Boundary integral methods in high frequency scattering ## A stract In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources. n o nicc icy o N i d i L/ o o y and y in a o o S D D and H d n d c y y Av J D - Sv f, v u/n. v — and conding n in a conding n in no no for \mathbf{v} — and conding n in a condin din σ ood \mathbf{k} d nd \mathbf{n} ni din σ ood \mathbf{k} d nd \mathbf{n} ni din σ ood σ or σ of o ding od of the print pri o cond ind in form of Fo o o con an B and n odo of o con an B and n odo of o con and a con and o con a con and o con a con a con a con and o con a co n con con con con of nd on propose C converse conv n and 1_2 in a y n o ood of an new oin t_1 and t_2 and t_3 and t_4 Cond in n c n y of od c o y on and i din \$ o n n d o d o V s, k o c o s c o c in k in t n d and ado zon Mo n d o o on n a d c y of V in d ado zon 1 o o o n d o o o n d $$V_{\underline{s},k} = \begin{bmatrix} LM & K^{-1} & 3-2 & 3-b & \underline{s} & () & \underline{k}^{1} & 3Z_{\underline{s}} \end{bmatrix} \quad R_{LM} \underbrace{s_{i}k}, \qquad \qquad \underline{s_{i}k}$$ $$|\mathbf{D}^{n}\mathbf{R}_{LM}\mathbf{s},\mathbf{k}|$$ $\mathbf{C}_{LMn}\mathbf{k}^{+n}\mathbf{s}$, where μ - $\frac{2}{3}$ L , M and $C_{L,M\,n}$ is independent of k. The functions b and Z are C -periodic functions. Z has simple zeros at t_1 and t_2 de onnigy in yor in y yor in y decin y decin y decin L y decin L o on o in a denn y of the original of V of the original of V or den For all n $\,\mathbb{N}\,$ { } there exist constants $\,\mathbf{C}_n > \,$ independent of k and s , , such that for all k su ciently large, $$|D^nV \underline{s}, \mathbf{k}| C_n \begin{cases} \frac{\mathbf{n}}{\mathbf{k}^{-1} \underline{k}^{-1}} & \mathbf{n} \\ \frac{\mathbf{s}}{\mathbf{n}} & \mathbf{n} \end{cases}$$ where $s = s - t_1 + t_2 - s$. These estimates are uniform in $s = t_1 + t_2 - s$. and o nd d $_{2}$ y o $_{1}$, t_{2} and nc \mid s \mid oyfico on oci in i c k indon i c k¹³ d d y on ni y d c yn i d o c d din i c oo no oci in coo c in i c oo no oco n nd do honday no no a n'on o ca in y con o y on a odi \boldsymbol{B} and a contint y and co of y contains decomposition of \boldsymbol{A} and $\boldsymbol{A$ $|\mathbf{a}, \mathbf{v}, \mathbf{w}| = |\mathbf{A}, \mathbf{v}, \mathbf{w}|_{L^2(\cdot)}$ $|\mathbf{A}, \mathbf{v}|_{L^2(\cdot)} = \mathbf{w}|_{L^2(\cdot)}$ $|\mathbf{A}, \mathbf{v}|_{L^2(\cdot)} = \mathbf{w}|_{L^2(\cdot)}$ W Avin cond of in a $\mathbf{A} \mathbf{v}_{L^2(\cdot)} \mathbf{v}_{L^2(\cdot)} | \mathbf{A} \mathbf{v}, \mathbf{v}_{L^2(\cdot)} | \mathbf{a} \mathbf{v}, \mathbf{v} | \mathbf{v}_{L^2(\cdot)}^2$ **A** ⁻¹ . a fo B/ for ond doo y condition number of o a o A $\frac{\mathbf{B}}{\mathbf{A}}$ cond \mathbf{A} \mathbf{A} \mathbf{A}^{-1} . on \mathbf{k} for o dy \mathbf{n} condition \mathbf{n} of \mathbf{A} and \mathbf{d} and not on \mathbf{k} for \mathbf{n} and on \mathbf{n} of \mathbf{n} and on \mathbf{n} on \mathbf{n} or \mathbf{k} \mathbf{N} \mathbf{k} An log in Color of o in n of A in n of A in a connomination of a connomination of the connection of the connomination of the connection connec $\int_{0}^{\infty} \mathbf{c} = \int_{0}^{\infty} \mathbf{l}_{1} = \mathbf{l}_{2}$ conc n d on o y of n o on o on o z A on and n c o o on y on c on y od n ncy c A y o n o on c on y c od i y d c o o c o c o c n o d c o y n c on o on od n c o o c n o d c o y n c on o on od n c o o c n o o c n o o o on od n n o o on od o on od od oc n o o o on od od oc n o o o on od od oc n o o o od od oc n o o od oc n o od o od oc n oc n o oc n i no in \mathbf{S}_n if \mathbf{n} and in \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n in the second of \mathbf{P}_n is the second of \mathbf{P}_n Bonn B conformation of conform B no z in A Mon o A inc z in A d co z in B no z_{\bullet} in \mathbb{C} A fix z_{\bullet} n \mathbb{C} o for \mathbb{C} B no and ny an y L c c a in in d ni on an acc a d od Proc. R. Soc. Lond. B no co nn ca fon B d o y o con o in Trudy Mat. Inst. Steklov. A d d o y o con o in Trudy Mat. Inst. Steklov. A d d d o y o con o in o y o con o y o con o od Soviet Physics Doklady N on n Ond id N Landon and Lindn M Condition n and co Vand id N Landon and i L A i n n o Aphil. Trans. R. Soc. Lond. • and id N and Mon I not on the state of Cz in d Con c on d ond ond C. R. Acad. Sc. Paris . Computer Modeling in Engineering and Sciences Integral Equation Methods in Scattering Theory _ _ _ y Co on and N Yo d and Ara od o May on on on one of Phil. Trans. R. Soc. Lond. A o n z A y d n c a ncy co c c a in Numer. Math. n o com no of co B od M and N M d on a c n'y fo o nd y o no c n'y fo o nd y Linda Con Math. Z. Mon Mond London of A Anhp B Moo for new con new con no din of A None and cooled to o