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1 Introduction

Human language processing is accompanied by modulations of the ongoing
electrophysiological brain waves. If these are evaluated in a stimulus-locked
manner (cf. the contributions of Fründ et al. and Kiebel et al. in this special
issue), one speaks about event-related brain potentials that reflect syntactic
(Osterhout and Holcomb 1992, Friederici 1995), semantic (Kutas and Hillyard
1980; 1984) and also pragmatic (Noveck and Posada 2003, Drenhaus et al
2006) processing problems.

Modeling human language processing has previously relied mostly upon
computational approaches from automata theory and cognitive architectures
(Hopcroft and Ullman 1979, Saddy and Uriagereka 2004, Lewis and Vasishth
2006), while dynamical system models that could also be able to account for
brain wave dynamics are still in their infancy (beim Graben et al 2004, Hagoort
2005). The contentious issues of the former approach regarding the computa-
tional viability of grammars intended to capture properties of human language
have been with us since Chomsky (1957). The nature of this long debate cen-
ters around whether the models of language and language processing proposed
are, in principle, computable; computability being a minimal requirement for
any attempt to formally describe complex behavior exhibited by a biological
system. As our understanding of the biology and physiology of the brain has
increased, similar issues have guided the development of computational mod-
els of brain physiology. There are now interesting competing models for both
language processes (Elman 1995, Tabor et al 1997, Christiansen and Chater
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2 Grammars

Sentences are hierarchically structured objects, commonly described by phrase
structure trees in linguistics (Chomsky 1957, Hopcroft and Ullman 1979, Saddy
and Uriagereka 2004). Contemporary linguistic and parsing theories have elab-
orated considerably on these early approaches (cf. Stabler (1997) for one partic-
ular account). For our purposes, we investigate a toy-grammar that simplifies
our task but is nevertheless representative of the basic operations required of
a natural language parser.

Consider e.g. the sentence

Example 1 Susan ate grass.

This simple sentence (S) consists of a subject, the noun phrase Susan, and
a predicate, the verbal phrase (VP), ate grass
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(T ∪ N)2, i.e. γ in (2) is a word of length 2, γ = v1v2, with v1, v2 ∈ T ∪ N.
Accordingly, we call a CFG G binary branching, if all rules p ∈ P are binary
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pair (f ′, r) ∈ ℘(F × R) × R
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where the time-dependent coefficient λl(t
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Then, we define the coefficients λl for l ≥ 1 by

λl(t) := λl−1

(

t− ∆

2

)

, l = 1, . . . , NOP − 1 (22)

where NOP denotes the number of order parameters under consideration. The
functions λl build a partition of unity, i.e. we have the property

NOP −1
∑

l=0

λl(t) = 1, t ∈ R . (23)

Further, the support of the coefficient λl is a subset of l · ∆
2 + [0, ∆].

5.2 Neural order parameter dynamics

Basically, equation (20) is a leaky integrator equation that is often used in neu-
ral modeling (beim Graben and Kurths 2007, beim Graben 2008). It can also
be seen as a discretized version of the Amari equation for neural/dynamical
fields (Wilson and Cowan 1973, Amari 1977, Jirsa and Haken 1996, Coombes
et al 2003, Jirsa 2004, Wright et al 2004, Erlhagen and Schöner 2002, Schöner
and Thelen 2006, Thelen et al 2001). Thus it is promising to relate (20) with
brain dynamics.

Since each well-established parse state sl at time Tl triggers its successor
sl+1, we choose a similar delay ansatz for the coupling functions gl in (20) as
in Sec. 5.1:

g0(t) := w · fη,σ

(

1.5∆− t

∆

)

, (24)

gl(λ1, . . . , λl−1)(t) := w · fη,σ(λl−1(t−∆)) , l ≥ 1 , (25)

for t ≥ 0.

Here, the sigmoidal logistic function f with cut constant η and sprt004(
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However, our aim appears to be a bit different. Instead of computing the
state of the coupled system by means of (31), we have to express the particular
state vector (30) through higher harmonic wave functions. Therefore, we have
to invert (31), leading to

|j1,m1, j
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Expressing the tensor products by (33), yields firstly

|1, 0〉|1, 1〉 = |1, 0, 1, 1〉 =

2
∑

j=0

〈j, 1, 1, 1|1, 0, 1, 1〉|j, 1, 1, 1〉

= 〈0, 1, 1, 1|1, 0, 1, 1〉|0, 1, 1, 1〉+

+ 〈1, 1, 1, 1|1, 0, 1, 1〉|1, 1, 1, 1〉+

+ 〈2, 1, 1, 1|1, 0, 1, 1〉|2, 1, 1, 1〉 .
The first Clebsch-Gordan coefficient 〈0, 1, 1, 1|1, 0, 1, 1〉 = 0 because a spin j =
0 particle cannot have an m = 1 projection. On the other hand, the Clebsch-
Gordan coefficients are 〈1, 1, 1, 1|1, 0, 1, 1〉 = −1/
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8 Simulations

The stationary waves representing the three parse steps s0, s1 and s2 of U in
(36) are shown in Figs. 5(a,b c) as a sequence of snapshots, respectively.1

Note that the initial state s0 is given by the constant “pz orbital” [Fig. 5(a)].

[Fig. 5 about here.]

In the representation of s1 we have a superposition of the constant function
from s0 with two higher harmonics, indicating the fillers f2(t) and f3(t) as-
signed to the tree position roles r3 and r2, respectively [Fig. 5(b)]. The final
state s2 is given by an even more involved oscillation [Fig. 5(c)].

Additionally, we present in Fig. 6 the dynamics of s1 [Fig. 5(b)] with higher
temporal resolution.

[Fig. 6 about here.]

Now, the first column of Fig. 6 corresponds to the first six images in the row
of Fig. 5(b); the toroidal dynamics accounted for by the fillers f2(t) and f3(t)
is clearly visible.

Figure 7 displays the temporal evolution of the three order parameters
λl(t), denoting the amplitudes of the corresponding parse states sl, according
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Fig. 2 Left-derivation (3) of the sentence Susan ate grass according to grammar (1).
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|2〉 ≡ |1,−1〉

|1〉 ≡ |1, 0〉

|3〉 ≡ |1, 1〉

Fig. 4 Tree roles in a spin-one term schema.
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Fig. 6 (Color online) Snapshot sequence of the state s1 with higher temporal resolution.
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Fig. 8


