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on the second of these applications and describe a method for using data assimilation to deliver
improved parameter estimates.

The dynamical system we wish to model depends on parameters whose exact values are not
known, for example those that arise from parameterization of the sediment transport flux. Inaccurate
representation of model parameters can lead to the growth of model error and therefore effect the
ability of our model to accurately predict the true system state. A key question in model development
is how to estimate these values a priori. Generally, parameters are determined theoretically or by
calibration of the model against observations. Here we present an alternative approach using a
variational data assimilation technique within a simplified 1D model of bedform propagation to
develop a scheme that enables model parameters to be estimated alongside the model bathymetry
as part of the assimilation process.

In section 2 we present the data assimilation problem for a general case and give an overview of
the three dimensional variational assimilation algorithm used in this work. In section 3 we describe
the technique employed for parameter estimation and reformulate the data assimilation problem for
this special case. Our simple 1D model is introduced in section 4. In section 5 we discuss the roles of
the observation and background error covariance matrices. Particular attention is given to the cross
correlations between the background errors in the state and parameter estimates. The experimental
design is described in section 6 followed by results in section 7. Finally, in section 8 we summarise
the conclusions from this work and outline areas for further study.

2 Data assimilation for state estimation

In reality, a model cannot represent the behaviour of a morphodynamic system exactly. Over time
the model bathymetry will diverge from the true bathymetry and errors will arise due to imperfect
initial conditions and inaccuracies in physical equations, parameters and numerical implementation.
Data assimilation can be used to compensate for the inadequacies of a model and help keep the
model bathymetry on track. By periodically incorporating measured observations into the model,
data assimilation nudges the model bathymetry back towards the true bathymetry, thus improving
the ability of the model to predict future bathymetry.

In this report we consider the consider the discrete, linear, time-invariant system model

zk+1 = Mzk, k = 0, . . . , N − 1, (2.1)

where the vector zk ∈ R
m represents the model state at time tk and M ∈ R

m×m is a constant,
non-singular matrix describing the dynamic evolution of the state from time tk to time tk+1.

We have a set of r observations to assimilate and these are related to the model state by the
equations

yk = h(zk) + ε
o
k , k = 0, . . . , N − 1, (2.2)

where yk ∈ R
r is a vector of r observations at time tk, h : R

m −→ R
r is a nonlinear observation

operator that maps from model to observation space, and ε
o
k ∈ R

r is a random vector representing
the observation errors. If we have direct observations, h is simply an interpolation operator for
interpolating variables from the model grid to observation locations. Often, the model variables we
wish to analyse cannot be observed directly and instead we have observations of another measurable
quantity. In this case, h will also include transformations based on physical relationships that
convert the model variables to the observations. We also assume that an a priori or background

estimate zb
0 ∈ R

m of the initial system state z0 is known with error ε
b.
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The aim of data assimilation is to combine the measured observations y with the model predic-
tions zb to derive a model state za ∈ R

m





3.1 Augmented data assimilation problem

We augment the state vector z with a vector p containing the parameters we wish to estimate, this
gives us the augmented state vector

w =

(

z
p

)

, (3.1)

where z ∈ R
m, p ∈ R

q, and w ∈ R
m+q.

We assume that the vector p is constant; the parameters are not altered by the forecast model
from one time step to the next and are only updated when a new 3D Var analysis is generated. We



is our background state. Note that this vector must now also include prior estimates of the param-
eters pb. These could be, for example, the latest estimates obtained from a previous analysis.

The matrix B̃ ∈ R
(m+q)×(m+q) is the background error covariance matrix for the augmented

system, and can be written as

B̃ =

(

Bzz Bzp

BT
zp Bpp

)

. (3.7)

Here Bzz ∈ R
m×m is the covariance matrix of the background errors in the state estimate zb



za and pa separately as

za = zb + Kz(y − h(zb)), (3.13)

pa = pb + Kp(y − h(zb)). (3.14)

Equation (3.13) is identical to (2.6) derived in section 2.1



The idea is to explore the application of the state augmentation method within the framework
of this simple model before moving on to a more complex model of morphodynamic evolution based



background) statistics and studying differences in background fields using ensemble techniques. A
review of current operational techniques is given in Fisher (2003).

Calculation of the background error covariance can be made considerably easier by specifying
the error correlations as analytic functions. A number of correlation models have been proposed
(see Daley (1991) for further discussion on this). One of the most simple ways of representing B is
to assume that the background error covariances are homogeneous and isotropic. B is then equal
to the estimated error variance times a correlation matrix defined using a prespecified correlation
function. Although this method is somewhat crude it makes the data assimilation problem far more
tractable.

5.2.1 The state vector

To characterise the background errors in the state vector z we use the correlation function [Rodgers
(2000)]

bij = σ2
bρ

|i−j|, i, j = 1, . . . , m. (5.2)

ρ = exp(−∆x/L) where ∆x is the model grid spacing and L is known as the background correlation
length scale.

Element bij defines the covariance between components i and j of the error vector εb. The form
(5.2) gives us a full symmetric error covariance matrix with variance σ2

b on the diagonal and non-zero
off-diagonal elements. We can write this explicitly as

Bzz = σ2
b
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The reason for choosing this covariance matrix is that its inverse can be calculated explicitly and
has a particularly simple form (see appendix A)

Bzz
−1 =

σ−2
b

bai Td.24.0T647829(k).3668 0 Td
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5.2.2 The parameter vector

For the augmented system we have the added difficulty of specifying the background error covari-
ance matrices for the parameter vector, Bpp, and for the cross correlations between the state and
parameter errors, Bzp. One possible method for calculating these covariance matrices is by averag-
ing the statistics over the assimilation window, using our knowledge of the truth and background
states. However, since in reality the true solution is not known, this is difficult to do in practice. For
simplicity we would like these matrices to be of a functional form similar to that used for the state
background error covariance matrix, Bzz. Successful parameter estimation relies upon these correla-
tions being suitably specified, so it is important to ensure that the choice of function is appropriate
to the particular model application.

For our linear advection model we have a single unknown parameter - the advection velocity.
We approximate the true advection velocity a with ã where ã = a + εA. In this case, the parameter
vector pb is a scalar with error εp = εA. The error covariance matrix Bpp is then simply

E(ε2
A) = Var(εA) = σ2

A. (5.5)

5.2.3 Cross covariances

To determine a suitable form for the cross covariance matrix Bzp we first need to derive an expres-
sion for the background error εb.

We start by considering a single realisation. The background error εb(x, t), at a particlar point
x and time t, will be a combination of error in the initial condition and error in the parameter
estimate. We consider the following possiblitites:

1. known initial state f(x), known advection velocity a;

2. unknown initial state f̃(x), known advection velocity a;

3. known initial state f(x), unknown advection velocity ã;

4. unknown initial state f̃(x), unknown advection velocity ã.

By defining

f̃(x) = f(x) + ε0
b(x), (5.6)

and

ã = a + εA, (5.7)

we can derive expressions for the solution z̃(x, t) and its error εb(x, t) in each of the above cases.

Case 1: The solution is the exact solution z(x, t) given by (4.3).

Case 2: Here the solution is given by

z̃(x, t) = f̃(x − at), t ≥ 0. (5.8)

Using
z̃(x, t) = z(x, t) + εb(x, t),
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we have
εb(x, t) = z̃(x, t) − z(x, t) = f̃(x − at) − f(x − at).

From (5.6)
f̃(x − at) = f(x − at) + ε0

b(x − at),

which gives us the following expression for the error

εb(x, t) = ε0
b(x − at) = ε0

b(x0). (5.9)

In this case, the initial error profile propagates unchanged with velocity a (see figure 5.1).

Case 3: We have the solution

z̃(x, t) = f(x − ãt). (5.10)

The error at time t ≥ 0 is

εb(x, t) = f(x − ãt) − f(x − at)

= f(x − (a + εA)t) − f(x − at)

= f(x − at − εAt) − f(x − at).

Assuming that f(x) is a continous, differentiable function we can expand in a Taylor series
about f(x − at) yielding,

εb(x, t) = f(x − at − εAt) − f(x − at)

=

[

f(x − at) − εAtf ′(x − at) +
ε2
A

2!
t2f ′′(x − at) − . . .

]

− f(x − at)

= −εAtf ′(x − at) + O
(

(εAt)2
)

(5.11)

Solution (5.10) and its error (5.11) are illustrated in figure 5.2. Incorrect specification of the
advection velocity introduces a phase error that grows with time. This error is similar in
character to the derivative f ′(x) but increases in width and magnitude as t increases. Note
that this Taylor expansion is only valid for small εAt; the approximation (5.11) breaks down
as t becomes large.

Case 4: The solution at time t ≥ 0 is

z̃(x, t) = f̃(x − ãt). (5.12)

Using Taylor series, as above, we find that the error is given by

εb(x, t) = f̃(x − ãt) − f(x − at)

= f̃(x − at − εAt) − f(x − at)

=

[

f̃(x − at) + εAtf̃ ′(x − at) +
ε2
A

2!
t2f̃ ′′(x − at) − . . .

]

− f(x − at)

= ε0
b(x − at) − εAtf̃ ′(x − at) + O

(

(εAt)2
)

(5.13)
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Method A: The above analysis has shown that when the advection velocity a is unknown, the
background error at the point x at time t is approximately proportional to f ′(x− at)t, the value of
the derivative of the initial state at the starting point x0 multiplied by time. Conventional 3D Var
schemes assume that the background error covariances are stationary and hold the matrix B fixed.
Since we have already made this assumption for the state background error covariance matrix Bzz
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where yi is an observation of the true bathymetry zt
i given by (4.3) at the grid point xi. The

observation operator h is linear and h = H. The matrix H ∈ R
r×m takes a very simple form; it

consists almost entirely of zeros except at positions corresponding to an observation location which
take a value of one. The observation locations are determined at the start of the assimilation and
remain fixed throughout. Since the observations are drawn from the truth we weight in their favour,
setting the observation and background error variances to be σ2

o = 0.1 and σ2
b = 1.0 respectively.

The observation error covariance matrix R and sub-matrices Bzz, Bpp of the augmented back-
ground error covariance matrix B̃ were defined using (5.1), (5.3) and (5.5) respectively. Experiments
were run using both method A (5.19) and B (5.20) to approximate the cross covariance matrix Bzp.
Results are presented in the following section.

7 Results

Figures 7.2 and 7.3 show the analysis produced for method A with initial parameter estimates (a)
ã = 0.25 and (b) ã = 0.75. Results are given for times t = 0 to 20 with time step ∆t = 0.1.
Observations were taken at 20∆x intervals and assimilated every 20 time steps (2 time units). The
dotted line represents the true bathymetry zt. Observations y are given by circles, the background
zb by the dashed line and the analysis za by the solid line. We found that although qualitatively
the analysis is close to the truth (the main differences being small phase and amplitude errors), the
scheme was unable to recover the true value of a. The parameter updates are shown in figure 7.1;
the estimates do converge but to incorrect values of 0.379 and 0.799 respectively. In both cases we
reach a point at around t = 10 after which the assimilation of new observations has no effect. We
conclude that the representatation of the cross covariances used in method A is inadequate.

The evolution of the parameter estimates using method B is shown in figures 7.5 to 7.8 for
observations taken at (a) 10∆x (b) 20∆x and (c) 40∆x intervals and assimilated every 10 and 20
time steps. The accuracy of the estimated advection velocity increases with time as the assimilation
cycle is repeated and more observations are processed. The scheme converges in all cases, managing
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B−1 =
σ−2
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