
University of Reading

MSc Dissertation

Numerical Approximation of a
Quenching Problem

Author:

Michael Conland

Supervisor:

Professor Michael J. Baines

August 21, 2010



I con�rm that this is my own work, and the use of all material from other sources has

been properly and fully acknowledged.

Signed:
Date:

1



Abstract

This dissertation contains a study of the e�ectiveness of using an r-adaptive moving mesh

method on the quenching equations ut = 1
a2uxx + f(u) and ut = 1

a2r2u + f(u), where

f(u) = 1
(1�u)�

, which under the right conditions are known to blow up in �nite time in

the centre of the domain on which they are being solved. Preliminary studies are carried

out using �xed mesh methods, before using ut as a monitor function for calculating nodal

velocities in both a one and a two dimensional case. Numerical results are compared and

conclusions drawn on the use of ut as a monitor function.



Acknowledgements

The greatest of thanks must be directed towards my supervisor Mike Baines, whose door

was never closed. Without his continued support, wealth of knowledge, ideas and that

draw which never seems to run out of scrap paper, none of this would have been possible.



Contents

1 An Introduction 3

1.1 What is Quenching? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Adaptive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Monitor Functions and Methods For Solution . . . . . . . . . . . . . . . . 6

1.4 Aims of This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminary Tests 9



4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Critical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions and Futher Work 49

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Appendices 55

6.1 Appendix 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Pseudo Code for the One Dimensional Adaptive Method . . . . . . 55

6.2 Appendix 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Pseudo Code for the Two Dimensional Adaptive Method . . . . . . 57

2



Chapter 1

An Introduction



the domain 0 <= x <= L, then if L > 2
p

2, u(L=2; t) will reach unity in �nite time and

if that is the case, ut(L=2; t) will become unbounded in �nite time. Put more crudely,

equation (1.1) will generate quenching/blow up in the centre of the domain, in �nite time,

assuming the domain’s length is greater than 2
p

2.

However, it is not always the case that quenching occurs at a single point in a domain.

Chan and Ke [5] and Chan [4] found that, for equation (1.1), if f(0) > 0, f 0 � 0 and

f 00 � 0, the solution will eventually reach the quenching point throughout the domain.

This is referred to as complete quenching. Studies have also been undertaken as to what

occurs post quenching, as (according to [9]) the post quenching results can also have a

physical meaning.

On another note, despite the earlier statement that the quenching referred to in this

paper will be mathematical, mathematical quenching is often related to the modelling of

physical processes. Budd et al [2] state that quenching, amongst other mathematical phe-

nomena, is known to appear in problems concerning gas modelling (Liang et al base their

paper on gas within a porous wall), combustion, detonation and mathematical biology

amongst others.

This project will centre around the solving of a quenching problem using an adaptive

method and thus we must consider why the use of an adaptive method is particularly

relevant here, since it is possible to �nd a quenching solution using a �xed mesh. Obviously

a numerical method is required because there is no analytic solution to equation (1.1) and

despite it being possible that a complete quenching solution exists, this only occurs under

speci�c conditions. Often, the quenching will occur at a single point and the issue with

a �xed mesh method is that, without high resolution, the quenching point can be missed

entirely. As such, unless the quenching point is known before the mesh is created, a very

large number of nodes is required to guarantee the uncovering of a quenching point.

This is where the adaptive methods become ideal, especially the h and r-methods

(which will be explained shortly). By starting with a �xed grid and either adding extra

nodes in or shifting them based on the solution, one can create a high resolution of nodes

around the point where the greatest rate of change (and hence the quenching point) occurs.

Therefore the advantage of using an adaptive method for a quenching problem is that the

4



mesh resolution about the quenching point is increased, thus increasing the chance of

actually locating the quenching point (assuming we do not know its location). Moving

mesh methods also have the possibility of being more e�cient than their mesh re�nement

counterparts, as in theory they should use fewer nodes and therefore less computational

e�ort.

1.2 Adaptive Methods

Generally there are three forms of adaptive method, these being the mesh re�nement (h),

order enrichment (p) and mesh movement (r). This dissertation will centre around the

use of a mesh movement method with a �xed number of nodes. Rather than using the

more well known mesh re�nement methods, which add extra points into the mesh where

they are required, the number of nodes will be set at the start of the method and these

will be shifted to the areas of the domain which require them.

There are both positives and negatives to the use of the mesh movement methods

rather than the re�nement methods. Budd et al [2] state that h-methods have been

studied in great depth over many years, so much so that these methods now exist in

commercial codes. r-methods on the other hand have seen far less interest and as such

there are fewer studies to consider. Adding that adaptive methods can su�er greatly from

a requirement for high levels of computation. Generally, the nodes in the mesh are often

shifted using another PDE, as well as the PDE which is actually being solved upon the

mesh. As such the computational cost can be rather large, since two di�erent systems are

being considered. This introduction of another PDE can also lead to a need to solve a sti�



solution. It is also stated in [2] that r-methods lend themselves well to problems in which

the spatial and temporal length scale are very di�erent, suggesting that this should result

in an r-adaptive method being suitable in the solution of a quenching problem.

1.3 Monitor Functions and Methods For Solution

Having briey explained both quenching and the type of method being considered here,

the means of calculating the changes to the mesh should be considered. There are two

aspects of the r-adaptive method which dramatically change the solution of the PDE.

These two aspects are the monitor function and subsequently the class of the method.

If we consider two examples for this, we can see the scope for di�erent methods for

the solution. The �rst of these is the aforementioned paper by Liang et al [9]. This is

technically an h-method, but the monitor function used serves as a good example for the

di�erent choices which can be made. In [9] a monitor function is used which is

�(ut) =
p

1 + u2
tt;

an arc length monitor function. It should be noted that in [9], equation (1.1) is being

solved by considering the domain to have some number of equally spaced nodes in the

spatial direction. However, it is the time stepping in this paper which is adaptive and

this is what the monitor function is used for. The monitor function governs the time step

at each of the spatial nodes and alters it based on values of ut.

There are many di�erent options when it comes to using monitor functions in re�ne-

ment methods. One which is particularly relevant here is that used by Baines et al [1], as

well as the various others noted in [2]. This monitor function is the mass (or area) under

the function u in the domain and the study in [1] is particularly relevant to this paper

as the method used here is very similar. The method used in [1] of conserving the mass

under the curve in time equates to preserving the area under the curve between two nodes

to be its initial values. The nodes are moved by forcing each of these areas to retain their

area (relative to the total mass under the curve) at each time step.

The subsequent part of such schemes is again summarised by Budd et al in [2]. Two

options are referred to as velocity and location based methods. Velocity based methods

6





or produce more e�ective results around the quenching point than that of their standard

�nite di�erence counterparts.

The two adaptive methods shall then be considered in sections 3 and 4 respectively.

They will use the same initial conditions as the preliminary tests and in the case of

the one dimensional problem, exactly the same equation. The two dimensional case will



Chapter 2

Preliminary Tests

The reasoning behind performing these basic tests is to give benchmark values using

schemes with known error estimates. The equation proposed in [8] has no analytic solution

and therefore there is no de�nite solution to test the adaptive methods against. As such,

two preliminary tests will be undertaken, one for the one dimensional case and a second

to give an approximation to a two dimensional solution, since the the problem posed is



Now that the initial and boundary conditions have been set, the solution can begin.

If the mesh indices are j; n and one lets u(t; x) = u(n�t; j�x) � unj and then expands

the uxx terms using a central di�erence scheme and the ut term as a forward di�erence

scheme, then (2.1) becomes

un+1
j � unj

�t
=
unj�1 � 2unj + unj+1

a2�x2
+ f(unj ): (2.3)

which can be rearranged to show that

un+1
j = unj + �t

�
unj�1 � 2unj + unj+1

a2�x2
+ f(unj )

�
: (2.4)

By considering (2.1) and using the fact that an approximation for u has been found using

(2.4), one can also very quickly derive a approximation for ut. If the right hand side of

equation (2.1) is expanded in the same way as above, then one has

(ut)i =
unj�1 � 2unj + unj+1

a2�x2
+ f(unj ): (2.5)

Having an approximation for ut as well as u is particularly useful, as it is the ut value’s

growth which causes the quenching and as such, an approximation of it with a known

truncation error provides a useful tool for analysing the adaptive one dimensional case.

Using this fairly straightforward method of numerically solving the problem also allows

for the truncation error of the scheme to be found fairly simply. If we consider equation

(2.3), then the truncation error estimate can be calculated by �rst considering

�nj =
un+1
j � unj

�t
�
unj�1 � 2unj + unj+1

a2�x2
� f(unj ); (2.6)

with unj replaced by u(j�x; n�t). These terms can all be expanded using the Taylor

Series about u(j�x; n�t). Applying this expansion to equation (2.6) results in

�nj = 1
�t

h
u+ �tut + �t2

2
utt + � � � � u

i

� 1
a2�x2

h
u��xux + �x2

2
uxx � �x3

3!
uxxx + �x4

4!
uxxxx + : : :

�2u+ u+ �xux + �x2

2
uxx + �x3

3!
uxxx + �x4

4!
uxxxx + : : :

i
� f(u);

where u represents u(j�x; n�ti





(a) u plotted against x (b) ut plotted against x

Figure 2.2: u and ut plotted in time between t = 0:451 and t = 0:458 with intervals of

0.001.

(a) u plotted against x (b) ut plotted against x

Figure 2.3: u and ut plotted in time between t = 0:4575 and t = 0:4587 with intervals of

0.0001.

We can see from the results in �gures 2.1-2.3 results that, given the parameters �t =

0:0001 and �x = 0:02, the problem quenches at approximately t = 0:4587. Figure 2.3a

shows how u is just touching 1 at this time and by this point ut has certainly blown up,

as evidenced by �gure 2.3b. By the next time step the solution is post quenching and the

results no longer provide any useful information.

These results correspond to those of [9] and the solution behaves as stated by [7]. As

12



such, these results should give a reasonable estimation of what to expect from the one

dimensional adaptive case, as this will use the same initial and boundary conditions.

2.2 A Test in Two Dimensions

In this two dimensional case, equation (2.1) will need to be modi�ed so that it applies

to a two dimensional case. The problem is known to be symmetrical and therefore,

the problem will also have radial symmetry. This lends it to being solved as a radial

di�erentially equation, rather than using a r2u term. Therefore, as a radial problem,

equation (2.1) becomes

ut =
1

a2r

@

@r

�
r
@u

@r

�
+ f(u); (2.8)

where f(u) is still de�ned as in equation (2.2), with � remaining set to one.

If u(t; r) = u(n�t; jh) � unj (where h is the spacing between nodes along the radius)



Applying a central di�erence schemes to this results in

un+1
j � unj

�t
=

2

h2a2

�
unj�1 � 2unj + unj+1

�
+ f(unj );

which can be further rearranged to show that

un+1
j =

2�t

h2a2

�
unj�1 � 2unj + unj+1

�
+ �tf(unj ) + unj : (2.11)

With this condition imposed and the initial condition u(0; r) = 1
10

cos
�
�
2
r
�

and the bound-

ary condition u(t; 1) = 0, the solution can begin. The following �gures show the solution

using �t = 0:0001 and �x = 0:02 for several di�erent time intervals.

(a) u plotted against r (b) ut plotted against r

Figure 2.4: u and ut, plotted in time between t = 0 and t = 0:4 with intervals of 0.05.

(a) u plotted against r (b) ut plotted against r

Figure 2.5: u and ut, plotted in time between t = 0:41 and t = 0:423 with intervals of

0.001.

14



(a) u plotted against r (b) ut plotted against r

Figure 2.6: u and ut, plotted in time between t = 0:422 and t = 0:4233 with intervals of

0.0001.

This version of the problem quenches at t = 0:4234, which is slightly faster the one

dimensional case, although it follows the expected pattern as u and ut evolve, and �nally

it quenches on the left hand boundary, which represents the origin here. As with the one

dimensional case, the �t and �x chosen ensure that the problem is converging. Using

smaller values would show a more acc7(v)54(a.)-624(Using)]TJ -178.278 -23.114 cc7(v)54(a.)-624(UsinrJ -15.kand)-5



Chapter 3

One Dimensional Adaptive Method

Starting from the scaled equation from [9], we have

ut =
1

a2
uxx + f(u) (3.1)

where f(u) = 1
(1�u)�

and � = 1. The boundary conditions are given by u(0; t) = u(1; t) = 0

and the initial condition chosen is u(x; 0) = 1
10
sin(�x). This choice of initial condition

will be explained later.

There are numerous ways in which to apply an adaptive method. In this case and

using this equation, it is known that the ut term in the solution of the PDE is the part of

the equation causing the quenching or blow-up. In [1] u is used as the monitor function,

but in this dissertation ut will be used to govern the re�nement of the mesh in a very

similar fashion to that of [1]. If one lets Ai be the absolute area between two points xi

and xi+1 then we have Z xi+1

xi

ut dx = Ai: (3.2)

However, since the total integral from 0 to 1 is not conserved, conservation of the absolute

area is of little use in this case. A better measure is that of a percentage or relative area

with respect to the total area under ut. If we de�ne a new variable � to represent the

total area and Ci to represent the relative area under the curve between xi and xi+1 then

we have

� =

Z 1

0

ut dx (3.3)

16



and the relative area is

Ci =
1

�
Ai =

1

�

Z xi+1

xi

ut dx: (3.4)

It is this quantity that will be conserved in time. At this point the choice of initial

conditions must be explained. From [9], we know that the initial u values must be in the

region 0 � u0 < 1, with u(0) = u(1) = 0). Also, equation (3.3) stipulates that the initial

condition must also be twice di�erentiable in time, due to the use of the initial uxx term.

The sine function 1
10

sin (�x) is used, since it satis�es these criteria.

We need to know how � changes with respect to time, as this will a�ect the areas Ci

in equation (3.4). As such, we di�erentiate equation (3.3) with respect to time to give

d�

dt
=

d

dt

Z 1

0

ut dx =

Z 1

0

utt dx:

We can now substitute equation (3.1) into this to give

d�

dt
=

Z 1

0

(
1

a2
uxx + f(u))t dx:



If we �rstly considers the second term, then we can see that the Leibniz Integral Rule can

be applied to show that

d

dt

Z xi+1

xi

ut dx =

Z xi+1

xi

utt dx+

�
ut
dx

dt

�xi+1

xi

;

which implies that

d

dt

�
1

�

�Z xi+1

xi

ut dx+
1

�

 Z xi+1

xi

utt dx+

�
ut
dx

dt

�xi+1

xi

!
= 0:

Once again, ut can be substituted into the utt term from equation (3.1), as well as using

d
dt

( 1
�
) = � _�

�2 . This gives

� _�

�2

Z xi+1

xi

ut dx+
1

�

 Z xi+1

xi

�
1

a2
uxx + f(u)

�
t

dx+

�
ut
dx

dt

�xi+1

xi

!
= 0

Clearly this can be multiplied through by �, but also note that earlier Ci was de�ned as

equation (3.4). This can be substituted into the �rst term, along with the multiplication

by � to give

� _�Ci +

Z xi+1

xi

�
1

a2
uxx + f(u)

�
t

dx+

�
ut
dx

dt

�xi+1

xi

= 0:

Substituting equation (3.1) in again and rearranging produces�
ut
dx

dt

�xi+1

xi

= _�Ci �
1

a2

Z xi+1

xi

�
1

a2
uxx + f(u)

�
xxu)

�
xx

a2



where �i



Substituting v = �uxx into this gives

Ci =
1

�

Z xi+1

xi

f(u)� v

a2
dx; (3.8)

which can be approximated using the trapezium rule. The Ci values are only calculated

once, directly after the initial v0s have been calculated and are constant for all time.

If we �rst consider the problem at t = 0, we know the exact values of u at all points.

Once the initial values have been applied, the v values can be calculated and thus an

approximation to ut can also be calculated. This is given by

ut = f(u)� v

a2
: (3.9)

Once the time loop begins, ut is considered in two di�erent ways. Firstly an approximation

of ut is calculated from equation (3.9), using v at each node. All of the other calculations

mentioned so far use this approximation. ut is approximated at the end of the loop, this

time using a midpoint rule applied to equation (3.4). The v values are also recalculated

at the end of the loop.

Now that ut has a value at all points, the time loop can begin. Bearing in mind that

ut, �, the Ci values and v have all been calculated before the time loop begins, the �rst

thing to be calculated in the loop is _�.

_� has already been de�ned in equation (3.5). However, in equation (3.5), all of the ut

terms have been expanded using equation (3.1), but now that ut has been approximated

using v, it can be reintroduced, since this is far simpler to calculate than the two terms

which are otherwise created. As such, equation (3.5) becomes

_� =
utx
a2

���1
0

+ tx



with a suitable choice of �t. Next comes the movement of the nodes. This is calculated

using equation (3.6). In equation (3.6), every term is known apart from the two dx
dt

terms.

However, two of the dx
dt

values are known. To keep the domain the same size for all time,

the two outermost nodes (x0 and xN) are �xed in position and therefore dx
dt

at these nodes

is 0. In equation (3.6) the dx
dt

terms are evaluated at xi and xi+1. Starting from i = 0, the

evaluation at xi (since there is no node movement at this point) is known and therefore

equation (3.6) can be rearranged to �nd the unknown dx
dt

term and all the subsequent _x

terms explicitly.

As with equation (3.5), one can reform any expanded ut terms using (3.1), as ut is

now known. As such, equation (3.6) becomes�
ut
dx

dt

�xi+1

xi

= _�Ci �
utx
a2

���xi+1

xi
�
Z xi+1

xi

1

a2
f 0(u)ut dx:

This can then be rearranged into the form

_xi+1 =
�� � � 
utji+1

; (3.11)

where

_xi+1 =
dx

dt

����
xi+1

� = _�Ci + ut _xjxi (3.12)

� =
utx
a2

���xi+1

xi
(3.13)

and

 =

Z xi+1

xi

f 0(u)ut dx: (3.14)

� can generally be approximated using �nite di�erences, with the derivatives being ap-

proximated using a central di�erence scheme. However, the scheme for calculating � does

need to be slightly modi�ed if the velocity being calculated is at the �rst internal node

x1.

Therefore in general

� � 1

a2

�
(ut)i+2 � (ut)i
xi+2 � xi

� (ut)i+1 � (ut)i�1

xi+1 � xi�1

�
: (3.15)

But, at i = 0

� � 1

a2

�
(ut)i+2 � (ut)i
xi+2 � xi

� (ut)i+1 � (ut)i
xi+1 � xi

�
:

21



 can be approximated by simply using the trapezium rule. However, wherever the trapez-

ium rule is being used to approximate an integral between xi and xi+1, the approximation

accuracy is very dependent on the number of nodes being used. The values between

nodes are unknown and thus it is not possible to increase the number of trapeziums be-

ing used to approximate any given integral. Therefore to maintain the accuracy of these

approximations, a reasonable number of nodes must be used throughout.

Once these velocities have been calculated, the positions of the nodes can be updated

using the same forward Euler method,

xn+1
i = xni + �t _xni : (3.16)

Once the nodes have been repositioned, the new value of ut at the nodes can be approxi-

mated by applying the midpoint rule to equation (3.4) in the form

1

�

Z i+1

i�1

u dx = Ci�1 + Ci:

The standard midpoint rule applied here produces

(xi+1 � xi�1) utjxi � �(Ci�1 + Ci);

which can then be rearranged to show that

utjxi � �
Ci�1 + Ci
xi+1 � xi�1

: (3.17)

The extra � is present to make up for the fact that the C’s are actually a relative mea-

surement of the areas under ut, rather than the absolute values. It would be possible to

use the absolute areas Ai, but this would mean recalculating Ai at every time step using

the trapezium rule, rather than applying the above, simpler step.

Normally (if a �xed grid is used), since ut is now known, one could use

un+1
i = uni + �tut

to �nd the new ui values. However, a di�erent approach must be taken here. We start

by de�ning a new variable � to be

�i =

Z xi+1

xi�1

u dx: (3.18)

22



�i can be approximated using a trapezium rule before the time loop begins. We can

then di�erentiate �i and use this derivative to calculate the new �i values. As such,

di�erentiating (3.18) with respect to time produces

_�i =
d

dt

Z xx+1

xi�1



3.4 Adaptations

The �rst adaptation used is a simple one. If we consider the calculation of � in equation

(3.15), we can see that generally � can be calculated using a central di�erence scheme.

However, when considering � when calculating the velocity of the �rst internal point, a

forward di�erence scheme must be considered, since the boundary conditions do not allow

for any form of ghost point to be considered. This is a problem which can be mediated

using the symmetry of the problem. It is known from both [8] and [9] that equation (3.1)

is symmetric around the centre of the domain. Therefore we can calculate the the velocity

of the nodes from the centre to u = 1 (where _x = 0 and then use those values to state the

velocities of their opposite nodes on the other side of the centre node.

This however, does enforce another condition on the problem, which is that as well as

_x being 0 at both x = 0 and x = 1, _x must also be 0 at x = 0:5. This further implies that

there must be an odd number of nodes so that one node lies directly on x = 0:5.

Applying these conditions does allow the method to produce more sensible results,

although they are still not entirely expected. The method is far more unstable than the

�xed mesh method, but it will run for slightly longer than the original adaptive method

using N = 10 (N represents the number of areas created, so the number nodes is in fact

N + 1) and a �t value of 0:001, but still fails very quickly. However, using a smaller time

step or a greater number of nodes results in the method failing more quickly, so the plots

below use �t = 0:001 and �x = 0:1.

24



(a) The solution from t = 0 to t = 0:24 at intervals

of 0.02.

(b) The solution from t = 0:241 to t = 0:25 at inter-

vals of 0.001.

Figure 3.1: u plotted against x using �t = 0:001 and �x = 0:1

So, using this slight modi�cation (forcing the central node to remain stationary), a

quenching solution can be found. However, it is clearly not forming a solution overly

similar to that of the preliminary tests. It lasts a little over half of the time that the

preliminary method could run for under the same conditions before quenching. Although

whether this can even be described as quenching is debatable. It should also be noted

that adding more nodes and reducing �t did not improve this solution. Reducing the

time step makes little to no di�erence, while adding more nodes forces the method to fail

even faster. Lowering the number of nodes does appear to aid stability, but the solution

becomes unusable in the process as it (ld8a7m17a4245ter.)-466(Lo)2Td [(did)-407(not)-472(soluo.16 ml.)-40.d



(a) The v estimate of ut. (b) The midpoint rule version of ut

Figure 3.2: The two di�erent methods of calculating ut in the time period of t = 0 to

t = 0:24, with intervals of �x = 0:1 and a �t value of 0:001.

Other adaptations were made, such as forcing the v end point values to be equal to

a2 (by rearranging (3.1)) and attempting to solve for v using a central �nite di�erence

scheme instead of a �nite element scheme. The reasoning behind trying to use these two

methods is that in the formulation of the �nite elements solution to v, the hat functions

(�) and therefore ux at each end of v remain present. These hat functions themselves

are not particularly an issue, it is the multiplication by the ux term evaluated on the

boundary which is the problem.

The only boundary conditions given are that u (and therefore ut) must be equal to

zero at the boundaries, which means that ux is not speci�ed. This poses a problem as an

estimation of ux needs to be made. A simple way to try to �nd these terms was to apply

a forward �nite di�erence scheme to the ux term at x = 0 and a backwards di�erence at

x = 1. However, this is very crude and likely to be a major cause of problems during the

solution of v. Unfortunately, without a boundary condition, these terms are very di�cult

to evaluate.

Based on this, another adaptation considered was assuming that ux = 0 weakly on

the boundaries alongside u = 0, the aim being to remove the extra terms created in the

calculations of v. However, this proved even more unstable than having the approximation

to ux in the solution.

On a positive note, forcing the central node to remain in the same position throughout

26



and thus removing the tricky � term does appear successful. The � term when calculating

the velocity of the �rst internal point also needed to be considered using a forward di�er-

ence scheme. When solved using this, the method barely worked at all. Removing that

term by using the symmetry of the problem seemingly improved it. This in turn suggests

that perhaps the forward and backward di�erence schemes used in the calculation of v is

another element of the solution causing an issue.

3.5 Critical Analysis

Clearly this method has proved somewhat unsuccessful in this study. Admittedly, it could

be something as simple as a programming error, although this seems unlikely. Using the

method as originally derived proved completely unusable. The introduction of the forced

central node seems to help, but the solution produced is still very poor. Even with the

addition of the stationary central node, the scheme is highly unstable, especially when

altering the number of nodes. Raising N above 10 results in the solution method failing

very quickly indeed, due to the unstable nature of forward Euler time stepping.

It is possible that the issue is inherent in the boundary conditions. By forcing u to be

zero at the boundaries, it is possible that ut su�ers at the boundaries since ut contains a

uxx term, which at the boundary is going to di�er greatly from that of the internal points

because u is being forced to 0. Now, since the monitor function here is ut, it stands to

reason that perhaps it is the boundary conditions causing the issue, since they are forcing

ut to have erratic values near the boundaries. One can see in �gure 3.2b that there are

three areas with large gradients in the v approximation to ut. These are most likely caused

by the large uxx values being found nearest the boundaries.

One could also consider that the choice of monitor function is not ideal. It can be

viewed in two ways. [9] stated that it is ut causing the blow up and thus, while hoping

to improve the resolution of the mesh about the quenching point, it could be argued that

moving the mesh with regards to the term forcing the blow up may work. Conversely,

since it is ut



Chapter 4

A Two Dimensional Adaptive

Method

Like the one dimensional case this method begins with the equation from [9], but in this

case it clearly needs to be modi�ed slightly. The equation has already been considered

once as a radial problem, but here it will be considered in two dimensions and thus

becomes

ut =
1

a2
r2u+ f(u): (4.1)

For this case, f(u) remains as before (f(u) = 1
(1�u)�

, with � set to 1), but the initial

conditions are altered slightly. In this case the domain is circular and although the problem



where 
 represents the domain on which the equation (equation (4.1)) is being solved,

and consider the relative area for this method, thus de�ning constants ci which are given

by

ci =
1

�

Z

i

ut d
: (4.3)

The integral over 
i here represents the integral over the area created between two circular

rings of radius ri and ri+1. If equation (4.3) is rearranged, we get

�ci =

Z

i

ut d
: (4.4)

However, once the mesh begins its movement the � values will be calculated using a

�nite element method. This entails introducing a test (a member of a partition of unity)

function to equation (4.3) to produce

ci =
1

�

Z



wiut d
; (4.5)

where w moves with v and therefore must satisfy the advection equation

@wi
@t

+ v � rwi = 0: (4.6)

Equation (4.5) can then be rearranged to show that

�ci =

Z



wiut d
: (4.7)

For the initial � values, all the u terms are known initially and the rings are evenly spaced.

Now, we need to know how � changes with time and therefore equation (4.7) must be

di�erentiated with respect to time. This gives

_�ci =
d

dt

Z



wiut d
;

where _� = d�
dt

. Using the Reynolds Transport Theorem this becomes

_�ci =

Z



(wiut)t d
 +

I
@


(wiutv)

;



Then, by using the Divergence Theorem, this becomesI
@


uv � n ds =

Z



r � (uv) d
:

One can quite easily show that equation (4.7) can be further rearranged to give

_�ci =

Z



wiutt + ut(wi)t +r � (wiutv) d
:

The third term can then be split using the fact that r � (wiutv) = wiutr � v + vr � wiut

to show that

_�ci =

Z



wiutt + ut(wi)t + utv � rwi + wir � (utv) d
:

Multiplying equation (4.6) by ut, we can quite clearly see that two of the above terms are

cancelled out and thus the equation becomes

_�ci =

Z



wi (utt +r � (utv)) d
: (4.8)

Now one can begin substituting equation (4.1) into the �rst term of (4.8), which shows

that

_�ci =

Z



wi

��
1

a2
r2u+ f(u)

�
t

+r � (utv)

�
d
:

This can then be expanded to give

_�ci =

Z



wi

�
1

a2
r2ut + f 0(u)ut +r � (utv)

�
d
:

A further substitution of equation (4.1) can be made, but before this a similar approach

as in the one dimensional case is used to remove the complications produced by having

to try to evaluate a r4u term. Once again a substitution is made, this time allowing

p = �r2u. The solution of p will be explained later. Substituting equation (4.1) in again

produces

_�ci =

Z



wi

�
1

a2
r2

�
1

a2
r2u+ f(u)

�
+ f 0(u)

�
1

a2
r2u+ f(u)

�
+r � (utv)

�
d
:

If the substitution of �p for r2u is now used the above equation becomes

_�ci =

Z



wi

�
1

a2
r2
�
f(u)� p

a2

�
+ f 0(u)

�
f(u)� p

a2

�
+r � (utv)

�
d
: (4.9)

So far, the �nal term of the equation has been left untouched because it needs to be

considered in a di�erent way to the other terms. If we consider the term r� (utv), then it





As with one dimension, the change in � needs to be considered and thus equation

(4.16) must be di�erentiated with respect to time to give

_�i =
d

dt

Z



wiu d
: (4.13)

From the previous workings involving � and _�, it is clear that

_�i =

Z



wi (ut +r � (uv)) d


Once again one of Green’s theorems can be applied to the second term to show that

_�i =

Z



wiut � ur � (wi � v) d
: (4.14)

4.1 The Finite Element Part in 2 Dimensions

Currently only the test function wi has been introduced. To complete a �nite elements

solution to the problem a function must actually be chosen here and in this case it will

be the standard two dimensional hat function �. Several equations ( (4.11), (4.16) and

(4.17)) need to be slightly altered to take into account this hat function. Equation (4.11)

becomes

_�ci =

Z



�i

�
1

a2
r2
�
f(u)� p

a2

�
+ f 0(u)

�
f(u)� p

a2

��
d
�Ki(ut) : (4.15)

Equation (4.12) becomes

�i =

Z



�iu d
 (4.16)

and (by expanding  as � j�j) equation (4.14) becomes

_�i =

Z



�iut d
�K(u)i i;

which can also (by expanding ut as �(ut)j�j) be written as

_� = Mut �K(u) (4.17)

K(u) and M will be de�ned later in this dissertation and  will be known after solving

equation (4.15), thus reducing equation (4.17) to an explicit means of calculating _�i.

Now, if u is approximated using u = �N
i=0�jwj, then equation (4.16) reduces to

�i = (Mu)i:

32



This further reduces to

� = Mu; (4.18)

where M is the standard �nite elements mass matrix.

As mentioned in an earlier section, the matrices K and M need to be de�ned, as well

as the matrix functions K(ut) and K(u). However, before the assembly of the matrices

can take place, the triangulation of the region must be considered.

4.2 The Triangulation

The two dimensional problem is being considered upon a circle with radius of 1. As with

the one dimensional case, the problem has been scaled and thus, regardless of the actual

radius, the solution is always shown on a circle with a radius of one.

To begin the triangulation, there must be a means of choosing nodes, upon which the

triangles can be based. In this case, a number (N) of ’rings’ will be placed about the

centre of the circle. Initially, they will all be equally separated, but once the adaptive

method begins this will clearly change. Upon each of these rings, an even number (M)

of nodes will be placed. Using an even number of nodes (which remains �xed) retains

the symmetry of the triangulation and forces every triangle to be isosceles. These nodes

will be alternately placed depending on which ring they lie upon. So for example: if four

nodes are chosen, then the �rst ring out from the centre of the circle will have its nodes

positions at 0, 90, 180 and 270 degrees. On the next ring, the nodes will be placed at

45, 135, 225 and 315 degrees. This pattern is then repeated throughout, as illustrated by

�gure 4.1.

33



Figure 4.1: For this case, one can see that both N and M are 4. The centre point is

counted as one of the rings despite not actually being a ring itself. Also note that this

is a very simple example which could not be used in practice, as the angles in the larger

triangles are beginning to turn obtuse, at which point the method will fail.

By considering the problem like this, all of the triangles become isosceles, thus lending

a great deal of extra symmetry to the problem. However, it does mean that two di�erent

types of triangle must be considered: inward and outward pointing. Clearly, the circle

created by the �rst ring and the centre point of the circle will only have inward pointing

triangles, but from then on each area created between the rings will be made up of both

inward and outward pointing triangles.

34



(a) The angles used in the triangulation [Note that

this �gure assume that it is either K(ut) or K(u) 

being solved.

(b) Lengths used in the triangulation

Figure 4.2: Labelling of the triangulation

It will become clearer when assembling the aforementioned K and M matrices that

every angle, side length and height for all of the triangles must be found. It was stated

above that the �rst set of triangles (the set between the centre point and the �rst ring)

are all inward pointing. They are also the most simple to calculate, as the lengths of

the pair of equal sides in each triangle are already known, as is the single angle in each

triangle.

The rest of the triangles are a little more di�cult to calculate. If one considers �gure

4.2, then one can see how it is possible to calculate all of the values required.

As stated above, the �rst set of triangles are all inward pointing and straightforward

to calculate. As such, the �rst triangle to be considered after this is an outward pointing

one. If one considers the height (HI
i�1) of the inward pointing triangle which has two of

its corners touching the ith ring, then one can use this to calculate the height (HO
i ) of the

outward pointing triangle which shares a base with it. If one lets ri represent the position

of the ith ring, then one can see that the sum of the two heights must be equal to

HI
i�1 +HO

i = ri+1 � ri�1

35



At this point, the two r values are known and HI
i can be quite easily calculated using

Pythagoras’ Theorem to show that

HI
i�1 =

r
A2
i�1 �

R2
i�1

4
: (4.19)

Note that both the R and



Finally, the loop used to calculate the values required can only begin if the lengths and

angles in the original triangles are known. If there are M nodes on each ring, then

0 =
2�

M
(4.28)

�0 =
� � 0

2
(4.29)

A0 = r1 (4.30)

R0 = A0
sin 0

sin�0

: (4.31)

Now that the triangulation is complete, the �nite elements formulation and assembly can

begin.

4.3 Assembling the Matrices

As stated in an earlier section, there are several di�erent matrices which need to be

assembled. Three of these matrices (K, K(ut) and K(u)) are very similar and assembling

just one of them gives the general form the the remaining two. M will also need to be

assembled. However, we shall start by considering K(ut) �rst, as this will also give K

and K(u).

It was mentioned during the triangulation that both inward and outward pointing

triangles must be considered and therefore there are two elemental matrices which need

to be considered for assembly. If one starts by considering the standard �nite elements

K matrix inei2(in).ontrices which need





Adding the next element to this produces0BBB@
_I0 cot�0 � _I0 cot�0 0

� _I0 cot�0
_I0 cot�0 + g1 �g1

0 �g1 g1

1CCCA
0BBB@

 0

 1

 2

1CCCA =

0BBB@
f I0

2f I0 + f I1 + 2fO(next)-326(elemen)27(t)-326(to)-326(this)-327(pro)-27(duces)]TJd



To begin solving K(ut) 



K(u) given by

K(u) =

0BBBBBBBBBBBBBBBB@

I0 cot�0 �I0 cot�0 0 � � � 0

�I0 cot�0 I0 cot�0 + h1 �h1 0 � � � 0

0 �h1 h1 + h2 �h2 0 � � � 0

0
. . . . . . . . . 0 � � � 0

0 0 �hi�1 hi�1 + hi �hi 0 � � � 0

0
. . . . . . . . . . . . . . . �hN�1

0 �hN�1 hN�1

1CCCCCCCCCCCCCCCCA
;

(4.45)

where

hi = Ii cot�i +Oi cot �i; (4.46)

Ii =

�
RiH

I
i

2

��
ui + 2ui+1

3

�
(4.47)

and

Oi =

�
Ri�1H

O
i

2

��
2ui + ui+1

3

�
: (4.48)

4.4 Considering p

It was stated earlier that p = �r2u. As with the one dimensional case (in which p = v),

p



Since the hat function is not 0 around the boundary, the second term on the right hand

side is removed by weakly imposing ru = 0 on the boundary, thus reducing the problem

to Z



�ip d
 =

Z



r�i � ru d
 (4.50)

This reduces to the matrix form

Mp = Ku;

where K is the standard �nite elements sti�ness matrix and M is a standard mass matrix.

Therefore K is given by

K =

0BBBBBBBBBBBBBBBB@

cot�0 � cot�0 0 � � � 0

� cot�0 cot�0 + C1 �C1 0 � � � 0

0 �C1 C1 + C2 �C2 0 � � � 0

0
. . . . . . . . . 0 � � � 0

0 0 �Ci�1 Ci�1 + Ci �Ci 0 � � � 0

0
. . . . . . . . . . . . . . . �CN�1

0 �CN�1 CN�1

1CCCCCCCCCCCCCCCCA
;

(4.51)

where

Ci = cot�i + cot �i (4.52)

4.5 Considering The Mass Matrix

So far three di�erent K matrices have been considered and assembled, but to complete

the �nite elements solution the M matrix must be assembled, as this is required for the

solutions of �, p and subsequently u. To assemble M , we shall consider it using the

equation (4.16). From equation (4.16), we know that

�i =

Z



�iu d


and therefore

� = Mu:

42



This is a standard �nite element result, however the matrix produced does need to be

assembled, since there are multiple di�erent sizes of triangles to be considered. Generally

an elemental matrix is given by

M =
triangle area

12

0BBB@
2 1 1

1 2 1

1 1 2

1CCCA : (4.53)

However, there are two di�erent types of triangle and so a di�erent area is considered

for each one. F I
i represents the area of the ith inward pointing triangle and FO

i the ith

outward. This produces two elemental matrices, such that

(M I
i )eu =

F I
i

12

0BBB@
2 1 1

1 2 1

1 1 2

1CCCA
0BBB@

ui

ui+1

ui+1

1CCCA ;

which simpli�es to

(M I
i )eu =

F I
i

6

0@ 1 1

1 3

1A0@ ui

ui+1

1A : (4.54)

Similarly the inward element is given by

(MO
i )eu =

FO
i

12

12

12

12

1 2 1
1 1 2

1C

6



Adding the next full element to this gives

Mu =
1

6

0BBB@
F I

0 F I
0 0

F I
0 3F I

0 + F I
i + 3FO

1 F1

0 F1 3F I
1 + FO

1

1CCCA
0BBB@

u0

u1

u2

1CCCA :

Adding a further element produces

Mu =
1

6

0BBBBBBB@
F I

0 F I
0 0 0

F I
0 3F I

0 + F I
i + 3FO

1 F1 0

0 F1 3F I
1 + FO

1 + F I
2 + 3FO

2 F2

0 0 F2 3F I
2 + FO

2

1CCCCCCCA

0BBBBBBB@
u0

u1

u2

u3

1CCCCCCCA
:

From this, one can see the general form of the matrix is

M =
1

6

0BBBBBBBBBBBBBBBB@

F I
0 F I

0 0 � � �

F I
0 3F I

0 + F I
1 + 3FO

1 F1 0 � � �

0 F1 3F I
1 + FO

1 + F I
2 + 3FO

2 F2 0 � � �
. . . . . . . . .

0 Fi�1 3F I
i�1 + FO

i�1 + F I
i + 3FO

i Fi 0

. . . . . . . . .

FN�1 3F I
N�1 + FO

N�1

1CCCCCCCCCCCCCCCCA
:

(4.57)

From this, � can be solved using a tri-diagonal solver applied to the system

� = Mu;

where

u =

0BBBBBBBBBBBBB@

u0

u1

...

ui
...

uN

1CCCCCCCCCCCCCA

44



4.6 The Two Dimensional Solution

Now that all of the required variables have been de�ned, a method for the solution of the

problem can begin. As with the one dimensional case, a twice di�erentiable function has

been chosen and thus the u values can be immediately set. However, the ut values are not

so simple to set initially. In the one dimensional case the sine function being used could

simply be di�erentiated twice with respect to x. The initial function for u being used here

is not so easy to di�erentiate, as it contains both an x and a y term. Fortunately, the

symmetry of this problem allows it to be considered radially and thus the initial condition

can also be stated as 1
10

cos
�
�
2
r
�
.

It was stated in the preliminary section of this paper that ther2u term can be replaced

with with

1

r

@

@r

�
r
@u

@r

�
: (4.58)

Substituting in the radial initial condition for u gives

1

r

@

@r

�
�r�

20
sin
��

2
r
��

(4.59)

Applying the product rule to this produces.

�1

r

�
�

20
sin
��

2
r
�

+
r�2

40
sin
��

2
r
��

: (4.60)

Once in this form, it can then be seen that the initial ut can be written as

ut = f(u)� 1

a2

�
�

r20
sin
��

2
r
�

+
�2

40
sin
��

2
r
��

: (4.61)

Once the initial conditions are set, both the initial �, � and ci values can be calculated.

The boundary conditions however, are slightly di�erent. For the one dimensional case

both x = 0 and x = 1 had the condition u = 0 imposed upon them and therefore ut

was also equal to zero at the boundary. In this, two dimensional case, only the condition

at the outer boundary of the circle (



estimate in ut. Once this is known, _� can be calculated. Equation (4.15) only refers to

each area between the rings on the circle. If equation (4.15) is summed from 0 to N , then

the K(ut) term is removed since all the rows sum up to 0. Similarly, the �i terms all sum

to 1, thus reducing the equation to

_�c =

Z



�
1

a2
r2
�
f(u)� p

a2

�
+ f 0(u)

�
f(u)� p

a2

��
d
; (4.62)

where c is simply the sum of all the ci values.

Once _� is known, equation (4.40) can be solved and therefore the system K(ut) = f

can be solved using a tri-diagonal solver.

This solution will �nd  and thus the solution of _� can begin found by considering

equation (4.17). It has already been stated that this solution is explicit, since all of the

right hand terms are known.

Once  is known, v can be found since v = r �  . Once again the symmetry of the

problem can be employed to simplify this calculation. Obviously r �  is made up of the

two components @ 
@x

and @ 
@y

, but exploiting the symmetry means that one of these terms

is 0. If for example, we assume the radius we are considering is in fact the x axis, then

@ 
@y

= 0 and @ 
@x

= @ 
@r

. Therefore v can be found by simply considering a central �nite

di�erence scheme on  .

It should also be noted when calculating  that K is singular and therefore cannot

be inverted as it is. It is known that the outer ring and the origin will not shift and thus

r = 0 at these points. However, this tells us little about the actual value of  at these

points. As such  N is assumed to be zero so that the K matrix can be inverted.

With all of the above calculated, �, r and _� can all be updated. All three are updated

using a �rst order Eulerian method. As such,

�n+1 = �n + �t _�n; (4.63)

rn+1 = rn + �t vn (4.64)

and

�n+1 = �n + �t _�
n
: (4.65)

Now u can be calculated. Unlike the one dimensional method, this does not need to use

any form of midpoint rule, as the �nite elements formulation produced equation (4.18),

46



which suggests that

Mu = �: (4.66)

� has already been updated and therefore this can be solved using a tri-diagonal solver,

with the �nal row and column of the M matrix ignored, since u is known to be 0 on the

boundary.

With this time step e�ectively over ut can be updated. In some ways the solution for

this more elegant than that of the one dimensional case. If one considers equation (4.7)

and adds in the hat function � then one has

�ci =

Z



�iut d
:

When summed from i = 0 to N , the integral becomes the standard �nite elements mass

matrix and therefore

�c = Mut:

Clearly this is another system which can be solved using a tri-diagonal solver. However,

the system is slightly di�erent from the M given in an earlier section since ut is known

to be 0 on the boundary and therefore the last row and column of the M matrix can be

ignored.

Following ut is the recalculation of p (and subsequently the estimate for ut using p)

and then the re-triangulation of the domain using the new positions of the rings.



4.8 Critical Analysis

In the case of the two dimensional method it does appear that it is the program at fault,

or at least this is the easiest assumption to make. When running the program, the _� value

becomes very large and negative. Further exploration into this revealed that it is not the

coding causing this outright. _� is calculated by applying the trapezium rule across the

radius and then using the radial symmetry of the problem to generate the volume under

the curve. So for example, the method starts by calculating the area under the curve

between r0 and r1. This value is then multiplied by �r2
1. Therefore the volume of the

region between the origin and the �rst ring is given. The second ring is then calculated

by considering the area under the curve (along the radius) between r0 and r2 and then

multiplying this by �r2



Chapter 5

Conclusions and Futher Work

5.1 Conclusions

This dissertation has covered the use of an r-adaptive method for solving a particular

quenching problem for both one and two dimensions. Initial tests and papers by [7, 9]

gave an indication as to where in the domain the problem would quench and at what

point in time the quenching point should be reached.

Both one and two dimensional methods were attempted. The two dimensional method

added little to the study other than to illustrate that the boundary conditions play a huge

part in trying to calculate a solution if ut is taken as the monitor function.

The one dimensional method on the other hand, did provide some results and thus



always largest at the centre of the domain. As such, this is the term contributing a great

deal to the blow up, as while it gets larger itself, it also forces uxx to grow larger at the

centre of the domain.

However, the forcing of u and ut to be zero at the boundaries also creates two other

large values of uxx. In terms of the solution, this is not actually an issue because if u

is forced to zero at the boundaries, then uxx and thus ut will be reasonably large at the

�rst few internal points. However, in terms of the moving mesh, this is an issue, because

the method is attempting to cluster the points about three areas. Although it is not the

ut itself causing this issue, but the utt values which are required by the method. The

gradient of ut is very large near the boundaries, because of the forcing of u and ut to zero,

thus forcing the uxx and _� values to become large and therefore forces the method to fail.

As such, the main conclusion which can be drawn from this study is that using ut as

a monitor function is incredibly dependent on the boundary conditions of the problem.

Using u = 0 at the boundaries creates such large changes in ut that the method soon

becomes unstable. What this study does allow though, is to consider further work in this

area.

50



5.2 Further Work



method, could improve the way the mesh moves. A scheme considered during this study

would have centred around applying a universal change in time step should the change

under ut become too great. This would be crude, but being so simple it would only take

a small amount of work to implement it. Equally, it would be possible to apply a much

more complex method, similar to that of [9] to the adaptive time stepping.

Also, using ut as monitor contains two terms causing growth. uxx is large nearest the

boundaries, due to the drop o� to 0, but f(u) is largest in the centre of the domain. This

suggests that ut is quite large at three di�erent points, which could be forcing the mesh

to shift poorly. If the problem being solved is one of the form of (1.1), perhaps using f(u)

as the monitor function would prove more e�ective.

It was also noted during this dissertation that the use of two di�erent methods for

calculating ut



Bibliography

[1] M. J. Baines, M. E. Hubbard and P. K. Jimack, A Moving Mesh Finite Element

Algorithm for the Adaptive Solution of Time-Dependent Partial Di�erential Equations

with Moving Boundaries, Applied Numerical Mathematics (2005), 54 (3-4). pp. 450-

469.

[2] C. J. Budd, W. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numerica

(2009), pp. 1-131.

[3] W. Cao, W. Huang and R. D. Russell, A Moving Mesh Method Based On The Geo-

metric Conservation Law, SIAM J. Sci. Comput., Vol. 24, No. 1 pp. 118-142.

[4] C. Y. Chan, New results in quenching, Proc. 1st World Congress Nonlinear Anal., de

Gruyeter, Berlin, 1996, 427-434.

[5] C. Y. Chan and Lan Ke, Beyond quenching for singular reaction-di�usion problem,

Mathematical Methods in the Applied Sciences, 17(1994), 1-9.

[6] S. L. Cole, Blow-up in a Chemotaxis Model Using a Moving Mesh Method, Reading

University, Dissertation, 2009.

[7] K. Deng and H. Levine,



[10] G.D. Smith, Numerical Solution of Partial Di�erential Equations: Finite Di�erence

Methods, Third Edition, Oxford University Press, ISBN 0-19-859650-2

54



Chapter 6

Appendices

6.1 Appendix 1

6.1.1 Pseudo Code for the One Dimensional Adaptive Method

� Parameters are set (N , �x, �t).

� The x positions are set.

� Initial u values (u = 1
10
sin (�x)) are set.

� Initial v values (v = �2

10
sin (�x)) are set.

� Initial ut values (ut = f(u)� v
a2 ) are set.

� Ai values are calculated using a combination of the exact integral of uxx and the

trapezium rule.

� � is calculated by summing the Ai values.

� Ci values are calculated by dividing each Ai value by �.

� The initial � values are calculated.

� The time step is moved forward to �t and the time loop begins.

{ _� is calculated.

{ � is updated.

55



{ The _x values are calculated.

{ The x positions are updated.

{ The _� values are calculated.

{ The � values are updated.

{ The u values are updated.

{ The ut values are calculated using the midpoint method.

{ The v values are calculated.

{ The v estimate of ut is calculated using vut = f(u)� v
a2 .

{ The time step is advanced and the loop begins again.

56



6.2 Appendix 2

6.2.1 Pseudo Code for the Two Dimensional Adaptive Method

� Parameters are set (N , �x, �t).

� The r positions are set.

� The initial u values (u = 1
10

cos
�
�
2
r
�

are set.

� The initial p values are set by approximating r2u using a radial version of the

derivative.

� The initial ut values are calculated using ut = f(u)� p
a2 .

� The initial c values are calculated.

� The triangulation of the domain takes place.

� The initial � values are calculated.

� The time loop begins.

{ _� is calculated.

{ The  values and subsequently the v values are calculated.

{ � and the r positions are updated.

{ The _� values are calculated.

{ The � values are updated.

{ The u values are updated.

{ The p values are updated.

{ The approximation of ut using p (put = f(u)� p
a2 ) is calculated.

{ The ut values are  Tf 9.777 0 b-327(uping)-426(the)].9552 TfTheu{ {


