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Abstract

Variational data assimilation schemes are commonly used in major numerical weather
prediction (NWP) centres around the world. The convergence of the variational scheme and
the sensitivity of the analysis to perturbations are dependent on the conditioning of the
Hessian of the linearized least-squares variational equation. The problem is ill-conditioned
and hence is di–cult to solve quickly and accurately. To make the scheme operationally
feasible, NWP centres perform a control variable transform with the aim of preconditioning
the problem to reduce the condition number of the Hessian. In this paper we investigate
the conditioning of the 3DVar problem for a single periodic system parameter. We give
bounds on the condition number of both the original and preconditioned 3DVar problems
and demonstrate the reasons for the superior performance of the preconditioned system. We
also exhibit the efiect of the observation error variances and the positions of the observations
on the conditioning of the system.

1 Introduction

Variational data assimilation is popularly used in numerical weather and ocean forecasting to
combine observations with a model forecast in order to produce a best estimate of the current
state of the system and enable accurate prediction of future states. The estimate minimizes
a weighted nonlinear least-squares measure of the error between the model forecast and the
available observations and is found using an iterative optimization algorithm. Under certain
statistical assumptions the solution to the variational data assimilation problem, known as the
analysis, yields the maximum a posteriori Bayesian estimate of the state of the system [15].

In practice an incremental version of the variational scheme is implemented in many operational
centres, including the Met O–ce [19] and the European Centre for Medium-Range Weather
Forecasting (ECMWF) [18]. This method solves a sequence of linear approximations to the
nonlinear least-squares problem and is equivalent to an approximate Gauss-Newton method for
determining the analysis [14]. Each approximate linearised least-squares problem is solved using
an inner gradient iteration method, such as the conjugate gradient method, and the linearization
state is then updated in an outer iteration loop. Generally only a very few outer loops are
performed. For use in operational forecasting the complete iteration scheme must produce an
accurate solution to the variational problem rapidly, in real time.
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The rate of convergence of the inner loop of the variational scheme and the sensitivity of the
solution to perturbations are largely determined by the condition number, that is, the ratio of
the largest and smallest eigenvalues, of the Hessian of the linear least-squares objective function
[8]. Experimental results indicate that in operational systems the Hessian is ill-conditioned and
that this is a result of the ill-conditioning of the background error covariance matrix [16]. In
practice the system is preconditioned by transforming the state variables to new variables where
the errors are assumed to be approximately uncorrelated [2]. Experimental comparisons have
demonstrated that the preconditioning signiflcantly improves the speed and accuracy of the
assimilation scheme [7], [16].

Explanations are ofiered in the literature for the ill-conditioning of the variational assimilation
problem and for the beneflts of preconditioning in the operational system [1],[20],[16]. In [1],
an analysis of the preconditioned system in a simplifled 3DVar system with only 2 grid points
shows that the conditioning of the preconditioned Hessian is dependent on the accuracy and
density of observations. In their paper, Andersson et al. take p observations at each grid point
with error variance ¾2

o and a background with error variance ¾2
b and flnd an approximation to

the condition number given by

• ≈ 2p

µ
¾2

b

¾2
o

¶
+ 1: (1)

This approximation is supported experimentally in the ECMWF operational 4DVar system in
[20], where it is shown that for dense surface observations, the conditioning of the problem
improves as the observations become less accurate. The causes for poor conditioning for dense
observations are thus attributed to accurate observations, increasing number of observations
(larger p) and large background error variances.

In this paper we examine the conditioning and preconditioning of a more general 3DVar problem
theoretically. We derive expressions for the eigenvalues and hence bounds on the conditioning
of the Hessian of the problem in the case of a single, periodic, spatially-distributed system
parameter. We consider three questions: how does the condition number of the Hessian depend
on the length-scale in the correlation structures; how does preconditioning compare with the
conditioning of the original Hessian; and how do the error variances of the observations and the
distances between observations afiect the conditioning of the Hessian.

In the next section we introduce the incremental variational assimilation method. In Section 3
we look at the conditioning of two particular background error covariance matrices. We consider
the conditioning of the Hessian and the preconditioned Hessian in Sections 4 and 5. In Section
6 we investigate how the position of observations afiects the conditioning and in Section 7 we
summarize the conclusions.

2 Variational Data Assimilation

The aim of the variational assimilation scheme is to flnd an optimal estimate for the initial
state of the system x0 (the analysis) at time t0 given a prior estimate xb

0 (the background) and
observations yi; i = 0; : : : ; n, subject to the nonlinear forecast model given by

xi = M(ti; ti¡1; xi¡1); (2)
yi = Hi(xi) + δi; (3)

2



for i = 0; : : : ; n. Here M and Hi denote the evolution and observation operators of the system.
The errors (x0 − xb

0) in the background and the errors δi in the observations are assumed to
be random with mean zero and covariance matrices B and Ri, respectively. The assimilation
problem is then to minimize, with respect to x0, the objective function

J(x0) =
1
2

(x0 − xb
0)T B¡1(x0 − xb

0) +
1
2

nX

i=0

(Hi(xi)− yi)T R¡1
i (Hi(xi)− yi); (4)

subject to the model forecast equations (2){(3). If observations are given at several points
ti; i = 0; 1; : : : ; n over a time window [t0; tn] with n > 0, the assimilation scheme is known
as the four-dimensional variational method (4DVar). If observations are given only at the
initial time with n = 0 ; then the optimization problem reduces to the three-dimensional data
assimilation problem (3DVar).

2.1 Incremental variational assimilation

In operational NWP centres, to reduce computational cost, a sequence of linear approximations
to the nonlinear least-squares problem (4) is solved. Given the current estimate of the analysis
x0 ; the nonlinear objective function is linearized about the corresponding model trajectory
xi ; i = 1; : : : ; n ; satisfying the nonlinear forecast model. An increment –x0 to the current
estimate of the analysis is then calculated by minimizing the linearized objective function subject
to the linearized model equations. The linear minimization problem is solved in an inner loop
by a gradient iteration method. The current estimate of the analysis is then updated with the
computed increment and the process is repeated in the outer loop of the algorithm. This data
assimilation scheme is known as incremental variational assimilation [5], [14].



2.2 Condition number

A measure of the accuracy and e–ciency with which the data assimilation problem can be solved
is given by the condition number of the Hessian matrix

A = (B¡1 + ĤT R̂¡1Ĥ) (8)



of the previous row

C =

0
BBBBBBBBBBBB@

c0 c1 c2 c3 : : : cN¡2 cN¡1

cN¡1 c0 c1 c2 : : : cN¡3 cN¡2

cN¡2 cN¡1 c0
...

. . . . . .
...

. . . c2

c2
. . . c0 c1

c1 c2 : : : cN¡2 cN¡1 c0

1
CCCCCCCCCCCCA

:

The eigenvalues of such a matrix are the discrete Fourier transform of the coe–cients of the flrst
row of the matrix [9] and are given by

”m =
N¡1X

k=0

cke¡2…imk=N : (10)

Similarly the corresponding eigenvectors are given by the discrete exponential function,

vm =
1√
N

(1; e¡2…im=N ; : : : ; e¡2…im(N¡1)=N )T : (11)

3.1 Conditioning of the Gaussian background error covariance matrix

We flrst consider the Gaussian correlation matrix C ([6], [11]) with entries given by

ci;j = ‰ji¡jj2 (12)

for |i − j| < N=2 ; where ‰ = exp
‡

¡¢x2

2L2

·
; and by periodicity for the remaining entries. The

coe–cient ci;j denotes the correlation between background errors at positions i and j , L is
the correlation length-scale and determines the strength of the spatial error correlations, ¢x is
the grid spacing and N is the number of grid points. A large length-scale means that the errors
are strongly correlated over the whole grid. The maximum eigenvalue of this correlation matrix
is

‚max(C) = ¾2
b

N¡1X

k=0

‰k2
; (13)

with corresponding eigenvector vmax = 1p
N

(1; : : : ; 1)T . Similarly the minimum eigenvector is

‚min(C) = ¾2
b

N¡1X

k=0

(−1)k‰k2
; (14)

with corresponding eigenvector vmin = 1p
N

(1;−1; 1; : : : ;−1)T .

The condition number is given by the ratio of the maximum to minimum eigenvalues and is
highly sensitive to changes in length-scale, as shown in Figure 1 for a grid spacing of ¢x = 0:1
and N = 500 grid points. The matrix becomes very ill-conditioned as the length-scale increases,
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Figure 3: Change in smallest eigenvalue of the periodic Gaussian background error covariance
matrix B with length-scale.
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where the matrix L is given by

L =

0
BBBBBBBBB@

−2 1 0 0 : : : 0 1
1 −2 1 0 : : : 0 0

. . . . . .
...

. . . . . . 0

0
. . . . . . 1

1 0 : : : 1 −2

1
CCCCCCCCCA

;

and we deflne ° so that the maximum value of an element of C is unity. Using circulant theory
we flnd the maximum eigenvalue to be

‚max(C¡1) =
1
°

µ
1 + 16

µ
L4

2¢x4

¶¶
; (16)

with corresponding eigenvector wmax = 1p
N

(1;−1; 1; : : : ;−1)T . The smallest eigenvalue is

‚min(C¡1) =
1
°

; (17)

with corresponding eigenvector wmin = 1p
N

(1; 1; 1; : : : ; 1)T . The conditioning of the Laplacian
correlation matrix is therefore

•(C) =
µ

1 + 16
L4

2¢x4

¶
: (18)

The conditioning grows in proportion to L4 and hence is also quite poorly conditioned. However,
as Figure 4 shows, the condition number is many orders of magnitude smaller than that of the
Gaussian error covariance matrix at all length-scales.

4 Conditioning of the Hessian

In this section we consider the conditioning of the Hessian of the 3DVar linearized least-squares
problem

A = (B¡1 + HT R¡1H) (19)

in the case of a single periodic system parameter with background error variance ¾2
b : We examine

the Hessian for each of the two background error correlation matrices deflned in Section 3. We
write the observational error covariance matrix in the form R = ¾2

oIp, where p is the number of
observations. We assume that the observations are direct measurements of the state variables.
Then HT H is a diagonal matrix, where the kth diagonal element is unity if the kth state
variable is observed and is zero otherwise. Under these conditions we can prove the following
bounds on the condition number of the Hessian matrix for the 3DVar problem

0
@ 1 + p

N
¾2

b
¾2

o
‚min(C)

1 + p
N

¾2
b

¾2
o
‚max(C)

1
A •(C) ≤ •(B¡1 + HT R¡1H) ≤

µ
1 +

µ
¾2

b

¾2
o

¶
‚min(C)

¶
•(C); (20)

where ‚max(C) and ‚min(C) are the largest and smallest eigenvalues of C respectively. A proof
of this result is given in Appendix A.
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Figure 4: Condition number of Laplacian matrix B against lengthscale.
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Figure 5: Condition number of the Hessian (red) and bounds (blue) against length-scale for
Gaussian error covariance matrix B.

We see that with ¾b flxed, as ¾o increases and the observations become less accurate, the upper
bound on the condition number of the Hessian decreases and both the upper and lower bounds
converge to •(C) = •(B) . As ¾o decreases, the lower bound goes to unity and, unless ¾o is
much smaller than ‚min(C) , the upper bound remains of order •(C) . We expect, therefore,
that the conditioning of the Hessian will be dominated by the condition number of C as the
correlation length-scales change in the background errors. We demonstrate this in Figure 5
for the Gaussian background covariance matrix with ¾2

o = ¾2
b = 0:1 , N = 500 grid points

and p = 250 observations. Similarly Figure 6 shows the conditioning of the Hessian for the
same conflguration but using the Laplacian background matrix. (Since the conditioning of the
Laplacian is better than that of the Gaussian, a wider range of length-scales is shown in Figure
6.) In these cases including observations has little efiect on the conditioning of the assimilation
problem.
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Figure 6: Condition number of the Hessian (red) and bounds (blue) against length-scale for
Laplacian error covariance matrix B.
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Figure 7: Condition number (red) and bounds (blue) against length-scale for the preconditioned
Hessian with the Gaussian background error covariance matrix.
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Figure 8: Condition number (red) and bounds (blue)against length-scale for the preconditioned
Hessian with the Laplacian background error covariance matrix.
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(23) depend on sums of the elements of the matrix HCHT ; which can be viewed as a ‘reduced’



Figure 9: Condition number of the preconditioned Hessian for two observations as the grid-point
separation is increased. The background error covariance matrix is Gaussian with a length-scale
of 0.2.
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found in [1] for a two grid-point observing system, which shows that the conditioning of the
preconditioned system reduces as the accuracy of the observations is decreased.

Experiments in the Met O–ce operational variational assimilation system support the theoretical
results presented here and conflrm that they hold in a more general case. These results will be
published in a forthcoming report.

There are two natural extensions to the work presented here. The flrst is to extend the results
for the preconditioned system to encompass more general systems. One approach analogous to
our treatment here is to use the dual form of the Hessian [3]

Ip + R¡1=2HBHT R¡1=2: (26)

The largest eigenvalue of this matrix is the condition number of the preconditioned Hessian and
a general upper bound can be found, as in Appendix B, to be

•(IN + B1=2HT R¡1HB1=2) ≤ 1 + ||R¡1=2HBHT R¡1



An improvement in the bounds can be achieved using the Rayleigh quotient, RA(v) , which, for
a Hermitian matrix A and non-zero vector v , is deflned to be

RA(v) =
vT Av
vTv

: (33)

The maximum and minimum eigenvalues of A are the maximum and minimum values of RA(v)
respectively, where v is the corresponding eigenvector. We flrst consider the eigenvector cor-
responding to the largest eigenvalue of B¡1 . For the the Gaussian covariance matrix this is
vmin and for the Laplacian covariance this is wmax (see Section 3). In both cases the Rayleigh
quotient with respect to HT R¡1H = ¾¡2

o HT H is simply ¾¡2
o p=N , where p is the number

of observations and N is the number of grid points. Then an improved lower bound on the
maximum eigenvalue of the Hessian is given by

‚max(A) = max
v2Rn

µ
vT Av
vTv

¶
≥ zT

maxAzmax = ‚max(B¡1) + ¾¡2
o

p

N
; (34)

where zmax is either vmin or wmax . Similarly we consider vmax and wmin ; -1.63 TD[(min)]TJ/F7 10.91 ; -e9 208J/F1 T3.97 Tf8e. We .91 8011(the)-312797 Tf312797 Tf3Tf 11.0 10.91 8e96 TD[(¡)]TJ/F8 7.97 Tf 6.58 .48 70eall8e96  .48 (34)



A lower bound can be achieved by considering the Rayleigh quotient on (38). We deflne a unit
vector v ∈ Rp
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