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Abstract

Standard iteration techniques for solving linear systems are discussed. We
then analyse what effect the eigenvalues and the eigenvectors of the iteration
matrix have on the convergence of the iteration process. Finally, we propose an
application of Control Theory to determine the eigenvalues and the eigenvectors

of the iteration matrix in order to ensure rapid convergence.
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Ch pter 1

Introduction

In this dissertation we study numerical methods for solving linear systems of the

form :

Ax=b (1.1)

where A is a given real n X n matrix and b is a given real column vector of order

For large sparse systems iterative techniques are very efficient in terms of com-
puter storage and time requirements. Systems of this type arise in the numerical

solution of boundary-value problems and partial-differential equations.

We discuss standard iteration procedures and analyse the effect on convergence
of assigning :

a) eigenvalues

b) eigenvectors
to the iteration matrix.

The analysis, then enables us to use an application of Control Theory to assign






In this chapter we are going to study numerical methods for solving linear systems

of the form :

Ax=b (2.1)

where A is a given real n X n matrix and b is a given real column vector of order
n. The solution vector exists and is unique if and only if A is nonsingular. The
solution is given by :

= AT (2.2)

Equation (2.1) can be solved using such as L-U decomposition
or Gaussian elimination. Methods of this type require A to be factorized and are
impractical if A is large and sparse. are an alternative to
direct methods and are ideally suited to inverting large sparse matrices. These

methods involve an initial approximation © to the solution , and generate a






This defines the Jacobi iteration for the case when n = 3. For general n we have

i—1 n
e = 0= > a0l = Y ageMjan for i=1.2,n. (2:3)
7=1

j=i+1

Alternatively, we can obtain the matrix iteration form by splitting A into its
diagonal and off-diagonal parts. If we let  be the diagonal of A, and —1 and
—U be the strictly lower and upper triangular parts of A, then A= — L —U.

Equation (2.1) now becomes :
( —L-U)x=b

x=(L+U)x+x

x= "YL+U)x+ ~'b

Therefore, the matrix form of the iteration is :
x® = Y4 0)xFEY 4 b k=12, (2.4)

Generally, Equation (2.3) is used in computation.

Example 1: Solve the following linear system:

10 -1 2 0 T 6

-1 11 -1 3 T 25
2 -1 10 -1 T3 . —11
0o 3 -1 38 T4 15



A simple program was written in Fortran to carry out the Jacobi iteration given

by Equation (2.3), with the initial vector

in Table 1.

0

= . The results obtained are shown

k wgk) x(Qk) wgk) xff)

0 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
1 {0.60000000 | 2.27272727 | —1.10000000 | 1.87500000
2 | 1.04727273 | 1.71590909 | —0.80522727 | 0.88522727
3 | 0.93263636 | 2.05330579 | —1.04934091 | 1.13088068
4 | 1.01519876 | 1.95369576 | —0.96810863 | 0.97384272
5 | 0.98899130 | 2.01141473 | —1.01028590 | 1.02135051
6 | 1.00319865 | 1.99224126 | —0.99452174 | 0.99443374
7 10.99812847 | 2.00230688 | —1.00197223 | 1.00359431
8 | 1.00062513 | 1.99867030 | —0.99903558 | 0.99888839
9 10.99967415 | 2.00044767 | —1.00036916 | 1.00061919
10 | 1.00011860 | 1.99976795 | —0.99982814 | 0.99978598

The decision to stop after ten iterations is based on

(10)

(9)

o0

The exact solution is, in fact,

(10)

= (12

< 7

1074
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7=1+1

(k=1)

(k+1)
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be overcome by . The Preconditioned Conjugate Gradient

method uses a preconditioner  to accelerate convergence [Golub and Van Loan].

Input 05 0- Set 0= 0 -1 = 0-
Input , the preconditioner, choose = =  for Jacobi preconditioning.
For =012 until convergence, do
k= k
T T
k— k k k-1 k-1

T T

k— r k L k

1= kt k&

k1 = k k EOk

Use Jacobi-Preconditioned Conjugate Gradient method to solve

the following linear system :

10 12 0 1 6
1 11 1 3 2 25
2 1 10 1 3 11



Table 3: Preconditioned C.G. method

0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.46461746 | 1.75991463 | —0.85179867 | 1.45192957
1.04214099 | 1.94075677 | —0.91679619 | 1.12828630
1.00488813 | 1.98938063 | —1.01181525 | 1.00690572
1.00000000 | 2.00000000 | —1.00000000 | 1.0000000

The above method converges after only four iterations and attains the precise
solution to machine accuracy.

The Preconditioned Conjugate Gradient Method is much more efficient than ei-
ther of the two methods introduced before it, yet I have discussed the former two
in more detail. This is because the those methods have a very similar form to
the control problem we shall encounter in Chapter 3. The following two theorems

give the conditions for convergence of the three methods,

Theorem :

It A is strictly diagonally dominant, then both the Jacobi and the Gauss-Siedel
methods converge for any choice of x°.

Theorem : Covergence of the Preconditioned Conjugate Gradient Method is
guaranteed if A is symmetric, positive definite and M is also positive definite.
A symmetric matrix A is called positive definite if x? Ax > 0 for every x # 0.

An n x n matrix A is said to be strictly diagonally dominant if :
jaii| > > _lay| (G #1)
7=1

12



holds for each : = 1,2, ..., n.

The proof of these theorems are omitted but can be found in Young (1971).

2.4 General Iteration Method

It we multiply the equation Ax = b by a matrix G, then GAx = Gb
and we may write x=(I—-GA)x+Gb

So a general iteration process is :

X"t = (I — GA)X"+ Gb (2.7)
where G is to be chosen.
It can easily be seen that :
G'= ! gives Jacobi Iteration method

G=( — L)™' gives Gauss-Siedel Iteration method
The convergence of this method is dependent on the eigenvalues of (I — G A).
Theorem :

The iterative method, Equation (2.7), is convergent if and only if :
p(I—-—GA) < 1
The proof of this theorem is omitted, but can be found in e.g. Young (1971).

Rates of Convergence : (Young (1971)

The average rate of convergence is defined by

RolI = GA) = —(D)log ||(T = G|

13



The is defined by
R(I GA)= lim R.(I GA)= log p(I GA)

We shall refer to R, (I GA) as the , and see that, eventually,
it tends to the asymptotic rate.

The convergence rate of the iteration process depends on the spectrum (i.e.
the eigenvalues) of (I  G'A). Our aim is to choose (& such that the eigenvalues
of (I (GA) are near the origin, so that we have a better iteration method than
the three presented above.

Since the matrices and  have full rank, there are well known theorems in
Control Theory, which state that the pair () is always
. This means that there always exists a matrix , which assigns ( )

any specified eigenvalues and eigenvectors, i.e. we can find a matrix  such that
( )= T'A (28)

where A = (1 2 ) are the eigenvalues to be assigned, and is any
nonsingular matrix representing the eigenvectors.

In Chapter 3, we will discuss this result in more detail and present an algorithm
for finding . But before that we are going to look at how  affects convergence.
We have already stated that the rate of covergence tends to the asymptotic rate
which is determined by ( ). An efficient iteration method will achieve
rapid early convergence and so we are going to study how | which determines the
eigenstructure of ( ), affects covergence in the early stages of the iteration
process.

In order to see what effect the range of eigenvalues, or the condition number of

14



the eigenvector matrix has on convergence, we re-arrange Equation (2.8) to get :

= A )T (29)

Note that the calculation of  requires inversion of , and if we are able to per-
form that operation accurately then the solution to our main problem would be
easily found from Equation (2.2). But, in our inverse problem, Equation (2.9)
gives us an expression to find , which we can then use in our General Iteration

method, given by Equation (2.7), to examine convergence.

First of all we study how the spectrum of ( ) affects convergence. Since we
are able to assign any eigenvectors to the matrix, in this case we choose

so that the condition number of | () = 1. Equation (2.9) now becomes :

—( (2 10)

This equation allows us to find , for given eigenvalues. A program has been
written in MATLAB, which possesses internal functions to perform matrix mul-
tiplications and inversions, to calculate  and then carry out the general iteration

method [Equation (3.7)].



A= (01 00500501)

k | convergence rate
1 2.9957
2 2.3026
3 2.3026
4 2.3026
Notice that (0 1) = 23026, so after just two iterations the asymptotic

rate, to machine accuracy, is reached. Naturally, we would expect fast conver-



to the following linear system :

10

10

11

24






—1 <p(I—=GA) < 1. If any of the eigenvalues have modulus greater than one
then, of course, the iteration process does not converge, and if we choose one of
the eigenvalues to be equal to one then it converges to an incorrect solution. This
is because A; = 1, for some ¢, implies that (/ — A) has a zero row and column and
therefore one of the solutions x; remains unchanged at each iteration.

Case la) shows that if all the eigenvalues are close to zero then the initial and
asymptotic rates of convergence are high and as such the iteration process termi-
nates very quickly.

In cases b)—d) three of the eigenvalues are kept constant with the other increasing
in magnitude resulting in a slight decrease in the convergence rates and a small
increase in the total number of iterations. Cases e)—h) have the eigenvalue with
the largest modulus constant while the other three are varied. These variations
do not affect the convergence rates or the number of iterations.

Cases j)—o) test whether the distribution of the eigenvalues affects convergence.
In each case the smallest and largest eigenvalues are kept constant with the other
two spaced out in between, non-uniformly. This results in a small decrease in the
initial rate, but the asymptotic rate and the number of iterations are unchanged.
Cases p)—t) show that if all the eigenvalues are close to one, then the initial and
asymptotic rates are lower, but where at least half the eigenvalues are closer to
zero than one, the asymptotic rate is attained after two iterations like all previous
cases.

Repeated eigenvalues [i) and o)], do not slow convergence themselves, it is only
their magnitude that is the determinant factor.

In almost all cases, we attain the asymptotic rate in two iterations, so we do have
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rapid early convergence, with the actual rate being greater for a set of eigenvalues
with lower magnitude.

Case 2

Now we are going to see how the condition number of v(X), of X, affects con-
vergence. Since we are able to find a G to assign any eigenvectors to the matrix
(I —GA), we can choose X to be any nonsingular 4 x 4 matrix. By keeping A to
be constant we can see what effect X, i.e. v(X), has.

Let A = diag(—0.5,—0.1,0.3,0.7). Choose nonsingular matrices X which have
different condition numbers, calculate GG from Equation (2.9), and apply the it-

eration process.

1 00 0 100 0 1000 1000
0100 010 O 0100 0100
0010 001 0 0010 0010

0 0 01 0 0 0 1.1 00 0 2 01 01
a)v(X)=1 b) v(X)=1.1 c)v(X) =20 d)v(X)=14
10 0 0 1000 2000 10 00
0 1 0 O 1 100 0 3 00 1100
0 0 1 O 1110 00 1 0 11 20
0 1.5 0 1.5 11 11 0 2 1 1 21 1 2
e)v(X)=5 f)v(X)=28 g) v(X) =10.67 h) v(X) =12

20



e Fpg,P36JjFa,PK5NOJ5E

2 000 1 % % 411 1 00 0
0100 % % 411 % 2100
2010 % 411 % é 1 2 10
10 3 2 i % é % 21 2 1
i) ()=1950 j2N-c TelJ65-3c¢
atial rate of | asymaptotic rate | No. of iter. for | total no. of
Choice of X convergence | of convergence asywaap. rate iterations
a)v(X)=1.00 1.04982 0.35667 2 17
bv(X)=1.10 1.04982 0.35667 2 17
c)v(X) = 2.00 1.04982 0.35667 2 17
d)v(X)=4.00 1.04982 0.35667 2 17
er(X)=5.00 1.04982 0.35667 7 20
fHiv(X)=28.00 1.04982 0.35667 8 20
g)v(X)=10.67 0.75463 0.35667 14 20
h)r(X)=12.00 0.62549 * ok ok * 19
Hr(X) =19.50 0.50931 * ok ok * 19
Jiv(X) = 50.92 0.16252 * K ok * 20
k)yv(X) =172.00 0.00157 sk ok ok * 20




rate. Previously, we began with high convergence rates which decreased until

reaching the asymptotic rate and then assumed that constant value. When the

condition number of X is significantly high, the convergence rates continue to

fall even below the asymptotic rate without achieving a constant, uniform value.

The * notation represents a number significantly lower than the asymptotic value.

The iteration does converge, but is not as fast.

It we now assign eigenvalues of lower magnitude and follow the method above,

with the same matrices X, then we get a similar result. Let A = diag(—0.10, —0.05,0.05,0.1).

Table 7

atial rate of | asymaptotic rate | No. of iter. for | total no. of
Choice of X convergence | of convergence asywaap. rate iterations
a)v(X)=1.00 2.99573 2.30259 2 4
bv(z) =1.10 2.99573 2.30259 2 4
c)v(X) = 2.00 2.99573 2.30259 2 4
d)v(X)=4.00 2.72747 * K ok * 5
er(X)=5.00 2.72747 * ok ok * 5
fHiv(X)=28.00 2.72747 * ok ok * 5
g)v(X)=10.67 2.07944 * ok ok * 5
h)r(X)=12.00 2.07944 * ok ok * 5
Hr(X) =19.50 1.89712 * ok ok * 5
Jiv(X) =50.92 1.81708 sk ok ok * 5
k)yv(X) =172.00 1.79263 sk ok ok * 5

Again we find that for low condition numbers convergence is unaffected, but if

22



the condition number of X is high, then even a set of eigenvalues close to zero do
not produce rapid convergence, the * represents a figure significantly lower than
the asymptotic rate.

In Case 1, we concluded that the majority of the eigenvalues needed to be close
to zero for rapid early covergence. Case 2 demonstrates that, while the above
condition may be necessary, it is not sufficient. Therefore, we require both eigen-
values of low magnitude and X, the matrix of the corresponding eigenvectors, to
be well conditioned, too.

So in Chapter 3, when we apply control techniques to assign eigenvalues and some
or all of the eigenvectors, we must aim to assign eigenvalues of as low magnitude

as possible which yield a matrix X that is reasonably well conditioned.
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In this chapter we discuss , l.e. a way of assigning
eigenvalues and eigenvectors by state feedback in the linear time invariant sys-
tem. This procedure is generally used in Control Theory to stabilise an unstable
system. We are going to apply this procedure to try to ensure rapid convergence
of the iteration process. We shall do this by using the pole assignment technique
to control the eigenstructure, i.e. the eigenvalues and the eigenvectors, of the
iteration matrix so that it is convergent.

The state feedback pole assignment problem in control system design is essen-

tially an inverse eigenvalue problem. A desirable property of any system design is



We now consider the time invariant, linear, multivariable system :

—= 4 (31)

where , are and dimensional vectors, respectively, and ,  are real,

constant matrices. Matrix is assumed to have full rank. The behaviour of

system (3.1) is determined by its , 1.e. the eigenvalues of . In order to
modify the poles and make it stable, we choose a state-feedback control, ., given
by :

= + (32)

where the matrix , the or , 18 chosen such that the

modified dynamic system :



Theorem :

A solution F' to Problem 1 exists for every set A of self conjugate complex num-
bers if and only if the pair (A, B) is completely controllable, that is , if and
only if:

sTA=pus" and s"B=0 = s’ =o0.

If the pair (A, B) is not controllable, i.e. there exists s # 0 such that

s’ A = us” and s B = 0, then
sT(A+ BF)=pus" for all F.

Then p is an eigenvalue of A + BF' for all F' and must belong to any set A of
poles to be assigned. The pole p is said to be uncontrollable, and it cannot be
modified by any feedback control.

In the single-input case (m = 1), the solution to Problem 1, when it exists, is
unique. For proof see Mayne and Murdock (1970). If I < m < n, then various
solutions exist. Finally, if m = n, then a solution always exists, since rank(B) =n
implies that the left null space of B contains only the trivial solution and the pair
(A, B) is always completely controllable; therefore any feedback matrix can
always be achieved by feedback, i.e. in this case we can assign the matrix (A+BF)
to have any desired eigenstructure.

The main aim in Control Theory is to develop methods for finding /', so that the
system is i.e. insensitive to pertubations. Let ; and ;, j =1,2,...,n,

be the right and left eigenvectors of the closed loop system matrix M = A+ BF',
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corresponding to eigenvalue A; :

Mx;=%;, yiM=\y;] (3.4)

If M is non-defective, then M is diagonalizable and it can be shown [Wilkinson
(1965)] that the sensitivity of the eigenvalue A; to pertubations in A,B and F

depends upon the magnitude of the condition number ¢;, where

_ yilly M1l

¢j=1/s; = ‘yij‘ > 1 (3.5)

Wilkinson (1965) gives a bound on the sensitivities of the eigenvalues,

maxe; < v(X) = ||X]|, ||x7, (3.6)

J

where v(X) is the condition number of X. Note that the condition numbers
take a minimum value ¢; = 1, for all y = 1,2,...,n, if and only if M is a normal
matrix, that is M*M = MM*. In this case the eigenvectors of M may be
chosen to be an orthonormal basis, and therefore X is perfectly conditioned with
v(X)=1.

Problem 1 can now be re-written to allow for robustness :

Problem 1’

Given (A, B) and A (as in Problem 1), find a real matrix F and non-singular
matrix X satisfying

(A4 BF)X = XA (3.7)

where A = diag(Ay, A, ..., A,) such that some measure v of the conditioning, or
robustness, of the eigenproblem is optimized.
Note that, in the case where m = 1, if I exists then X is uniquely determined

27



(up to scaling), and therefore the condition numbers, ;, cannot be controlled.

When = , we can choose to be orthogonal, (e.g. ), and hence
; =1 . The more interesting cases in Control Theory, which attract more
attention, are for the general multi-input system where 1 . In these

cases, it is possible to control the sensitivities of assigned poles to a restricted

extent by an appropriate choice of eigenvectors.



and pre-multiplication by 7T then gives the two equations

from which (3.8 ) and (3.10) follow directly, since  is invertible from the condi-

tion that  is nonsingular.

=~






xj € 5; and

X = [x1,X2, ..., X521, Xj41, -, Xn)

At each sweep of the iteration, the vector x; is replaced by a new vector x5 € S,
selected to improve the conditioning of X. A complete sweep has been made
when j has run from 1 to n. The iteration is then continued with the new matrix
X until it becomes well conditioned in some sense (i.e. the condition number of

X becomes unchanged for some tolerance).

Step 3:

Find the matrix M = A 4+ BF by solving M X = XA and compute F' explicitly
from F' = Z7'UL(M — A).

The matrix M = XAX~!is constructed by solving the following equation X7 M7 =
(XA)T for M7 using direct LU decomposition or Gaussian Elimination methods.
A program has been written in MATLAB to carry out the above procedures and

assign required eingenvalues to the matrix (A + BF').

3.3 Applications

Before we begin to apply the pole assignment procedure to our problem, there
are two important issues which need attention.

The first thing to note is that the numerical algorithm, described above, is used
to determine the eigenvalues of the matrix (A + BF'), for given matrices A and
B. But our problem requires us to assign eigenvalues to the iteration matrix

(I — GA), for given matrices [ and A. This problem is in fact, in the form of :
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Problem 2

Given real matrices (A, () of orders (n x n,m x n) respectively, and a set of n
complex numbers , A=(A1, Ay, ..., A,), closed under complex conjugation, find a
real n X m matrix G such that the eigenvalues of A — GC are A;,7 =1,2,...n.
Problem 2 is in fact the dual of Problem 1. Whereas Problem 1 was a con-
troller problem, this is its dual known as an observer problem. This makes very
few changes to the numerical algorithm, presented above. Equation (3.7) now

becomes :

(A—GO)X = XA (3.14)

where G is to be found. A detailed algorithm for eigenvalue assignment to ob-
server systems can be found in the thesis by S. Stringer(1993). But for our
problem we can solve the dual problem and obtain the required matrix . We

need to substitute :

A= AT B=c0C"T and F=-G7

into the original (cotroller) system and solve it using the numerical algorithm.
We can then obtain G from it. So to assign eigenvalues to (I — GA), we put

A=1"=1 B = A" and calculate F'. Hence :

G=—FT

The other note of importance is that due to the formulation of our iteration pro-
cess, the matrices A and B are both n x n matrices. This means that m = n and
therefore, as discussed in Section (3.1) we can assign any eigenvalues to (A+ BF')
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and choose X such that v(X) = 1. Because of this, this case does not attract

much attention and therefore it is difficult to find test cases for it.

Example 1: [Cavin and Bhattacharyya(1983)]

n=1, m=2, A=(-1,-2)
00 1
A - B =
01 1
This gives
—0.635 —0.591
X =
—0.317 —0.394
and

F = [2.00 — 6.00]

These results obtained by pole assignment agree with Cavin and Bhattacharyya,
which they obtained using an application of Sylvester’s equation, since m = 1

and therefore F' is unique. v(X) = 15.98 and cannot be controlled.

Example 2: [Barnett(1975)]

0 1 0 10
A= 0 o0 1 B= o1
6 —11 6 11

33



This gives
16053 30941 14887

20941 42907 21966

This result is obtained after two iterations and the condition number, ( ) =781

is the best that can be achieved since the problem is not completely controllable.

10 1 2 0 6
N 111 1 3 25
2 1 10 1 11
0 3 18 15
We wish to assign A = (01 00500501) to the matrix ( N) and

then apply the iteration process with the computed

If we substitute = T = and = 7T we can find easily from Equation
(3.10), viz.,
TICA )
by taking =
Having obtained , is found from = T,

11557809 01 10263692 02 22758621 02 66937120

03



This value of G will assign the required eigenvalues to (I — G/l) If we now use

this G in our iteration process :
x" = (I — GA)x" + Gb

then the method converges to the exact solution in four iterations. From Exam-
ples 1 — 3 of Chapter 2 we realised that Jacobi converged in 10 iterations, Gauss-
Siedel in 5 and the Preconditioned Conjugate Gradient method in 4 iterations.
So for this particular example, we have improved on Jacobi and Gauss-Siedel.

Since we can assign any eigenvalues to (I — (GA) and still achieve v(X) = 1,
we can assign eigenvalues of a smaller magnitude than above and see what the

outcome is. If we assign the following eigenvalues :
A = diag(—0.001,—0.0005,0.0005, 0.001)

then we obtain :

and the iteration process with this given GG converges after just three iterations.
If we now assign A = diag(—0.00001, —0.000005,0.000005,0.00001). Then the
computed matrix G enables our iteration to find the exact solution in just two

iterations. The values at each iteration are shown below :

35

1.0507204e — 01 9.3307221e — 03 —2.0689862¢ — 02 —6.0852535¢ — 03

9.3306755e — 03 1.0250220e — 01  4.5977241e — 03 —3.7863611e — 02

—2.0689552¢ — 02 4.5976782¢ — 03 1.0574660e — 01 1.1494195¢ — 02

—6.0851318¢ — 03 —3.7863043e¢ — 02 1.1494138¢ — 02 1.4063416e — 01



Table 8:

(%) (%)

(%)

(%)

k z3 T Ts Ty

0 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
110.99999997 | 1.99999999 | —1.00000004 | 0.9999999
2 | 1.00000000 | 2.00000000 | —1.00000000 | 1.0000000

It can easily be seen that this value of (¢ ensures very rapid convergence. The
values after just one iteration are very close to the exact solution itself. So for
this linear system, the pole assignment procedure is much more efficient than the
standard iteration methods discussed in Chapter 2. We cannot improve on this
by proceeding with this idea, and assigning eigenvalues of even smaller magni-

tude, although the the values after one iteration are very, very close to the exact

solution.
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We now we consider another example, where A is a sparse, unsymmetric

10 x 10 matrix.

Example 4:
1 0 0 0 1 0 0 —-11 0 1
o 1 0 -1 1 0 0 0 0 1 10
-1 0 1 0 4 0 0 —-10 0 0
o 3 0 1 0 0 -1 0 2 0 —11
. o -10 0 1 0 5 0 0 =2 24
A= b=
-1 0 0 2 o0 1 0 1 1 0 3
o 1 0 0 -1 0 1 =31 0 -8
o o o0 1 0o 0 -1 1 1 0 2
o 3 0 0 0 -2 0 1 1 0 9
1 0o 0 4 0 0 -2 0 1 1 2

If we choose to assign A = diag(—0.1,—0.08, —0.06, —0.04, —0.02, 0.00, 0.02, 0.04, 0.06, 0.08),
to ( A 4+ BF) then the resulting matix (& ensures convergence in 4 iterations. If
we continue to assign eigenvalues of smaller magnitude then, as in the previous

case, we can attain the exact solution in just two iterations.
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We have studied three standard iteration methods for solving the linear system
= , and found, unsurprisingly, that the Preconditioned Conjugate Gradient

Method was most eflicient.

e ) (1)

By analysing the matrix form of the iteration process given by Equation (4.1),
we showed that convergence was not only dependent on the eigenvalues of the
matrix ( ), but also on the corresponding eigenvectors. Therefore an efficient

iteration process must combine eigenvalues of low magnitude with eigenvectors



demonstrated to have very rapid convergence, even in the case of a fairly sparse
matrix.

The procedure can be used to solve large linear systems, very speedily. The
only conditions necessary for the application of this method are that :

1) the matrix A must be of full rank, and

2) the pair (I, A) must be completely controllable.

The pair (I, A) is completely controllable if and only if:

s’ =us” and s"A=0 <= s'=o0.

If the problem is not completely controllable then we may still assign the eigenval-
ues but the choice of corresponding eigenvectors will be restricted, and therefore
X may not be well-conditioned. Nevertheless we can still apply the numerical
algorithm. Step 2 of the algorithm selects the eigenvectors from the required sub-
space, in order to minimise v(.X) — see Example 2 in Chapter 3. This procedure

may help improve the rate of convergence, depending on the condition number

of X.
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