus, in the one-dimensional case with

X = f, the Galerkin equation is o{||f]|* — A(K f, f)} = || f]|?, which produces the

(K1, f)
IS

approximate eigenvalue fi; = . Since K is self-adjoint we can deduce that

py < jy < pf by considering the Rayleigh quotient. The eigenvalue apparent
in the graphs is therefore an underestimate of the maximum positive eigenvalue

of K. When we change the subspace, as for the RIK(y = K f) method, we

LK A1
(Kf.f)"

(K1H — AP

Since Tt < (K7p

also change the value of fiy, in this case to 3 =
this second fi; will be no less than (and in practice greater than) the first fiy.

Hence, taking y = K f produces a closer underestimate to the maximum positive

43



eigenvalue of K than can be achieved by taking y = f.

This result is echoed in the graphs, where the RIK(x = f) and RIG (also
with x = f) methods offer i; = 133, corresponding to A = 0 - 75, whilst the
RIK(x = K f) method gives ji; = 1-39, since 1-38 < uf < 1-42 can be obtained
by standard eigenvalue estimation methods, as mentioned earlier.

Away from the eigenvalue, both of the RIK methods exhibit better conver-

[
Tl

gence properties than the RIG method, as illustrated by their lower

values,
which in turn lead to increased intervals of convergence. Although the RIK graphs
intersect the RIG graph, they do not do so until all the methods have exceeded
the limit for convergence. For this particular problem we can conclude that the
RIK methods exhibit consistently better convergence properties than the RIG
method, and that, away from the eigenvalue, taking y = f constitutes a better

choice of subspace than y = K f.

6.2 The ernel 2 sin(kolz — t)
K0
The second equation we consider is the general form of equation (5.2), ie.
L1
$(z) = cos(roz) + )\/ 5 sin(kolz — e(dl, 0 <w <1 (6.5)
0 Ko

where kg is a parameter (taken to be kg = 1-5 in the following example).
Unlike equation (6.1), finding both p(S) andp(SK) analytically proves too
difficult, so we have to rely entirely on the numerical results in order to gain

information about the convergence properties of the methods for this kernel.

lI7xl

[17n—11]

Figure (6.2) shows the graphs of against A for the three methods when
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Figure 6.2: Convergence of methods for ()= 32-sin( o )

approximating equation (6.5). As before we notice discontinuities in the results,
pointing to the presence of approximate eigenvalues. This time, however, the
singularities occur at markedly different values for the methods with different
subspaces. The = methods become infinite at around =9 1, whilst the

= method becomes infinite at approximately =7 1. As in the previous
example, we can show that the latter choice of subspace provides the closest

underestimate to the maximum positive eigenvalue of , giving us *y = 1

014 7.



gives

1" min(0 173704—|—24(2)7 5 12_(2) 2 sin? 0)
N max( 7 1_ z sin? o)
2 22
ie. taking o =1 5 we have
N 0 17604
n 0 10132

Our approximation, ~y, certainly lies below Chamberlain’s upper bound, and
since it is an underestimate, provides us with a lower bound on 7.

All three methods, in this example, demonstrate convergence up to 6 5,

where the effect of the approximate eigenvalue becomes too great. Neither the
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Figure 7.2: The eigenvalue of () =2 max( ) for a 2-D subspace

magnification in Figure (7.2), the value of at which the approximate eigenvalue
occurs can be pinpointed at = 0 71967, corresponding to 7 1 38949.
The disruption caused to the convergence of the methods by the presence of
the eigenvector is greatly reduced, allowing us to see more clearly the linear
nature of the RIG method, and the quadratic nature of the RIK method. It also
demonstrates that the RIG method, which was the most disrupted in the one-
dimensional case, may converge faster than the RIK method for certain values of

, and hence for certain kernels. The point of cross-over in this example does not,
however, occur until % is significantly greater than 0 75, a value at which, in
a practical situation, we would be looking to utilise an even higher dimensional
subspace.

Finally, Figure (7.3) illustrates the effect of moving to a two-dimensional sub-

space for equationequCBjjF6-Figu2R8n-N8F C-er xffC62rxffCrxffC8-casuCBjjF6-Figu2R8n-e-ix6F
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Ch pter 8

Conclusions

The results in the previous two Chapters suggest that the new re-iterated Kan-
torovich method will converge, and do so faster than the re-iterated Galerkin
method, if

p(SK) < p(S) < 1.

When || K || is large, ie. when A is large in the previous graphs, the RIG method
can display the better convergence properties. However, if the view is taken
that values of % greater than 0 -5, corresponding to roughly forty iterations,
signal the need for a higher dimensional subspace in which to seek a solution,
then the RIK method represents the best practical method of approximation.
Naturally, increasing the size of the subspace, and therefore introducing more
degrees of freedom into the approximation, has the effect of increasing the rate
of convergence, leading to increased regions of convergence.

The presence of approximate eigenvalues can cause a fair amount of disruption

to the methods. This is especially true when using a subspace of low dimension,

where the number of terms in the expansion of the approximation available to

51



compensate for the rapid growth of the residuals, is low. It has been shown that
choosing a subspace spanned by = , rather than by =, for the one-
dimensional case, not only gives a closer underestimate to the exact eigenvalue

T of the problem, but also reduces the effect of the approximate eigenvalue
on convergence. The position of the approximate eigenvalue may be calculated
beforehand and so be avoided. This is done by considering the initial Galerkin

equation, given by (in 1-D case)

where 1 is the choice of trial function. Also to be avoided, naturally, are the



Whereas the estimates of ( ) proved to be very accurate, a similar degree of

accuracy could not be attributed to the underestimates of , given by H:"H

for both methods. These were shown to be very poor in comparison, depending
upon the residual, ,, being a close approximation to a constant multiple of the
eigenvector 1.

There is obviously a need for more exhaustive testing of the re-iterated Kan-
torovich method, as well as more in-depth analysis, before its strengths and weak-
nesses are fully understood. In the limited time available, it has only been possible
to explore some basic ideas in relation to a few particular examples and many

issues have arisen which require closer analysis and examination. Some obvi-

ous features that have not been explored in this report include: a closer study



iterated Galerkin method could be exploited in variational principles. It would






