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Abstract

A 1-D dual porosity model using Richards’ [Richards 1931] coupled non-linear
parabolic equations are solved numerically with finite differences.This model is
especially appropriate when modelling unsaturated ground water flow in frac-
tured rocks or cracked soils.

Iteration was required to achieve the numerical solution due to the non-linear
form of the parabolic equations.

Experiments were made to find the effects of varying parameters on the accu-
racy,on the convergence of iteration and on the computational effort required to
achieve the numerical solution.

Some numerical examples are also included to show the hydraulic plausibility of
the numerical results obtained.
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Ch pter 1

Du 1 porosity ground w ter flow

1.1 Introduction

z=0cm
Ground level
GENERAL ,
SOIL . .
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z=40cm
~ Bottomof soil
structure

Figure 1.1: The domain of the model.

In this dissertation we will examine the model proposed in the 1993 paper of
Gerke and van Genuchten.This model is a one-dimensional dual-porosity model
which can be used to study variably saturated water flow in structured soil or
fractured rock.The domain of the soil is shown in figure 1.1 .

The model consists of superposing two continua at macroscopic level. The two con-
tinua are a macropore or fracture pore system and a less permeable matrix pore
system.Mobile water exists in both pores.There is an assumption of no horizontal
flow taking place since the rock(or soil structure)is assumed to be horizontally
homogeneous.

Richard’s equation[Richards 1931]describes the variably saturated water flow in
both pore systems.The transfer of water between the two pore regions is simu-
lated by means of first-order equations governing the rate.

The model results in two coupled systems of nonlinear partial differential equa-
tions which can be solved numerically using Galerkin Finite Element Methods
and mass lumping in space(as in [Milly 1985] as ‘L1%).The time stepping was
achieved by the fully implicit # method.



The new approach which we are going to introduce here uses the same ba-
sic model as used by Gerke and van Genuchten in their 1993 paper,but solves
the coupled system of nonlinear partial differential equations by finite difference
schemes.In space the integration method [Wood 1993] is used and in time we use
the fully implicit § method.This approach is different to that taken by Gerke and
van Genuchten because a different form of mass lumping is implicitly used(as

in[Milly 1985]‘L2").

Further,when the numerical solution is available,we will use the program to ex-
periment to try to find the best ways of producing the results.This means trying
to find the fastest,most accurate and most reliable way a numerical solution may
be obtained given general initial, and boundary conditions of the problem.

Further still,we will also try to investigate the dependence of the numerical so-
lution on different types of initial, and boundary conditions and the ease with
which different specifications of numerical solutions may be obtained.

Finally we will conclude this dissertation with some simple numerical examples.

Since we use the same model as Gerke and van Genuchten used (in their 1993
paper) ,we must explain that model in more detail. This we do in the next sec-
tion,section 1.2 .

1.2 The Model of the Problem

The equations of the dual-porosity model are

6hf B 8 . 6hf . Yw
AT FE A m ) R (L)
oh, 9, Oh, Yo

where ¢, and ¢; are the specific soil water capacities of the matrix and fracture
pores respectively. h; and h,, are the pressure heads of the fracture and matrix
pores respectively.Also Ky and K, are the hydraulic conductivities of fracture
and matrix pores. 7, is a term representing water transfer from fracture to matrix
pores. The term wy represents the volume of fracture pores as a proportion of to-
tal volume. Finally ¢ is time and z is spatial distance(measured downwards with
z=0 being ground level). 1.1 and 1.2 are forms of Richard’s equation[Richards
1931].

The soil retention functions 8, and 0, are defined to be the amount of water
present in a representative elementary volume of the matrix or fracture pores(respectively),
divided by that representative elementary volume.

They are defined here as in [Gerke and van Genuchten 1993]in terms of 0,y ,
Ostnt gy » Xy gy s hmp gy > My 1) a0 My ) s follows

O = 0,0+ By — O, )L+ |ty |77 (1.3)



0p = 0.5+ (055 O,p)[1 4 aphy ™7™ (1.4)

where s, ,, are residual soil water retention constants for fracture or matrix
pores. Similarly .5, ,, are the saturated soil retention constants for fracture
or matrix pores.

m s ms mOr ¢, s, 5areempirical constants for the matrix or fracture
pores respectively.

The values of the specific soil water capacities ,, , ; can be approximated to
be the gradient of the soil retention functions ,, or ; with respect to pressure
heads ,, or ;. That is;

n=—= (15)
f=— (16)
!

The hydraulic conductivity of the matrix or fracture pores( ,, or ;) can be
thought of as representing the ease(or difficulty)with which water flows through
their structures for a given pressure head gradient.This is shown by Darcy’s Law

[Darcy 1856] .
) (1)

= (= (18)

where ,, or s represent the downward flux of water flow in the matrix or fracture
pores.

Gerke and van Genuchten(in their 1993 paper)use the van Genuchten formulae
[van Genuchten 1980] for the hydraulic conductivity of the matrix and fracture
pores (5, or ; )in terms of their hydraulic conductivity at saturation,as follows

ol em) = om L[l (1 Ymmymmi2 (19)
)= Lo Yy (1 10)

where 4, or s is the hydraulic conductivity at saturation of the matrix or
fracture pores.The effective saturation parameters ., and .; are defined in
terms of the water content functions

=11 (111)
sf rf
em = (112)

Boundary and initial conditions are necessary to solve equations 11 , 12 and
these will be discussed in Chapter 2.

As noted by Gerke and van Genuchten[1993] the above model needs modification
when the water downflow at the surface(caused by rainfall-for example)is larger
than the matrix pores can absorb by themselves.If the water downflow is not so
large that the entire absorption capacity of the soil is exceeded then a solution is
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Now using 1.18

wiQs , Om (1.24)
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ie.from 1.14 and 1.15 we get equation 1.13 .

(1.25)
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Figure 2.1: How 2 6 maybe spatially integrated.

Since s is a constant the left hand side of 2.7 may be integrated to give

B e O e B (L S (O L
2 (29)
Now from 2.7 by using the approximation of 2.8 and the result of 2.9 we obtain
A= ey, (O~ k) = A, (210
+ Z;[ a f]zj Z;[ a m]zj)

In the above equation it is obvious that some function values need to be eval-
uated mid-point between two spatial nodes.Since we only have values of these
functions at the nodes,it is clear that some form of averaging will be required.In
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Now if we rearrange 2.11 then we obtain
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Ch pter 3

Gener 1 Results

3.1 General properties of the numerical solu-
tion

3.1.1 Oscillation

No oscillation was experienced in the numerical results in time and in space.In ad-
dition it was noted that consecutive iterates(of a time-step)did not oscillate.The
behaviour of the consecutive iterates not oscillating can probably be explained
by the lumping of the mass matrix which has(implicitly)taken place in our solu-
tion(according to ‘L2” in [Milly 1985])but which was done differently in the 1993
paper of Gerke and van Greuchten(according to ‘L17 in [Milly 1985]).

In [Ouyang and Xiao 1994] there is a result stated regarding a linear parabolic
problem which we have transformed to relevant variables,as follows;

oh
i aV2h(z, 1) + f(z,1) (3.1)
(where h represents the pressure head in either of the two pores and « is constant)
Similar boundary and initial conditions to the ones we used in this problem are
assumed.

The solution of equation 3.1 in space is assumed by finite element methods.This
procedure is assumed to give the following equation;

[M]a(t) + [Kh(t) = £ (3.2)

(where now A is assumed to be the form of pressure heads as used in 2.21). Ouyang
and Xiao assume the problem has been discretized in time by the # method and
then give the following condition (equation 3.3) as a sufficient condition of the
non-oscillation of the numerical solution in time.The inequality of equation 3.3 is
valid because K;; < 0if ¢ # j and K;; > 0.

max| J

(6 ) < A < minf e (3.3

Using our method of numerical discretization on equation 3.1 we may assume
that the mass matrix M(as shown in 3.2 )is in fact lumped and hence M;;(: # j)
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terms are zero.Further since we use the fully implicit # method we may take 6 to
be equal to 1.Hence we conclude that condition 3.3 shows that our numerical so-
lution on 3.1 will not oscillate in time when discretized by the numerical method
we have used.

This result on our method of discretization of equation 3.1 applies to oscilla-
tion of the numerical solution in time but does not apply to the oscillation in
space or to the oscillation of the iterates which may occur during the iteration
of a time-step.However we conjecture that the result of [Ouyang and Xiao 1994]
may suggest an explanation for the non-oscillation of our numerical solution(to
equations 1.1 and 1.2)in time which we observe in this dissertation.Further inves-
tigation is required to confirm this conjecture.

3.1.2 Stability

Stability is not an issue in the numerical solution because a fully implicit difference
scheme is used.

3.1.3 Convergence

By convergence we mean the ability of the pressure head values to converge to
a new value for the new time-step,as the iterations continue.If the consecutive
pressure head values begin to diverge,then convergence is unlikely.

To start with a fixed time and space-step is used,but later it was found to be
beneficial to have a varying time-step.But in this section we shall assume the
time-step to be fixed.

Often the only criterion for choosing the space and time-step was whether the
iterative solution would converge.Decreasing the space-step(for a fixed overall soil
depth)was found to have a detrimental effect on the convergence of the solution
and decreasing the time-step was found to have a beneficial effect on the conver-
gence(these results are also backed up by some of the results of section 3.6)

In the paper [Neuman 1973] it is suggested that the lumping of the mass matrix
is necessary for convergence in an unsaturated flow.Indeed both Gerke and van
Grenchten and the author did lump their mass matrices.

However Wood and Calver in their 1990 paper concluded that the distributed
mass matrix should be used in saturated-unsaturated subsurface flow because it
gives increased accuracy.This conclusion may be inappropriate in our case because
we are dealing with unsaturated flow.

3.2 Applying rainfall

3.2.1 Boundary conditions

We briefly discussed boundary conditions in chapter 2.However it is perhaps ap-
propriate for us to comment some more on how the boundary conditions were
implemented in this numerical solution.

14



Usually Neumann boundary conditions were implemented.Therefore fictitious
points had to be created in order to achieve these Neumann conditions.Strictly
speaking these fictitious points are not within the soil structure and are not
recorded in any results we show in future sections.

Upper boundary conditions

Using equations 1.7 and 1.8 these rainfall fluxes can be turned into pressure head
gradients.The evaluation of the hydraulic conductivity term in 1.7 and 1.8 is at
the point just below the fictitious point.

Once the pressure head gradient has been evaluated then the pressure head at the
space point two space-steps below the fictitious point is changed by an amount
in accordance with the gradient of the pressure head,until it reaches the value to
be assigned at the fictitious point.This is shown in figure 3.1 .

Fictitious z \L
point increasing
dh/dz : :
deltaz
evaluated
Ground
for a
level

given
rainfall { ><

The point at which functions such
as K and c are evaluated

Figure 3.1: How upper boundary conditions are evaluated.

Later in this dissertation we may refer to‘no flow’boundary conditions which
merely means imposing a zero velocity of rainfall at the upper boundary.
Lower boundary conditions

These are almost always‘free flow’boundary conditions.They are said to represent
the unimpeded release of water as it exits from the soil structure(into a water
table,for example).

These boundary conditions are simply implemented by making the value at the
fictitious point (which is one vertical space-step below the lower boundary)equal
that at the space node on the lower boundary.

More generally,the velocity of the flux of rainfall formed the upper boundary
condition, and the lower boundary condition remained‘free flow’(as before).

3.2.2 General properties

Generally the number of iterates required for each time-step(for fixed time-step)varied
from problem to problem and varied as the fixed time-step varied for each prob-
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problem to that which would result if the boundary flow was introduced imme-
diately. The gradual‘run-in’is really only of use if the steady-state solution of the
soil is sought.If the numerical solution must approximate the solution which intro-
duces the flow immediately at all times then a much better approach is to initially
reduce the time-step and then gradually increase it as the system recovers from
the shock of the initially imposed boundary conditions.

3.4 Varying the time-step

As we indicated in the previous section,this seems(in most cases)to be the most
superior way of letting the program deal with extreme or abruptly imposed bound-
ary conditions.It is not difficult to modify the program to be able to cope with a
varying time-step length.Some method of varying the time-step must be imple-
mented so that the number of iterates achieved remains roughly constant(per
time-step)over the running of the numerical solution.Of course the time-step
length must only be varied slowly since a large variation may cause the time-
stepping procedure to approximate a wildly inaccurate value of the next time-step
and hence convergence may be threatened.However in our experimentations we
found the program to be fairly robust to time-stepping changes,and easily able
to cope with a halving of time-steps over one time-step.

We will now include a specific numerical example.We comment on a program
which changes the time-step depending on the number of iterates being required
to achieve convergence on the last time-step.The program is given a single num-
ber of iterates(or a range of iterate values)and if the program produces a number
less than this(per time-step)then it increases the time-step by a factor of 10 per
cent.If the program exceeds this number by 1 then the time-step is decreased by
a factor of 10 per cent.If the program exceeds this number by a number greater
than 1 then the time-step is halved.Hence usually the program achieves a constant
number of iterates(per time-step).

Numerical example

In the following example we introduce a specified rainfall into the soil structure
with specified initial pressure head.The depth of the soil sample is 40cm and the
space-step is also specifed below.A tolerance of 1073 c¢m was used(unless stated
otherwise).A transfer term assuming rectangular shaped blocks of size lem was
used.In all cases a‘free-flow’boundary condition was imposed at the lower end of
the soil structure.

We show the results in the form of a table 3.1 .In case (a) an initial time-step of
107? days and space-step of lcm are used,with initial pressure heads of -100cm in
both pores.We imposed‘no-flow’boundary conditions at the top.We measured the
total number of iterates to reach 0.1days.In case (b) we used the same initial con-
ditions as in case(a) but now with an initial time-step of 5x10™* days with initial
pressure heads of -50cm in both pores.In this case a flow of 0.5cm/day was also
imposed to both the matrix and fracture pores.We measured the total number of
iterates required to reach 0.05days.In case(c) we used the same conditions as in

17



iterates | total number | total number | total number | total number | total number
per time of iterates of iterates of iterates of iterates of iterates
step for case(a) for case(b) for case(c) for case(d) for case(e)
2 320 450 107 86 472
3 214 1051 112 97 338
4 206 395 109 101 323
5 202 232 117 109 322
6 207 230 117 114 321
7 224 231 123 118 346
8 213 232 139 130 358
9 230 236 140 130 388




was not this small then the iteration of the solution(at a given time-step)would
simply not converge to a solution for the next time-step in a finite number of itera-
tions.However as the numerical solution changes(with time)the program may not
need to maintain such a small time-step in order to maintain convergence(because
conditions may have become less severe or may have become less saturated)and in
some cases the time-step may safely increase by an order of more than 1000.There-






iter.(a2) | [V]z2(a) | [Y]s2(a) | iter.(ad) | [¥]gs(a) | iter.(b2) | [¥]4,2(b)
0.6 24 0.99051 | 0.999122 11 0.999862 12 0.999903
0.7 22 0.99050 | 0.998926 10 0.999851 11 0.999879
-3
-5
—4
4,2 3,2




there is no benefit to be had from introducing it.Other methods of accelerating
the iteration process (such as Newton[Conte-and-de-Boar-1980]) are also not ap-
plicable due to the effort required to form the various differentials.Newton also
requires a very good starting value for convergence to be achieved.

However in [Gerke and van Genuchten 1993] Picard iteration with Cooley under-
relaxation [Cooley 1983] is used which suggests that the iterations (of a time-step)
do oscillate.This is because if their iterates do not oscillate then the underre-
laxation scheme used would be of no benefit.It should be noted that although
we suspect the iterates did oscillate this is not explicitly stated anywhere in

[Gerke and van Genuchten 1993].

Since we suspect the iterates(of a time-step)oscillate when ‘L1’'mass lumping is
used but the iterates do not oscillate when ‘L2’mass lumping is used then we
conclude that the ‘L1” form of mass lumping is probably preferable.We conclude
this because as long as the iterates(of a time-step)oscillate then their convergence
may be accelerated by the Cooley algorithem.If the iterates do not oscillate then
their convergence can not be easily accelerated.

The same procedure of varying the parameter value € as in equation 2.25 may
be applied to the initial interate of the new time-step.However,since the solution
does not oscillate in time either it seems likely that similar results will be ob-
tained.We tried values of 2 = 0.5 and 2 =1.0 and found the value of  =1.0 to
be superior(as one would expect for a non oscillating problem).This value of
was then adopted.

3.6 Numerical difficulties

We now aim to quantify the numerical difficulty associated with solving different
types of numerical problem.

Numerical example

To achieve this aim we set the computer a set of problems(or cases)which only
vary by one aspect.To quantify the difficulty that the computer has we will pro-
duce a table similar to table 3.1 .However now only 5 iterates(per time-step)were
aimed for and no other values were taken(ie.variable time-step was used as de-
scribed in the previous section).

The larger the total number of iterates required,the harder the computer finds
the problem(in general-there are some exceptions).There are different cases to be
considered.

Case(a)is the same as case(a)from the previous section,ie.using a 40cm depth of
soil,a tolerance of 107 cm,initial(variable) time-step of 1072 days with initial
pressure heads of -100cm in both matrix and fracture pores.We were assuming a
transfer term which assumed that the average rectangular shaped matrix block
size was lem and also setting the space-step to be lem.Finally a‘no flow’condition
was assumed on the upper surface and a‘free flow’boundary condition was as-
sumed on the lower surface.We counted the number of iterations required to
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reach a time of 0.1 days.

In case(b)we used the same conditions as in case(a) except our initial(variable)
time-step was 10™* days,the space-step was 0.5cm.In case(o)a space-step of 2cm






total total total
number number number
of iterates | of iterates | of iterates
for case(j) | for case(k) | for case(l)
354 294 317

Table 3.10: Table showing the effects of varying matrix block sizes for differing
pressure heads in fracture and matrix pores

Our results also show that there is a very large increase in the amount of nu-
merical work required to find a solution with a halved space-step.In fact this
increase in work is even larger than is suggested by the table (see table 3.4 )be-
cause the amount of numerical work done(per iterate)was larger in case(b)than
case(a)because there were a greater number of spatial nodes present.

As we have suggested earlier on in the dissertation,it seems(from the results of
table 3.6 )that the program computes less saturated conditions more easily than
more saturated conditions.

The results also show us that changing the average matrix block size seems to
have a relatively small effect on the increase in the amount of numerical work
required when the pressure heads in the two media are similar( see Table 3.7
).However the effects seem to be more marked when the pressure head differences

are larger( see Table 3.10 ).

It also seems that doubling or halving the soil depth does not change the total
number of iterates required( see Table 3.8 ).However,as with Table 3.4,the amount
of numerical work required is still substantially increased.

When some rainfall is applied(0.2cm/day)there is a significant increase in the
amount of numerical work needed to obtain a numerical solution( see Table 3.9
). This is probably as a result of the‘shock’of immediately introducing the bound-
ary conditions and not so much as a result of the numerical solution becoming
more saturated(as it does not have time to become significantly saturated).In fact
applying a slightly lesser amount of rainfall(eg.0.1cm/day as case(m)shows)can
actually need less numerical work than case(a) required, which had no rainfall
applied.We think the reason for this is because ‘no-flow’boundary conditions at
the top of the soil structure actually cause more of a ‘shock’ to the program than
just letting a small amount of water flow into the surface to replace the water
‘free-flowing’ out of the soil at the lower end.

3.7 Evaluating the functions at mid-points

As is mentioned earlier in this dissertation(in Chapter 2),the way in which the
value of the functions (ie the hydraulic conductivity of the specific soil water ca-
pacity) are taken at the mid-point of two nodes is to evaluate the functions at
the pressure head values of the two adjacent nodes and then take the arithmetic
average.

However another way of attacking the problem is to average the pressure head val-
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ues at the two adjacent nodes the function’s value is calulated(ie.evaluate
the functions’ value at the averaged pressure head).In so doing one will find that
there is a significant reduction of the number of function calls required.Since
the function evaluations are somewhat complicated and therefore time consum-
ing,there is a significant advantage to be had in averaging the pressure head values
before calling the function.

We set a tolerance of 1072 days, initial pressure heads of -100cm in both pores,
initial(variable) time-step of 1072 days, space-step to be lcm, depth of soil to be
40cm, average rectangular matrix block size to be lem, the number of iterates
aimed for(with variable time-step)was 5, and finally we take the results at time
= 0.2 days.

Using the averaging the function calls the computer took 34.9 seconds(in

time)and used 359 iterates.In using the averaging the function calls
the computer took 19.7 second and 358 iterates.(Please note that we are con-
vinced that the differences in time that we observed are not as the result
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For the purpose of simplicity we will assume that the pressure head values may
take either Fig.3.2 case two or Fig.3.2 case three(with the y-axis being the value
of the pressure-head and the x-axis being the depth of the soil structure).This is
a large assumption which is motivated by the form of the boundary conditions at
the lower surface of the soil(these two types of pressure head distributions can be
seen in the numerical results of figures 4.6 , 4.7 , 4.9 and 4.10).This assumption
will be especially wrong when oscillatory boundary conditions are to be applied
to the soil.

We will now explore the accuracy of the two methods of evaluation of the value
of the K function at a mid-node in space.Firstly we will assume that the pressure
head distribution has the form of Fig.3.2 case two.

Here the average value of the pressure heads at the two nodes(d and e in case 2 of
figure 3.2)will be 0.5.By observing the assumed distribution for K(case one) it is
clear that h=0.5 returns a value of about 0.05.For h=1(the value of the pressure
head at node d)we find that K returns a value of 1.0 and for h=0(the value of
the pressure head at node e)we find that K returns a value of 0.0.Therefore by
averaging after we obtain a value of 0.5 for the value of the function K at the
midpoint of the two nodes.

In fact the value of the pressure head(case two) at depth=0.5(ie.the midpoint of
the two nodes,d and e,in space)is 0.05,which returns a value of K(case one) being
approximately equal to 0.0.S0 in this (ie.case two) averaging before is the more
accurate of the two methods and it will also require less computational time to
evaluate the solution.

However a similar argument concludes that if the pressure head distribution has
the distribution as given in case three then the averaging after scheme is the more
accurate(or the closer to the correct value).

Therefore we conclude that,for these two simple examples,neither of the two meth-
ods is superior on a general pressure head distribution.This implies that it is better
to use the averaging before method since it does not lose out on accuracy and
produces a result in about half the time.

As stated earlier,we have used a large number of simplifying assumptions. We will
comment on the inadequacies of our previous argument as follows.

Firstly we have not discussed at all how the pressure head values may vary with
time.This is significant because a large amount of timelike averaging between
nodes is also necessary.However we hope the distribution may be similar to that
of case two or case three,but have no results to prove this.

Secondly the ‘¢’ (ie.the specific soil water capacity) functions are also averaged
between time nodes and again we have no results(as yet)to give us any indication
as to the distribution of this function(in time).However (for non-oscillatory solu-
tions) perhaps we should hope that the distribution is quite close to case two or
case three.

Finally(as we have mentioned before)in certain circumstances the spatial distri-
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bution of the pressure head values may not be similar to either case two or case
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In this numerical example we will show how the model reacts to an initially wet
soil(see figure 4 5).This soil will slowly dry because we have a‘no flow’boundary
condition at the top of the soil structure and a ‘free flow’boundary condition at
the bottom of the soil structure.The initial conditions were of a pressure head of
-10cm in both fracture and matrix pores.The length of the soil medium was 40cm,
space-steps of lcm were used and the average rectangular matrix block size was
set to be 1.0cm.

By observation of figure 4 3 it is clear that just because the pressure heads are
identical(initially)in the matrix and fracture pores does not necessarily mean that
their water contents are the same.Nevertheless it is still clear that both media
would initially be said to be‘wet’as defined by any sensible definition(in fact a
more precise definition of ‘wetness’ may be given by equations 111 and 112
).Further,since both the water content functions in the matrix and fracture are
monotonic,it is a safe to assume that as the pressure head decreases in one medium
then the water content of that medium also decreases.
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Figure 4.6: Pressure Heads at time=0.01 days



set initially. This may be accounted for by the explanation that since the water is
flowing(relatively)slowly in the matrix pores,it has had not had time to make the
lower end of the soil structure significantly dryer at this short time(0.01days)after
the initial conditions were imposed.

At this point we should perhaps mention the transfer term.This regulates the

Fracture - Matrix

-20.04 -20.04
-22.5 -22.54
-

-27.5 -27.5 /

h(cm)
h(cm)

-25.0 /

1/ ]
-30.0 / -30.0

T T T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40

depth(cm) depth(cm)



J/J/ 1cm/day

Pressure heads initially
40cm
. at -70cm

increasing in both pores

Free Flow




-52.5

-55.0

-62.5

-70.0

Fracture

depth(cm)

-55.0

-62.5

Matrix

-70.0

depth(cm)



-52.5
-55.0
-57.5

-60.0—

h(cm)

-62.5
-65.0—

-67.54

-70.0

Fracture

0

10

20 30

depth(cm)

h(cm)

-52.5t
-55.05
-57,55 ‘
—60.05 \

-62.5- |

-70.0 T

-65.0 \

-67.54

Matrix

0

20 30 40

depth(cm)

Figure 4.10: Pressure Heads at time=0.04 days with average matrix size=1.0cm

difficulty in modeling the interaction between the two pore systems which is re-

sulting here and which (of course) will be dependent on the average matrix block
size as figures 4 9 and 4 10 show.

No oscillation was observed in time,space or in the consecutive iterates of a time-

step.

The gradual introduction of rainfall was found to have a beneficial effect on the

convergence of the numerical solution(as opposed to its immediate introduction)

A variable time-step was found to be a necessity for producing our numerical
solution in an efficient number of time-steps.



We also conclude that it is probably better to calculate nonlinear terms by aver-
aging the values of the pressure heads to adjacent nodes(in time or space)before
calulating the corresponding hydraulic conductivity or specific soil water capac-
ity.

Finally(as the graphical examples show)we conclude that the dual-porosity model
produces plausible results for certain initial and boundary conditions.
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Description.

average distance from centre of matrix block to its bounday.
specific soil water capacity of matrix pores.

specific soil water capacity of fracture pores.

average pressure head of matrix and fracture pores.
pressure head of fracture pores.

pressure head of matrix pores.

hydraulic conductivity of fracture/matrix interface.
hydraulic conductivity of fracture pores.

hydraulic conductivity of matrix pores.

hydraulic conductivity at saturation of fracture pores.
hydraulic conductivity at saturation of matrix pores.

experimental constant for fracture pores.

experimental constant

flux of water in fracture pores

flux of water in matrix pores.

effective saturation of fracture pores

effective saturation of matrix pores

temporal variable(starting with t=0 initially)

volume of fractual pores as a proportion of total volume

volume of matrix pores as a proportion of total volume

spatial variable(measured downwards with z=0 being ground-level).

constant.

experimental constant depending on size and structure of matrix pores.
empirical constant depending on the structure of the soil.

empirical constant.

term representing water transfer from fracture to matrix pores
time-step.

time stepped by the kth time step.

spatial-step.

parameter in the § method of time stepping.

soil water retention function for fracture pores.

soil water retention function for matrix pores.

residual soil water retention constant for fracture pores.

residual soil water retention constant for matrix pores.

saturated soil water retention constant for fracture pores.

saturated soil water retention constant for matrix pores.

maximum absolute difference in pressure heads of consecutative iterates.
specified ratio of A terms as given in equation 3.4.

relaxation parameter in the iteration of a time step.

relaxation parameter in the time stepping approximation.



