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Abstract

In this article we review recent progress on the design, analysis and implementation

of numerical-asymptotic boundary integral methods for the computation of frequency-

domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle.

The main aim of the methods is to allow computation of scattering at arbitrarily high

frequency with finite computational resources.

1 Introduction

There is huge mathematical and engineering interest in acoustic and electromagnetic wave
scattering problems, driven by many applications such as modelling radar, sonar, acous-
tic noise barriers, atmospheric particle scattering, ultrasound and VLSI. For time harmonic
problems in infinite domains and media which are predominantly homogeneous, the boundary
element method is a very popular solver, used in a number of large commercial codes, see e.g.
[26]. In many practical applications the characteristic length scale L of the domain is large
compared to the wavelength λ. Then the small dimensionless wavelength λ/L induces oscilla-
tory solutions, and the application of conventional (piecewise polynomial) boundary elements
for this multiscale problem yields full matrices of dimension at least N = (L/λ)d−1 (in R

d).
(Domain finite elements lead to sparse matrices but require even larger N .) Since this “loss of
robustness” as L/λ → ∞ puts high frequency problems outside the reach of many standard
algorithms, much recent research has been devoted to finding more robust methods.

One approach is to seek faster implementations of standard methods. Fast multipole meth-



uniform accuracy for N fixed as L/λ



and ∂u/∂n is to be determined. Standard boundary element methods approximate the whole
(oscillatory) ∂u/∂n by (piecewise) polynomials. By contrast the hybrid methods which we shall
discuss in the following section employ asymptotic analysis to obtain analytic information
about the oscillations in ∂u/∂n. This information is then exploited directly in the numerical
method: only slowly-varying components are approximated and this yields a method which
is more “robust” as the frequency increases.

Throughout the review we shall make use of the single-layer, double-layer, adjoint double-
layer and hypersingular operators S, D, D′ and H, defined respectively by:

Sψ = 2

∫

Γ

Φ(x, y)ψ(y)ds(y) , Dψ = 2

∫

Γ

∂Φ(x, y)

∂n(y)
ψ(y)ds(y)

D′ψ = 2

∫

Γ

∂Φ(x, y)

∂n(x)
ψ(y)ds(y) , Hψ = 2

∫

Γ

∂2Φ(x, y)

∂n(x)∂n(y)
ψ(y)ds(y) .

The particular equation (1.4) can then be written as

A′v := (I +D′ − iηS)v = f , where v = ∂u/∂n . (1.5)

This integral equation formulation is well known and is attr



Equation (1.5) is a second-kind integral equation which determines the unknown solution
v := ∂u

∂n
, and there is a huge literature on equations of this form. When the boundary Γ is

sufficiently smooth (C1 is sufficient [33]) the integral operators D′ and S in (1.5) are compact
on standard function spaces, so that A′ is a compact perturbation of the identity operator.
Using classical arguments based on this property, one can show that standard numerical
techniques like Galerkin and collocation methods using piecewise polynomial basis functions
lead to uniquely determined numerical solutions vN satisfying quasi-optimal error estimates
of the form

‖v − vN‖ ≤ C inf
φN ∈SN

‖v − φN‖, (1.7)

where SN denotes the finite-dimensional approximation space being used (and N is the dis-
cretisation parameter, e.g. the dimension of the space SN). More precisely, for properly-
designed Galerkin method and collocation methods, these classical arguments (e.g. Atkinson
[7]) tell us that there exists a C > 0 and N0 > 0 such that (1.7) holds for all N ≥ N0 (see
§3.1 for a little more detail).

Based on (1.7) one can think of the numerical analysis of robust methods for scattering
problems as requiring research on three related questions:

Q1 The design of good, k-dependent, finite-dimensional approximation spaces SN , so that
the best approximation error infφN ∈SN

‖v − φN‖ is growing as slowly as possible as
k → ∞. These spaces will normally depend on k and so we denote them SN,k.

Q2 The proof of sharp estimates for the dependence of the “stability constant” C in (1.7) on
k, hopefully showing that these again indicate boundedness or mild growth as k → ∞.

Q3 The design of good methods of implementing the numerical methods using the optimal
approximation spaces in item 1; ideally show that these are realisable in a computation
time which remains bounded as k → ∞.

For Q1, an “ideal” aim might be that when v is the solution of (1.4), the best approxima-
tion error should remain constant for each fixed N as k → ∞. Recent results on the analysis
of this problem are given in §2.

For Q2, the classical error analysis results for second-kind integral equations tell us that
(1.13) holds for all sufficiently largeN (N ≥ N0). However, because the wavenumber k appears
non-linearly inside the kernel of the operator A′ in (1.5), they give us no clear quantitative
information on either: (i) how, for fixed N , the constant C depends on the parameter k; or
(ii) how, for fixed C



for some positive constants B and α, then the equation (1.8) is uniquely solvable. Moreover if
the Galerkin (variational) method of approximation is applied to (1.8) in any finite dimensional
subspace SN,k ⊂ L2(Γ), i.e. seek vN ∈ SN,k such that

a(vN , wN) = (f, wN)L2(Γ) , for all wN ∈ SN,k , (1.10)

then we have the error estimate (1.7) with C = B/α. Therefore one potential way to answer
Q2







operators such as (2.4) are employed based on partitions of unity and (exponentially conver-
gent) trapezoidal rules. The partition of unity is designed to localise around special points
(with respect to the observation point x) namely (i) the singular point y = x; (ii) the sta-
tionary points where the gradient of the phase of (2.4) vanishes; (iii) shadow boundary points
n(x) · â = 0. As k → ∞ integration regions become more localised around these points. This
is a high-frequency variant of the matrix-free Nyström method of [15]. Since this method is
not based on a Galerkin formulation, the analysis of its k-robustness is a challenging open
problem. We shall return to methods for oscillatory integrals



polygons. We note that, in very recent work [51], numerical experiments have been carried
out which suggest that the algorithms for these two cases can be successfully combined to
compute high frequency scattering by curvilinear convex polygons.

2.1 The case of smooth Γ in 2D

In this subsection we assume that Γ is a C∞ convex contour. Under plane wave illumination
Γ is naturally divided by the two tangency points T1 and T2 into an “illuminated zone” (I)
and a “shadow zone” (S), as depicted in Figure 1. Letting γ : [0, 2π] → Γ be a 2π-periodic
parametrization of Γ we define ti ∈ [0, 2π) to be the preimages of the Ti: γ(ti) = Ti, for
i = 1, 2. The “Geometric Optics” ansatz (2.2) may then be written (writing v(γ(s), k) as
v(s, k) for convenience)

v(s, k) = k exp(ikγ(s) · â) V (s, k). (2.5)

In [30], the parameter space [0, 2π) is covered by four intervals Λi, i = 1, . . . , 4, with Λ1

and Λ2



Considering the numerical analysis of this method we recall the two key questions Q1
and Q2 highlighted in §1. To answer Q1 we need estimates for the dervatives of V (s, k)
with respect to s which are explicit in k in the illuminated and shadow zones. Moreover we
need estimates for the exponential decay of V in the deep shadow zone Λ1. This requires
a substantial study of the theory of the “geometric optics” approximation (2.2). In [30] the
following result is presented.

Theorem 2.1. For all L,M ∈ N ∪ {0}, the function V (s, k) admits a decomposition of the
form:

V (s, k) =

[ L,M∑

ℓ,m=0

k−1/3−2ℓ/3−mbℓ,m(s)Ψ(ℓ)(k1/3Z(s))

]
+RL,M(s, k) , (2.7)

for s ∈ [0, 2π], where the remainder term has its nth derivative bounded, for n ∈ N ∪ {0}, by

|Dn
sRL,M(s, k)| ≤ CL,M,n(1 + k)µ+n/3 , (2.8)

where µ := − min
{

2
3
(L+ 1), (M + 1)

}
and CL.M,n is independent of k. The functions bℓ,m

and Z are C∞ 2π-periodic functions. Z has simple zeros at t1 and t2



decrease exponentially but in a very oscillating way. The asymptotics in (2.10) may be deduced
by applying the theory of residues to the contour integral defining Ψ - see [8, p.393], [18,
Lemma 8]. More details are in [30]. Combining these asymptotics with Theorem 2.1, the
following estimates for the derivatives of V are proved in [30].

Theorem 2.2. For all n ∈ N ∪ {0} there exist constants Cn > 0 independent of k and
s ∈ [0, 2π], such that for all k sufficiently large,

|Dn
s V (s, k)| ≤ Cn

{
1, n = 0, 1,

k−1(k−1/3 + |ω(s)|)−n−2, n ≥ 2,
(2.11)

where ω(s) := (s− t1)(t2 − s). These estimates are uniform in s ∈ [0, 2π].

This statement follows from [30, Theorem 5.4] but is in a somewhat simpler form than
given there. The essential point which follows from this is that for s in the illuminated zone
and bounded away from t1, t2 (and hence |ω(s)|





that by choosing p to grow slightly faster than k1/9 we preserve the accuracy of the method
as k increases. Numerical results in [30] support this result.

Before leaving this discussion we mention that using the asymptotics (2.10) when s is near
to but less than t1 (i.e. in the shadow region but near the transition point), then the first
term in (2.7) has the asymptotics (as k → ∞) :

k−1/3b0,0 exp(ik|Z(s)|3/3) exp(iℜ(α1)k1/3|Z(s)|) exp(−ℑ(α1)k1/3|Z(s)|) . (2.15)

Since α1 is in the first quadrant of the complex plane (see (2.10)), (2.15) contains two oscilla-
tory factors, one oscillating with scale k and one with scale k1/3, damped by the exponentially
decaying third term. These two scales were modelled in the basis functions used in the collo-
cation method of Giladi and Keller, which took into account the existence of “creeping waves”
behind the shadow boundary [38].

We now turn our attention to scattering by convex polygonal bodies.

2.2 The case of polygonal Γ













3 Stability and Conditioning

3.1 General considerations

In §1 we have split the numerical analysis of high frequency boundary element methods into
research on three related questions. We turn in this section to research related to the sec-
ond of these questions, namely the problem of estimating the value of the stability constant
C in (1.7). We note that, while the emphasis of this review is on boundary integral equa-
tion methods specifically adapted to high frequency scattering, the results of this section are
equally applicable to stability analysis and conditioning for conventional piecewise polynomial
boundary element methods at high frequency.

We have noted already that, in the case that the sesquilinear form a is coercive, an upper
bound on the stability constant C in the case when vN is defined by the Galerkin method (i.e.
by (1.10)) is

C ≤
B

α
(3.1)

where B and α are the continuity and coercivity constants in (1.9). These constants are closely
related to the norms of A′ and its inverse as operators on L2(Γ). Indeed, by Cauchy-Schwarz,
for v, w ∈ L2(Γ) (and with ‖ · ‖ denoting throughout the norm of a bounded linear operator
on L2(Γ)),

|a(v, w)| = |(A′v, w)L2(Γ)| ≤ ‖A′v‖L2(Γ) ‖w‖L2(Γ)

≤ ‖A′‖ ‖v‖L2(Γ) ‖w‖L2(Γ).

Thus ‖A′‖ is a possible value for the constant B in (1.9). In fact (as follows from setting
w = A′v in the above inequality), ‖A′‖ is the smallest possible value for the constant B for
which (1.9) holds. Similarly, from the second of the inequalities (1.9),

‖A′v‖L2(Γ) ‖v‖L2(Γ) ≥ |(A′v, v)L2(Γ)| = |a(v, v)| ≥ α‖v‖2
L2(Γ),

so that
‖A′−1

‖ ≤ α−1.

Thus, the ratio B/α is bounded below by the condition number of the operator A′:

B

α
≥ cond A′ := ‖A′‖ ‖A′−1

‖. (3.2)

This gives one motivation for studying the condition number of A′ and its dependence
on k, which will be a main topic of this section. Another motivation is the following. The
inequality (3.1) is only useful if a is coercive, which we will see below is known to be the case
if Γ is a circle or sphere, but not, so far, more generally. Whether or not a is coercive, it is
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as N → ∞ (with k









as k → ∞, uniformly in η > 0.

The quantitative information in the above lemma is pretty sharp. Indeed if Γ is a straight
line of length a then the formula (3.17) tells us that

‖S‖ ≤ 2

√
a

πk
.





An important implication of Theorem 3.5 is that, whenever Γ is starlike in the sense of
Assumption 3.4, if η is chosen so that

max(l1R
−1
0 , l2k) ≤ η ≤ max(u1R

−1
0 , u2k), (3.21)

for some positive constants l1, l2, u1, and u2, then, for some constant c > 0, ‖A′−1‖ = ‖A−1‖ ≤
c, for all k > 0. For example, choosing

η = R−1
0 + k, (3.22)

which satisfies (3.21) with l1 = l2



4 Implementation

This paper has concentrated on the theory of integral equation formulations for the Helmholtz
equation and their numerical solution by Galerkin and collocation methods in the high-
frequency case. A hugely important question, which we only have space to deal with briefly,
is whether these methods can be realised with computation times which are reasonable as
k → ∞, in particular, do the computation times reflect the theoretical estimates which we
have given above? We describe briefly in this section, work on two different issues which are
related to this question.

Computation of Oscillatory Stiffness Matrix Entries.
The Galerkin and collocation methods described above require work on the assembly of stiff-
ness matrices, the entries of which are given as oscillatory int



is not in Sn, if the phase has no stationary points, and if Pn has sufficiently many vanishing



high frequency Helmholtz problems approximated by conventional boundary elements (e.g.
[26, 29]), but the extension to hybrid approximations is an open and fascinating problem.
This is important, especially in 3D, since then, even using the hybrid approximation spaces
proposed above, N may still be large. The results of [28] show that replacing the Helmholtz
kernel with a separable expansion in the far field can still yield low rank approximations even
in the hybrid case, but much work remains to be done to yield a sol
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