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Notation

Given a �eld k, we use the notationk for a (�xed) algebraic closure ofk, unless stated
otherwise. Ifk is a global �eld andL=k is a Galois extension, we use the following notation:

A �
k the idèle group ofk

Ok the ring of integers ofk

 k the set of all places ofk
L v the completion ofL at some choice of place abovev 2 
 k

Dv the Galois group ofL v=kv

Given a �eld K , a variety X over K and an algebraicK -torus T, we use the following
notation:

Gm;K the multiplicative group Spec(K [t; t � 1]) of K (when K is clear from the
context we omit it from the subscript)

X L the base changeX � K L of X to a �eld extension L=K
X the base change ofX to an algebraic closure ofK
Pic X the Picard group ofX
RK=k X the Weil restriction of X to a sub�eld k of K such that [K : k] is �nite
bT the character groupHom(T ;Gm;K ) of T

Let G be a �nite group. The label G̀-module' shall always mean a freeZ-module of
�nite rank equipped with an action of G. Given a subgroupH of G, a G-module A, an
integer q, a non-negative integeri and a prime numberp, we use the following notation:

jGj the order of G
exp(G) the exponent ofG
Z(G) the center ofG
[H; G] the subgroup ofG generated by all commutators[h; g] with h 2 H; g 2 G
� G(H ) the subgroup ofH generated by all commutators[h; g] with g 2 G and

h 2 H \ gHg� 1

Gab the abelianizationG=[G; G] of G
G� the Q=Z-dual Hom(G; Q=Z) of G
Gp a Sylowp-subgroup ofG
Hi (G; A) the i -th homology group
Hi (G; A) the i -th cohomology group

v



Ĥ
q
(G; A) the q-th Tate cohomology group1

X q
! (G; A) the kernel of the restriction mapĤ

q
(G; A) Res��!

Q
g2 G Ĥ

q
(hgi ; A).

We also use the notationG0 for the derived subgroup[G; G] of G. If H is a normal
subgroup ofG, we write H E G. For x; y 2 G we adopt the convention[x; y] = x � 1y� 1xy
and xy = y� 1xy. If G is abelian andd 2 Z> 0, we use the following notation:

G[d] the d-torsion of G
G(d) the d-primary part of G.

We often use =̀ ' to indicate a canonical isomorphism between two objects.

1SinceĤ
q
(G; A) = H q(G; A) for q � 1, we will omit the hat in this case.

vi



�If you're walking down the right path and you're
willing to keep walking, eventually you'll make
progress.�

- Barack Obama
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Chapter 1

Background

In this chapter we review several background concepts and results which will be used
throughout the thesis.

1.1 Group cohomology

Given a homomorphismf : G ! H of groups and anH -moduleA, we can regardA as an
G-module via f and there are induced homomorphisms of cohomology groupsH



Lemma 1.1.2. Let K � H � G be a tower of groups with[G : K ] �nite. Then

ResGK = ResH
K � ResGH and CorGK = Cor G

H � CorHK :

Proof. See [15, III, Proposition 9.5(i)].

Lemma 1.1.3. Let G be a �nite group and H a subgroup ofG. Let A be a G-module.
Then

CorGH � ResGH : Ĥ
i
(G; A) ! Ĥ

i
(G; A)

equals the multiplication by1082 Td3Td [(i)]TJ 8213.759 0 Td [([)]TJ/F43 11.9552 Tf 3.252 0 Td [(G)]TJ/F30 11.9552 Tf 12.554 0 Td [(:)]TJ/F43 11.9552 Tf33.759 0 Td [(H)]TJ/F30 11.9552 T6233.759 0 Td [(])]TJ/F79 11.9552 Tf 7.435 0 map1.1.3.

Proof. See [15, III, Proposition 9.55(i)].



Lemma 1.1.7 (Shapiro's lemma). Let H be a subgroup of a groupG. Let A be an H -
module. Then

Hi (G; IndG
H (A)) = H i (H; A )

for each i � 0.

Proof. See [18, IV, Ÿ4, Proposition 2].

Lemma 1.1.8. Let H be a subgroup of a groupG. Let A be aG-module and leti be a
positive integer. Letf : Hi (G; A) ! Hi (G; IndG

H (A)) be the map on cohomology induced by
the homomorphismA ! IndG

H (A) sendinga 2 A to the function g 7! ga of IndG
H (A). Let

sh be the canonical isomorphism given in Shapiro's lemma 1.1.7. Then

sh� f = ResG
H : Hi (G; A) ! Hi (H; A ):

Proof. See [95, Ex. 3.7.14(iii), p. 131].

We will mainly use the concept in De�nition 1.1.6 whenA = Z is the H -module with the
trivial action. In this case, it is easy to check that the assignmentf 7!

P

gH 2 G=H
f (g� 1)gH

identi�es IndG
H (Z) with the G-module Z[G=H].

Lemma 1.1.9. Let G be a group. ThenHi (H; Z[G]) = 0 for all integers i > 0 and all
subgroupsH of G.

Proof. See [34, III, Lemma 3.3.15].

1.2 Duality

De�nition 1.2.1. Let G be a �nite abelian group. ThePontryagin dual of G is the group

G� := Hom( G; Q=Z):

De�nition 1.2.2. Let G; G0 be �nite abelian groups. If f : G ! G0 is a group homomor-
phism, then the dual f � of f is the homomorphismf � : G0� ! G� de�ned by

f � (g0)(g) = g0(f (g))

for all g 2 G; g0 2 G0� .
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Lemma 1.2.3. If f : G ! G0 is a homomorphism of �nite abelian groups, then

Ker(f � ) �= Coker(f )�

Proof. Applying the left-exact contravariant functor Hom(� ; Q=Z) to the exact sequence

G
f
�! G0 ! Coker(f ) ! 0

gives the exact sequence

0 ! Hom(Coker(f ); Q=Z) ! Hom(G0; Q=Z)
f �

�! Hom(G; Q=Z)

and the result follows.

Let G be a group and letA; B be G-modules.

Theorem 1.2.4 (Cup-products). There exists a unique family of bi-additive pairings
(called cup-products)

[ : Hi (G; A) � Hj (G; B) �! Hi + j (G; A 
 B)

(a; b) 7�! a [ b

de�ned for all integers i; j � 0 satisfying the following conditions:

1. for any homomorphismA ! A0 of G-modules, the induced diagram

Hi (G; A) � Hj (G; B) [ //

��

Hi + j (G; A 
 B)

��
Hi (G; A0) � Hj (G; B) [ //Hi + j (G; A0 
 B )

commutes. Similarly, the analogous diagram for a homomorphismB ! B 0 of G-
modules commutes.

2552 Tf 10.036 0 Td [(l5
d913ules)-350(c)50(omm,[(0)]TJ/F436-2.les]0 d 124.9.015 1 Tf 6.587 0 Td [(j)]T7.9701 Tf 6.586 0 Td [(j)]TJ/F36 11.9552 Tf =[(�8 12.62 0 Td [(0)]TJ/F798.9552552 Tf (-mo)50(dules,)-326(and)-3260(ommutes.)]TJ
0 g 0 G
 -15.415 -24.409 Td [(2552 Tf 10.036 0 Td [(l5
d944 7.971)]TJ/F46 11.9552 Tf 7.209 0 Td [(�)]TJ/F30 11.9552 fiJ 1 j []0 d 124.911 -8.966 m 124.911 -32.877 l :dules,)- S
Q
1 0 0 1 -2.02 cm ply3260(ommutes.)]TJ
0 g6.6 0 .9552 Tf 18.0A 4.382 -5.014 Td [(()](Applying)-52 Tf 6.978 -4.338 Td9.7S
Q)27(er()]TJ0F33 9.9626 Tf 0 0 Td [(�)]TJ
ET
1 0 0 1 -5.014 Td [(d [(-)]Tpplying)-52 Tf 6.978 -4.338 Td552 18Q)27(er()]TJ0.9701 Tf 6.587 0 Td [(j)]TJ/F30 11.9552 T



3. if 0 ! A ! A0 ! A00! 0 is an exact sequence ofG-modules such that

0 ! A 
 B ! A0 
 B ! A00
 B ! 0

is also exact, then

(�a 00) [ b= � (a00[ b); 8a002 Hi (G; A00); 8b2 Hj (G; B)

where the map� on the left denotes the connecting homomorphism

Hi (G; A00) ! Hi +1 (G; A)

and � on the right denotes the connecting homomorphism

Hi + j (G; A00
 B ) ! Hi + j +1 (G; A 
 B):

4. if 0 ! B ! B 0 ! B 00! 0 is an exact sequence ofG-modules such that

0 ! A 
 B ! A 
 B 0 ! A 
 B 00! 0

is also exact, then

a [ (�b00) = ( � 1)i � (a [ b00); 8a 2 Hi (G; A); 8b002 Hj (G; B 00)

where again, by abuse of notation,� denotes the corresponding boundary maps.

Proof. See [71, II, Proposition 1.38].

If G is further assumed to be �nite, then for every integeri the cup-product above
de�nes a pairing

FG : Ĥ
i
(G; Z) � Ĥ

� i
(G; Z) [�! Ĥ

0
(G; Z) = Z=jGjZ:

Theorem 1.2.5. The above pairing induces an isomorphismFG : Ĥ
� i

(G; Z) �= Ĥ
i
(G; Z)�

de�ned by

FG(g)(f ) =
1

jGj
(f [ g) 2 Z=jGjZ =

1
jGj

Z=Z � Q=Z

for any f 2 Ĥ
i
(G; Z); g 2 Ĥ

� i
(G; Z).

Proof. See [15, VI, Theorem 7.4].
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Lemma 1.2.6. Let G be a �nite group, let H be a subgroup ofG and let i be an integer.
Then the dual of the restriction mapResGH : Ĥ

i
(G; Z) ! Ĥ

i
(H; Z) is the corestriction map

CorGH : Ĥ
� i

(H; Z) ! Ĥ
� i

(G; Z).

Proof. The cup-product satis�es the projection formula

CorGH (f [ ResGH (g)) = Cor G
H (f ) [ g

for any f 2 Ĥ
i
(H; Z) and g 2 Ĥ

� i
(G; Z), see [18, IV, Ÿ7, Proposition 9]. As the corestriction

map
CorGH : Ĥ

0
(H; Z) = Z=jH jZ ! Z=jGjZ = Ĥ

0
(G; Z)

in dimension0 is induced by multiplication by [G : H ], multiplying the projection formula
above by 1

jGj on both sides gives

1
jH j

(f [ ResGH (g)) =
1

jGj
(CorG

H (f ) [ g) ,

FH (ResG
H (g))( f ) = FG(g)(CorG

H (f )) :

We thus have a commutative diagram

Ĥ
� i

(G; Z)
FG //

ResG
H��

Ĥ
i
(G; Z)



De�nition 1.3.2. The homology groupĤ
� 3

(G; Z) is called theSchur multiplier of G.

Lemma 1.3.3. The base normal subgroupM of any Schur covering group ofG is isomor-
phic to the Schur multiplierĤ

� 3
(G; Z) of G.

Proof. See [38, Ÿ9.9, p. 214]

Proposition 1.3.4. A Schur covering group ofG always exists.

Proof. See [54, Theorem 2.1.4].

Remark 1.3.5. Despite the fact that Schur covering groups ofG always exist, these are
not necessarily unique. For example, it is easy to check that both the group





1.4 Algebraic tori

Let k be a �eld with (�xed) separable closurek.

De�nition 1.4.1. An algebraic torusT (or torus, for simplicity) over k is a k-algebraic
group such that, overk, T becomes isomorphic to



We now analyze tori of the formRK=k Gm , whereK=k is a �nite separable �eld extension
and RK=k is the Weil restriction functor (recall that this functor is characterized by the
property (RK=k X )(S) = X (S � k K ) for any K -schemeX and any k-algebraS).

Lemma 1.4.5. Let L=k be the Galois closure ofK=k. Set G = Gal( L=k) and H =
Gal(L=K ). Then T = RK=k Gm is a torus split byL=k of rank d = [ K : k]. Moreover, we
have bT �= Z[G=H] as G-modules.

Proof. Write K = k(� ) for some primitive element� of K=k and let f be the minimal
polynomial of � over k. We have

T(k) �= (K 
 k k)� �= (k[x]=(f (x))) � �=
M

gH 2 G=H

(k[x]=(x � g� )) � �= (k
�
)d; (1.4.1)

where we used the Chinese remainder theorem in the third isomorphism. It follows thatT
is a torus of rankd and since the isomorphisms in (1.4.1) are de�ned overL, T is split by
L=k.

Moreover, the isomorphism (1.4.1) allows us to write anyx 2 T(k) as x =
L

gH 2 G=H
xgH

for uniquely determinedxgH 2 k
�
. De�ne � gH : T ! Gm;k by x 7! xgH . It is clear that

� gH is a character ofT and, conversely, any character ofT can be uniquely written as a
product of characters of this form. In other words, the homomorphism of abelian groups

� : Z[G=H] �! bT

gH 7�! � gH

is an isomorphism. We prove that� is G-equivariant, �nishing the proof of the lemma.
Note that the action of Gk = Gal( k=k) on Z[G=H] is induced by its G-action and the
projection map � : Gk ! G. Similarly, the action of G on bT is induced by the action of
Gk on bT and � . It thus su�ces to check that � is Gk-equivariant. Since theGk-action on
T(k) is given by (�x )gH = � (x � (� ) � 1gH ), we have

(�:� gH )(x) = � (� gH (� � 1x)) = � (( � � 1x)gH ) = � (� � 1(x � (� )gH )) = x � (� )gH = x �:gH

for all � 2 Gk ; gH 2 G=H and x =
L

gH 2 G=H
xgH 2 T(k).
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1.5 Arithmetic of tori

Let T be an algebraic torus over a global �eldk.

De�nition 1.5.1. The Tate-Shafarevich groupX (T) of T is de�ned as the kernel of the



We now present one of the main results in the arithmetic of algebraic tori, tying together
weak approximation for a torusT and the Hasse principle for principal homogeneous spaces
under T. We will make use of the following lemma:

Lemma 1.5.7. There exists a smooth completek-variety X containing T as an open subset.

Proof. See [22, Corollary 1].

Throughout the thesis, we will refer to a varietyX in the conditions of Lemma 1.5.7
as asmooth compacti�cation of T.

Theorem 1.5.8 (Voskresenski��). Let T be a torus de�ned over a number �eldk and let
X=k be a smooth compacti�cation ofT. Then there exists an exact sequence

0 ! A(T) ! H1(k; Pic X )� ! X (T) ! 0: (1.5.1)

Proof. See [91, Theorem 6].

Theorem 1.5.9. If X 1 and X 2 are two smooth compacti�cations of a torusT de�ned over
a number �eld k, then

H1(k; Pic X 1) = H 1(k; Pic X 2):

In particular, the group H1(k; Pic X ) is a birational invariant of T.

Proof. Voskresenski�� showed (see [91, Theorem 1]) that there exists a canonical isomor-
phism of Gk-modulesPic(X 1) � P1 = Pic( X 2) � P2 for somepermutation Gk-modules (see
below for the de�nition of a permutation module) P1; P2



Voskresenski�� proved Theorem 1.5.8 by working with a�asque resolution of bT, a notion
that was later put into a general framework by Colliot-Thélène and Sansuc ([20]). We
explain this concept below as it will be useful for us in later chapters.

Let G be a �nite group and let A be a G-module. We say thatA is a permutation
module if it has aZ-basis permuted byG. We say that A is �asque if ĤifG 3



The Tate�Shafarevich groupX (T) also has a description in terms of the cohomology
of bT:

Theorem 1.5.13 (Tate) . Let T be a torus de�ned over a number �eldk and split by
a �nite Galois extension L=k with G = Gal( L=k). Then Poitou�Tate duality gives a
canonical isomorphism

X (T)� = X 2(G; bT); (1.5.4)

whereX 2(G; bT) = Ker
�

H2(G; bT) Res��!
Q

v2 
 k
H2(Dv





Lemma 1.6.6. Let G be a �nite group andH a subgroup ofG. Then, for every i 2 Z � 0

and for every subgroupG0 of G, the diagram obtained by taking the group cohomology of
the exact sequence(1.6.1)



and using Lemmas 1.4.4 and 1.4.5 gives the exact sequence ofG-modules

0 ! Z ! Z[G] ! bT ! 0:

Taking the group cohomology of the above sequence and using Lemma 1.6.6 gives the
following commutative diagram of abelian groups with exact lines:

H2(G; Z[G]) H2(G; bT) H3(G; Z) H3(G; Z[G])

Q

g2 G
H2(hgi ; Z[G])

Q

g2 G
H2(hgi ; bT)

Q

g2 G
H3(hgi ; Z)

Q

g2 G
H3(hgi ; Z[G])

Res Res Res Res

(1.6.4)
where the vertical arrows are the products of the restriction maps. By Lemma 1.1.9 we
have Hi (G; Z[G]) = H i (hgi ; Z[G]) = 0 for i = 2; 3. Additionally, by the 2-periodicity of
group cohomology of cyclic groups, we haveH3(hgi ; Z) = H 1(hgi ; Z) = Hom( hgi ; Z) = 0 .
Therefore diagram (1.6.4) shows thatH3(G; Z) = H 2(G; bT) = X 2

! (G; bT), as desired.

Theorem 1.6.9 (Tate) . If T = R1
L=k Gm is the norm one torus of a Galois extensionL=k

of number �elds with Galois groupG, we have

X (T)� = Ker

 

H3(G; Z) Res��!
Y

v2 
 k

H3(Dv; Z)

!

; (1.6.5)

whereDv = Gal( L v=kv) is the decomposition group atv.

Proof. See [18, p. 198].
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Part I

The Hasse norm principle
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Chapter 2

Introduction

In this part of the thesis we study a local-global principle for norms known as theHasse
norm principle. Let K=k be an extension of number �elds with associated idèle groupsA �

K
and A �

k . One can naturally de�ne a norm mapNK=k : A �
K ! A �

k by

NK=k ((xw)w) =

0

@
Y

wjv

NK w =kv (xw)

1

A

v2 
 k



This principle was formally introduced and �rst investigated in [43] by Hasse, who
proved the following result:

Theorem 2.0.2 (The Hasse norm theorem, [43]). The HNP holds if K=k is a cyclic
extension.

Hasse also showed that this principle can fail in general, with biquadratic extensions
providing the simplest setting where failures are possible.

Theorem 2.0.3. The HNP fails for the extensionQ(
p

� 3;
p

13)=Q. Indeed, 3 is not a
global norm, despite being the norm of an idèle.

Proof. See [43, Ÿ2].

In general, the HNP fails for a biquadratic extension if and only if all its decomposition
groups are cyclic, see [18, p. 199]. Since this principle was �rst introduced, multiple cases
have been analyzed in the literature. For instance, ifK=k is Galois, there is an explicit
description of the knot group due to Tate1

K(K=k)� = Ker
�
H3(G; Z) Res��!

Y

v2 
 k

H3(Dv; Z)
�
; (2.0.1)

as it follows from Proposition 1.6.7 and Theorem 1.6.9. Using this characterization, many
results on the validity of the HNP were obtained in the Galois setting, with a particular
emphasis on the abelian case, see e.g. the works of Gerth ([39], [40]), Gurak ([41], [42]) and
Razar ([79]).

Nevertheless, results for the non-abelian and non-Galois cases are still limited. For
example, if N=k is the normal closure ofK=k, the following instances of the HNP are
known:

Theorem 2.0.4 (Bartels). If [K : k] is prime, then the HNP holds forK=k.

Proof. See [3, Lemma 4].

Theorem 2.0.5 (Bartels). If [K : k] = n and Gal(N=k) �= Dn is the dihedral group of
order 2n, then the HNP holds forK=k.

Proof. See [4, Satz 1].
1Part of this characterization also appeared in earlier work of Scholz, see [83, II, Satz 3].
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Theorem 2.0.6 (Voskresenski�� and Kunyavski��). If [K : k] = n and Gal(N=k) �= Sn , then
the HNP holds forK=k.

Proof. See [92] or [93].

The main underlying theoretical tool used to derive these results is the geometric in-
terpretation of the HNP: by Proposition 1.6.7 the knot groupK(K=k) is identi�ed with
the Tate�Shafarevich group X (T) of the norm one torusT = R1

K=k Gm and thus by
Lemma 1.5.4 the HNP holds forK=k if and only if the Hasse principle holds for all principal
homogeneous spaces

Tc : NK=k (�) = c (2.0.2)

(where� is a variable) underT. In this way, one can explore techniques from the arithmetic
of algebraic tori (as presented in Section 1.5) to investigate the groupX (T) and thus
deduce results on the validity of the HNP.

Over the next four chapters, we exploit this toric interpretation of the Hasse norm
principle and related tools in order to do a comprehensive study of this principle in several
families of extensions. In Chapter 3 we add to the above list of non-Galois cases where the
HNP is known to hold by establishing this principle for any degreen � 5 extensionK=k
of number �elds such that Gal(N=k) is isomorphic toAn .

We subsequently give theoretical results and explicit methods for the computation of
the obstructions to the Hasse principle and weak approximation for norm one tori of non-
Galois extensions in Chapter 4. We start by applying techniques from the arithmetic of
algebraic tori to provide some comparison isomorphisms between these obstructions for a
�xed extension and its subextensions/superextensions (see Theorem 4.1.1 and the results of
Section 4.2). We then use certain quotients of the knot group and the birational invariant
H1(k; Pic X ) to derive explicit formulas for the thep-primary part of the obstructions we
study for all but �nitely many primes p, see Corollary 4.1.3 and the results of Section 4.3.
We also utilize generalized representation groups and outline work of Drakokhrust which
uses these groups to describe the invariantH1(k; Pic X ) (see Theorem 4.1.4). We end
the chapter by describing in detail how to compute some of the obstruction groups using
computer algebra systems such as GAP [33], see Section 4.4.

In Chapter 5 we make use of the techniques developed in Chapter 4 to do a broad study
of the local-global principles for any extension whose normal closure has symmetric or al-
ternating Galois group, generalizing Theorem 2.0.6 above and the main result of Chapter 3.
In this setting, we provide explicit formulas for the knot group and the birational invariant
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Chapter 3

The Hasse norm principle for
An-extensions

3.1 Main result

In this chapter we investigate the Hasse norm principle for a degreen extension K=k
of number �elds with normal closureN=k such that Gal(N=k) is isomorphic to An , the
alternating group on n letters. We also look atweak approximation� recall that this
property is said to hold for a variety X=k if X (k) is dense (for the product topology)
in

Q
v2 
 k

X (kv). In particular, we examine weak approximation for the norm one torus
R1

K=k Gm associated with a degreen extensionK=k of number �elds with An -normal closure.

The �rst non-trivial case is n = 3. In this case,K = N is a cyclic extension ofk and the
Hasse norm theorem 2.0.2 implies that the HNP holds forK=k. Moreover, one can show
that weak approximation holds for the associated norm one torus by invoking a result of
Colliot-Thélène and Sansuc, see Remark 3.1.3 below.

The casen = 4 was analyzed by Kunyavski�� in his work [57] on the arithmetic of
three-dimensional tori:

Theorem 3.1.1 (Kunyavski��) . Let K=k be a quartic extension of number �elds and let
N=k be its normal closure. IfGal(N=k) �= A4, then K(K=k) = 0 or Z=2 and K(K=k) is
trivial if and only if there existsv 2 
 k such that the decomposition groupDv = Gal( Nv=kv)
is not cyclic. Moreover, the HNP holds forK=k if and only if weak approximation fails for
R1

K=k Gm .
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The main goal of this chapter is to complete the picture for this family of extensions
by proving the following theorem.

Theorem 3.1.2. [62, Theorem 1.1] LetK=k be a degreen � 5 extension of number �elds
and let N=k be its normal closure. IfGal(N=k) �= An , then the HNP holds forK=k and
weak approximation holds for the norm one torusR1

K=k Gm .

Our strategy to establish this result is twofold. First, we combine the toric interpreta-
tion of the HNP described in Sections 1.5 and 1.6 with several cohomological facts about
An -modules to prove the aforementioned result forn � 8. Next, we use a computational
method developed by Hoshi and Yamasaki to solve the casen = 6. The remaining cases
n = 5 and 7 follow from the remark below. In Chapter 5 we will also see how to ob-
tain Theorem 3.1.2 and further results onAn -extensions by using di�erent techniques, see
Remark 5.1.11.

Remark 3.1.3. We note that whenn = p is a prime number, Theorem 3.1.2 was already
known. Indeed, in this case the HNP always holds by Theorem 2.0.4 and a result of Colliot-



This map will play an important role in the proof of Theorem 3.1.2, so we begin by
establishing the following result.

Lemma 3.2.1. Let n � 8 and let H be a copy ofAn� 1 inside G = An . Then the corestric-
tion map CorGH is surjective.

In order to prove this lemma, we will use multiple results about covering groups ofSn

and An together with the characterization of the image ofCorGH given in Lemma 1.3.9. To
put this plan into practice, we will use the following presentation of aSchur covering group
(as de�ned in Section 1.3) ofSn



Lemma 3.2.4. In the notation of Proposition 3.2.2, the groupV := � � 1(An ) de�nes a
Schur covering group ofAn for n = 4; 5 or any n � 8.

Proof. It is well-known that An is generated by then � 2 permutations ei := t1:t i +1 =
(1 2)(i + 1 i + 2) forfor



Given a copyH of An� 1 inside An , one can subsequently repeat the same procedure of
this last lemma and further restrict � to W := � � 1(H ) to seek a Schur covering group of
H . The same argument works, but with two small caveats.

First, it is necessary to assure that we still havez 2 [W; W]. To show this we will use
the following lemma:

Lemma 3.2.5. Let n � 7. Then any subgroupH � An isomorphic to An� 1 is conjugate
to the point stabilizer(An )n of the letter n in An

Proof. This is a consequence of [96, Lemma 2.2].

By Lemma 3.2.5 we haveH = ( An )n
y for somey 2 Sn . As � is surjective, y = � (x) for

somex 2 U and hencez = zx = [ e� 1
1 e2e1; e2]x = [( e� 1

1 e2e1)x ; ex
2] is in [W; W], as clearly

e1; e2 2 (An )n .

Second, note that we are making use of the fact that the Schur multipliers ofAn� 1Sn



Using this lemma we show the vanishing of the cohomology groupH2(G; JG=H ) (where
JG=H is the Chevalley module ofG=H, as de�ned in Section 1.6), which we will then use
to prove Theorem 3.1.2 forn � 8.

Proposition 3.2.7. Let n � 8 andH be a copy ofAn� 1 insideG = An . Then H2(G; JG=H ) =
0.

Proof. Taking the G-cohomology of the exact sequence de�ningJG=H

0 ! Z
�
�! Z[G=H] ! JG=H ! 0

(where � : Z ! Z[G=H] is the norm map de�ned by 1 7!
P

gH 2 G=H
gH) gives an exact

sequence of abelian groups

H2(G; Z[G=H]) ! H2(G; JG=H ) ! H3(G; Z)
� �

�! H3(G; Z[G=H]):

Applying Shapiro's Lemma 1.1.7, the fundamental duality Theorem 1.2.5 in the cohomol-
ogy of �nite groups and the fact that Ĥ

� 2
(G0; Z) �= G0=[G0; G0] for any group G0 (see [18,

IV, Ÿ3, Proposition 1]), we haveH2(G; Z[G=H]) �= H2(H; Z) �= Ĥ
� 2

(H; Z) �= H=[H; H ] = 0,
as H is perfect. Therefore, this last exact sequence becomes

0 ! H2(G; JG=H ) ! H3(G; Z)
� �

�! H3(G; Z[G=H]);

which shows thatH2(G; JG=H ) = 0 if � � is injective. Since the composition of the map� �

with the isomorphism of Shapiro's lemma

H3(G; Z)
� �

�! H3(G; Z[G=H])
�=�! H3(H; Z)

gives the restriction map by Lemma 1.1.8, it su�ces to prove that the restriction

ResGH : H3(G; Z) ! H3(H; Z)

is injective. By Lemmas 1.2.3 and 1.2.6, this is the same as proving that the corestriction
map

CorGH : Ĥ
� 3

(H; Z) ! Ĥ
� 3

(G; Z)

is surjective. But this is the content of Lemma 3.2.1 and so it follows thatH2(G; JG=H ) =
0.
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We now prove Theorem 3.1.2 forn � 8. We will make use of the following auxiliary
lemma:

Lemma 3.2.8. Let n � 5 and let H be a subgroup ofG = An with index n. Then
H �= An� 1.

Proof. G acts by multiplication on the set of cosets ofH in G and identifying this set
with f 1; : : : ; ng gives a homomorphism� : G ! Sn . SinceAn is simple, � is injective and
therefore Im � = An . Finally, note that � (H ) is a point stabilizer of a letter in f 1; : : : ; ng
and so � (H ) �= An� 1. It follows that the restriction of � to H gives an isomorphism
H �= An� 1.

Proof of Theorem 3.1.2 forn � 8. Set G = Gal( N=k) �= An and H = Gal( N=K ). By
Theorems 1.5.8 and 1.5.12, it is enough to show that the groupH2(G; bT) is trivial, where
T = R1

K=k Gm is the norm one torus associated with the extensionK=k. Recall that
bT �= JG=H asG-modules by Proposition 1.6.5, so it su�ces to prove thatH2(G; JG=H ) = 0 .
But since [G : H ] = n, we haveH �= An� 1 by Lemma 3.2.8 and so the result follows from

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/
https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/


ˆ Norm1TorusJ(d,m) (Algorithm N1T in [47, Section 8]), computing the action ofG
on JG=H , where G is the transitive subgroup ofSd with GAP index number m (cf.
[17] and [33]) andH is the stabilizer of one of the letters inG;

ˆ FlabbyResolution(G) (Algorithm F1 in [47, Section 5.1]), computing a �asque res-
olution of the G-lattice MG (see [47, De�nition 1.26]);

ˆ H1(G)(Algorithm F0 in [47, Section 5.0]), computing the cohomology groupH1(G; MG)
of the G-lattice MG.

Using these algorithms, we can easily prove theA6 case of Theorem 3.1.2 as follows:

Proof of the casen = 6 of Theorem 3.1.2. Set G = Gal( N=k) �= A6; H = Gal( N=K ) and
T = R1

K=k Gm . Note that H �= A5 by Lemma 3.2.8 and that bT �= JG=H (as G-modules)
by Proposition 1.6.5. Therefore, by Theorems 1.5.8 and 1.5.12 it is enough to prove that
H1(G; FG=H ) = 0 , whereFG=H is a �asque module in a �asque resolution ofJG=H . Writing
K = N H = k(� 1) and N = k(� 1; : : : ; � 6) for some� i 2 k, we see thatH is the stabilizer
of � 1 and so the above algorithmNorm1TorusJ59lhm=

of�



Chapter 4

Explicit methods for the Hasse norm
principle

4.1 Main results

While results of Colliot-Thélène and Sansuc (Theorem 1.5.12) give concise descriptions of
the birational invariant H1(k; Pic X ) of an algebraic torusT, and a result of Tate (Theo-
rem 1.5.13) does the same for its Tate�Shafarevich group, actually computing these groups
in practice can be challenging. In this chapter we address this problem by giving theoreti-
cal results and explicit methods for computing the groupsX (T); H1(k; Pic X ) and A(T)
for the norm one torusT = R1

K=k Gm of an extension of number �eldsK=k.

Except where stated otherwise, our assumptions throughout the rest of the chapter will
be as follows. LetT = R1

K=k Gm and let X denote a smooth compacti�cation ofT. Let
L=k be a Galois extension containingK=k and set



Theorem 4.1.1. Let L=K=k be a tower of �nite extensions. LetT0 = R1
L=k Gm , let T =

R1
K=k Gm



As a corollary, one can use this object to compute thep-primary parts of the knot
group, the invariant H1(k; Pic



Lemma 4.2.1. Let K=k be a �nite extension and letX be a smooth compacti�cation of
T = R1

K=k Gm . Then T � k K is stably rational. Consequently,H1(K; Pic X ) = 0 and
H1(k; Pic X ) is killed by[K : k].





Let d = [ L : K ] and let [d] denote the mapx 7! xd. The natural inclusion j : RK=k Gm !
RL=k Gm satis�es NL=K � j = [ d]. Using i and j , we obtain a morphism of algebraic tori

� : S � RK=k Gm �! RL=k Gm

(x; y) 7�! i (x)j (y)

Note that if (x; y) 2 Ker � , i.e. i (x)j (y) = 1 , then j (y) 2 S and therefore1 = NL=K (j (y)) =
yd. We thus see thatKer � = f (i � 1(j (x)) ; x � 1) j x 2 RK=k � dg (where � d is the group of
d-th roots of unity) is �nite. Moreover, � is surjective: givenz 2 RL=k Gm (k), we have
NL=K (z) = yd for somey 2 RK=k Gm (k), and thus NL=K (z) = NL=K (j (y)) , which gives
z = � (x; y) for somex 2 S. We conclude that� is an isogeny with kernel killed byd.

Let Z , W and W0 be smooth compacti�cations ofS, RK=k Gm and RL=k Gm , respectively.
By [91, Lemma 3],Pic(Z � W) = Pic Z � Pic W. Thus, Corollary 4.2.5 yields

H1(k; Pic Z )(p) � H1(k; Pic W)(p)
�= H1(k; Pic W0)(p) :

Furthermore, RK=k Gm and RL=k Gm are k-rational so H1(k; Pic W) = H 1(k; Pic W0) = 0 by
[20, Proposition 6] and henceH1(k; Pic Z )(p) = 0. Therefore, X (S)(p) = A(S)(p) = 0 by
Theorem 1.5.8. The result now follows from an application of Corollary 4.2.5 similar to
the one done above, but to the surjective morphism

S � R1
K=k Gm ! R1

L=k Gm

whose �nite kernel is killed by d.

The following special case of Theorem 4.1.1 reduces the calculation ofA(T), H1(k; Pic X )
and X (T) to the case whereK=k is the �xed �eld of a p-group.

Corollary 4.2.6. Let L=K=k be a tower of �nite extensions withL=k Galois. Let G =
Gal(L=k) and H = Gal( L=K ). For p prime, let Hp denote a Sylowp-subx.bxz5 0 Td [(p)]TJ/F40 z5 0 Td [(p)]TJ/F40 z5460 m 7.022 0 l S
Q
q
d [(-208 0 Td [(G)]TJ/F30iwh]TJ/F79 11.9552 Tf 5.875TJ/F30 11.9552 T 22.26.34 Td [(L=k)]TJ/Td [(p)]TJ/F40 z5 0 Td F)75(or)]TJ/F43 11.9) denot04(-sub)50(x.b)50(xz5 09ET
t0 G
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As a consequence of Corollary 4.2.6, we obtain the following result which deals with
the two extremes in terms of the power ofp dividing jH j.

Corollary 4.2.7. Retain the notation of Corollary 4.2.6.

(i) If p - jH j, then H1(k; Pic X )(p)
�= H3(G; Z)(p) .

(ii) If H contains a Sylowp



Proof. We give the proof forA(T) � the other proofs are analogous. Letd = [ L : K ],
e = exp(A(T0)) and let x 2 A(T). SinceNL=K � j = [ d], we havexde = NL=K (j (x)e) = 1 ,
as j (x) 2 A(T0).

Corollary 4.2.10. Retain the notation of Theorem 4.1.1.

(i) If exp(A(T0)) � [L : K ] is coprime to [K : k], then weak approximation holds forK=k.

(ii) If exp(X (T0)) � [L : K ] is coprime to [K : k], then the HNP holds forK=k.

Proof. This follows immediately from Corollaries 4.2.2 and 4.2.9.

The following result is a slight generalization of [42, Proposition 1].

Proposition 4.2.11. Let L=K=k be a tower of �nite extensions and letd = [ L : K ]. Then
the mapx 7! xd induces a group homomorphism

' : K(K=k) ! K(L=k)

with Ker ' � K(K=k)[d] and f xd j x 2 K(L=k)g � Im ' . In particular, if jK(K=k)j is
coprime to d, then ' induces an isomorphismK(K=k(is èj

)



Proof. The commutative diagram comes from Lemma 4.2.3. If[K : k] and [M : k] are
coprime, then any prime number divides at most one of[L : K ] and [L : M ], whence
Lemma 4.2.1 and Theorem 4.1.1 show that the vertical maps in the diagram are isomor-
phisms.



Lemma 4.2.15. Let K=k and M=k be �nite subextensions ofL=k such that [K : k] and
[M : k] are coprime. If weak approximation holds forR1

KM=M Gm , then it holds forR1
K=k Gm .

Under the additional assumption thatK=k is Galois, weak approximation forR1
K=k Gm

implies weak approximation forR1
KM=M Gm .

Proof. Let T = R1
K=k Gm , TM = T � k M and TK = T � k K . Suppose �rst that weak

approximation holds for R1
KM=M Gm = TM . By Lemma 4.2.1 and Theorem 1.5.8, weak

approximation holds for TK . To complete the proof, observe that weak approximation
for TK and TM implies weak approximation forRK=k TK and RM=k TM . Since[K : k] and
[M : k] are coprime, the surjective morphism of algebraic groups

RK=k TK � RM=k TM ! T

(x; y) 7! NK=k (x)NM=k (y)

has a section. Therefore, weak approximation forT follows from weak approximation for
RK=k TK and RM=k TM .

Now suppose thatK=k is Galois and that weak approximation holds forR1
K=k Gm . Then

KM=M is Galois with Galois group isomorphic toGal(K=k). Let w be a place ofM and
let v be the place ofk lying below w. The various restriction maps give a commutative
diagram

H3(Gal(K=k); Z)

Resv
��

�= //H3(Gal(KM=M ); Z)

Resw
��

H3(Dv; Z) //H3(Dw ; Z):

Since weak approximation holds forR1
K=k Gm , isomorphism (4.2.4) of Proposition 4.2.14

shows that Resv is trivial, and hence Resw is also trivial. As w was arbitrary, weak ap-
proximation for R1

KM=M Gm follows from (4.2.4).

Remark 4.2.16. The hypothesis thatK=k is Galois in the second implication of Lemma 4.2.15
is necessary. To see this, consider a Galois extensionL=k with Galois group G = C3 � S3

and with a decomposition groupDv containing the Sylow3-subgroup ofG for some placev
of k (such an extension always exists, see Chapter 6). LetK=k and M=k be subextensions
of L=k of degree9 and 2, respectively. One can verify that the invariantH1(k; Pic X )
vanishes forK=k (see the example in Algorithm A1 of the Appendix 4.5) and thus weak
approximation holds forR1

K=k Gm by Theorem 1.5.8. On the other hand,KM=M = L=M
is Galois with Galois groupC3 � C3 and decomposition groupC3 � C3 for a prime of M
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abovev. It follows that weak approximation fails for R1
KM=M Gm by isomorphism (4.2.4)

of Proposition 4.2.14. See [60] for some other examples of varieties over number �elds that
satisfy weak approximation over the base �eld but not over a quadratic extension.

Proposition 4.2.17. Let L=k be a Galois extension such thatG = Gal( L=k) is nilpotent.
For every prime p, let Gp be a Sylowp-subgroup ofG. Let kp and Lp be the �xed �elds of
the subgroupsGp and

Q

q6= p
Gq, respectively. The following assertions are equivalent:

(i) Weak approximation holds forR1
L=k Gm .

(ii) Weak approximation holds for eachR1
L p =kGm .

(iii) Weak approximation holds for eachR1
L=k p

Gm .

Proof. (i) =) (ii): Follows from Corollary 4.2.10.

(ii) =) (iii): Follows from Lemma 4.2.15.

(iii) =) (i): We prove A(R1
L=k Gm )(p) = 0 for every primep. Let v be a place ofk and

let w be a place ofkp abovev. The various restriction maps give a commutative diagram

H.293 0 Td [(p[(v)]TJ/F40 11.9552 Tf1350(assertions)-350(ar)50(e)-350(e)50(qu)1(i)-1(va)1(l)-1(en)1(t:)]TJ
TJ
0 g 0 G
 [(:)76(a)-326(comm)27(utativ)27(e)-326(diagram)]TJ23..826 0 Td [(=)]TJ/F46 11.9552 Tf 7.112 0 Td [())]T5vn)-e



remark that several results presented below will later be generalized in Section 8.1 for the
multinorm principle.

We again �x a tower of number �elds L=K=k such that L=k is Galois and letX and
X 0 be smooth compacti�cations of the toriR1

K=k Gm and R1
L=k Gm , respectively. Applying

Lemma 4.2.3 to the norm mapNL=K : R1
L=k Gm ! R1

K=k Gm gives a commutative diagram
with exact rows as follows, where the vertical arrows are induced byNL=K :

0 //A(R1
L=k Gm ) //

��

H1(k; Pic X 0)� //

f L=K

��

X (R1
L=k Gm )

gL=K

��

//0

0 //A(R1
K=k Gm ) //H1(k; Pic X )� //X (R1

K=k Gm ) //0:

(4.3.1)

De�nition 4.3.1. In the notation of diagram (4.3.1), we de�ne

1. F(L=K=k) := Coker(gL=K ) = ( k� \ NK=k (A �
K ))=NK=k (K � )(k� \ NL=k (A �

L )) , called the
�rst obstruction to the HNP for K=k corresponding to the towerL=K=k , see [27,
De�nition 1];

2. Fnr (L=K=k) := Coker( f L=K ), called theunrami�ed cover of F(L=K=k).

Clearly the knot group K(K=k) (which is sometimes called the total obstruction to the
HNP) surjects ontoF(L=K=k) and F(L=K=k) equalsK(K=k) if the HNP holds for L=k. In
[27



their results here in a slightly more general setting. LetG be a �nite group, let H � G,
and let S be a set of subgroups ofG. Consider the following commutative diagram:

H=[H; H ]
 1 //G=[G; G]

L

D 2 S

 
L

Hx i D 2 H nG=D
H i =[H i ; H i ]

!
 2 //

' 1

OO

L

D 2 S
D=[D; D ]

' 2

OO
(4.3.2)

where thex i 's are a set of representatives of theH � D double cosets ofG, the sum over
D is a sum over all subgroups inS, and H i := H \ x i Dx � 1

i . The maps 1; ' 1 and ' 2 are
induced by the natural inclusionsH ,! G, H i ,! H and D ,! G, respectively. If h 2 H i ,
then

 2(h[H i ; H i ]) = x � 1
i hx i [D; D ] 2 D=[D; D ]:

Given a subgroupD 2 S, we denote by D
2 the restriction of the map 2 in diagram (4.3.2)

to the subgroup
L

Hx i D 2 H nG=D
H i =[H i ; H i ].

Lemma 4.3.3. In diagram (4.3.2), ' 1(Ker  D
2 ) � ' 1(Ker  D 0

2 ) wheneverD � D 0.

Proof. The proof proceeds in the same manner as the proof of [27, Lemma 2].

Lemma 4.3.4. ([27, Lemma 1] or [72, I, Ÿ9]) SetG = Gal( L=k) and H = Gal( L=K ).
Given a placev of k, the set of placesw of K abovev is in one-to-one correspondence with

the set of double cosets in the decompositionG =
[r5]TJ/F79 11.9552 Tf 11.9552 552 Tf 9.528 0 Td [(he)-363(de)50(c)50(52 55299712(in)-311(on 7.9701 Tf -2.54.793 Td TJ/F44 7.S79 11.9552 Tf 11.95Td 8 [(2)]217)-167(H)]TJ/F49552 Tf 10.7Td 2)]TJ/F43 ='i



Theorem 4.3.5. [27, Theorem 1] With the notation of diagram(4.3.3), there is a canonical
isomorphism

F(L=K=k) = Ker  1=' 1(Ker  2):

We write  nr
2 for the restriction of the map  2 to the subgroup

M

v unrami�ed in L=k

� M

wjv

Hw=[Hw ; Hw ]
�

and de�ne  r
2 similarly using the rami�ed places.

Lemma 4.3.6. Set G = Gal( L=k) and H = Gal( L=K ). Let C be the set of all cyclic
subgroups ofG and let ' C

1 and  C
2 denote the relevant maps in diagram(4.3.2) with S = C.

Then
' 1(Ker  nr

2 ) = ' C
1 (Ker  C

2 )

where the maps in the expression on the left are the ones in diagram(4.3.3).

Proof. This follows from the Chebotarev density theorem and Lemma 4.3.3.

De�nition 4.3.7. Let H be a subgroup of a �nite groupG. The focal subgroup ofH in
G is

� G(H ) = hh� 1
1 h2 j h1; h2 2 H and h2 is G-conjugate toh1i

= h[h; x] j h 2 H \ xHx � 1; x 2 Gi E H:

Theorem 4.3.8. [27, Theorem 2] In the notation of diagram(4.3.3), we have

' 1(Ker  nr
2 ) = � G(H )=[H; H ]:

Theorem 4.3.8 is very useful � quite often one can show that� G(H ) = H \ [G; G] and
hence the �rst obstruction F(L=K=k) is trivial. In fact, since [NG(H ); H ] � � G(H ), if one
can show that [NG(H ); H ] = H \ [G; G], then F(L=K=k) = 1 . This criterion generalizes
[42, Theorem 3].

Remark 4.3.9. The groupKer  1=' 1(Ker  2) featured in Theorem 4.3.5 can be computed
in �nite time. Indeed, Ker  1 is given in terms of the relevant Galois groups, and by [27,
p. 307] we have

' 1(Ker  2) = ' 1(Ker  nr
2 )' 1(Ker  r

2): (4.3.4)
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By Theorem 1.5.12 and Lemmam



Proof of Corollary 4.1.3. This is a direct consequence of diagram (4.3.1) and Theorems 1.5.12,
1.6.8 and 4.3.11.

Corollary 4.3.12. If H is a Hall subgroup ofG, then Fnr (L=K=k) = F(L=K=k) = 1 .

Proof. The focal subgroup theorem [44] asserts that for a Hall subgroupH of G, we
have F(G; H ) = 1 . The result therefore follows from Theorem 4.1.2 and the surjection
Fnr (L=K=k) � F(L=K=k).

We end this chapter by giving a proof of Theorem 4.1.4 and presenting a lemma to be
used alongside this theorem in Chapter 5.

Proof of Theorem 4.1.4. For any v 2 
 k , de�ne

Sv =

(
� � 1(Dv) if v is rami�ed in L=k;

a cyclic subgroup of� � 1(Dv) with � (Sv) = Dv otherwise.

Consider the version of diagram (4.3.2) with respect to the groupsG, H and S = f Sv j
v 2 
 kg. In this setting, Drakokhrust shows in [26, Theorem 2] that

H1(k; Pic X )� = Ker  1=' 1(Ker  nr
2



Lemma 4.3.13. We haveF(G; H ) �= F(G; H ) if and only if Ker � \ [G; G] � � G(H ),
where the notation is as in Theorem 4.1.4.

Proof. Let � : F(G; H ) ! F(G; H )



Example 4.4.1. Since A4 is the fourth transitive subgroup of S4 in the GAP library
TransitiveGroups , the command

gap> Product(H1(FlabbyResolution(Norm1TorusJ(4,4)).actionF));
2

computes the order of the groupH1(G; FG=H ) for G = A4 and H = A3, i.e. the size of the
invariant H1(k; Pic X ) for an A4-quartic, con�rming Kunyavski��'s result in [57] that this
group is isomorphic toZ=2.

As noted above, Hoshi and Yamasaki's algorithmNorm1TorusJrequires one to embed
the Galois groupG as a transitive subgroup ofSn , whereupon one quickly reaches the
limit of the databases of such groups stored in computational algebra systems such as
GAP. This would be a problem if one were to use this function to compute the invariant
H1(k; Pic X ) for some of the groups we will analyze later on (namely, in Propositions 5.1.7
and 5.1.9). To overcome this issue, we have employed a small modi�cation of Hoshi and
Yamasaki's function Norm1TorusJthat does not require one to view the Galois groupG
as a transitive subgroup ofSd. Instead, our function simply takes as input a pair of �nite
groups(G; H ) whereH is a subgroup ofG and computes theG-moduleJG=H . Analogously
to the Norm1TorusJalgorithm, our routine will output the module JG=H as aMG-module,
de�ned as follows:

De�nition 4.4.2. [47, De�nition 1.26] Let n be a positive integer and letG be a �nite
subgroup ofGLn (Z). The G-lattice MG of rank n is de�ned to be the G-module with

Z-basisf u



2. If � (i ) = d, i.e. (Hgi ):g = Hgd = �
d� 1P

i =1
Hgi inside JG=H , then the k-th entry of the

i -th row of Rg is set to be equal to� 1 for every k.

Let RG be the grouphRg j g 2 Gi � GLd� 1(Z). It is then clear that the Chevalley
module JG=H is isomorphic to the G-module MRG , which is the output of our function.
The code for this function is presented in Algorithm A1 in the Appendix 4.5 and it consists
of two routines:

ˆ row(s,d) (an auxiliary routine to action ), constructing the i -th row of the matrix
Rg as explained above;

ˆ action(G,H) , assembling the matricesRg for g 2 G and returning the groupRG.

These GAP functions can then be combined with Hoshi and Yamasaki's algorithms
FlabbyResolution and H1to compute H1(G; FG=H ) as described above and we present an
example of such a computation in the Appendix 4.5.

For some of our future computational applications, we do not employ the algorithms
of Hoshi and Yamasaki and instead use the formula of Theorem 4.1.4 which expresses
H1(k; Pic X ) in terms of generalized representation groups ofG. We also implemented this
formula, along with the simpli�cation a�orded by Corollary 4.2.6, as an algorithm in GAP
(see Algorithm A2 in the Appendix 4.5, where we also include an example).

Remark 4.4.3. It is noteworthy to compare the method of computingH1(k; Pic X ) via
Theorem 4.1.4 with Hoshi and Yamasaki's algorithm. The approach based on Theo-
rem 4.1.4 involves the computation of the focal subgroup� G(H ), which is generally fast for
small subgroupsH but impractical for large ones. On the contrary, Hoshi and Yamasaki's
method using �asque resolutions deals only with theG-moduleJG=H , whoseZ-rank jGj

jH j � 1
decreases asj



4.5 Appendix: Algorithms for the Hasse norm principle

In the following algorithms, we add a few comments in gray (marked with a #, which
is also the GAP command for a comment and treated as white space by this program)
explaining the goal of several selected lines of code.

4.5.1 A1: computing the Chevalley module JG=H

row:=function(s,d)
local r,k;

r:=[]; # i-th row of Rg

if s = d then # Case (2) of p. 50
r:=List([1..d-1],x->-1);

else # Case (1) of p. 49
for k in [1..d-1] do

if k = s then
r:=Concatenation(r,[1]);

else
r:=Concatenation(r,[0]);

fi;
od;

fi;

return r;
end;

action:=function(G,H)
local d,gens,RT,LT,S,j,Rg,i,s;

d:=Order(G)/Order(H);
gens:=GeneratorsOfGroup(G);
RT:=RightTransversal(G,H);
LT:=List(RT,i->CanonicalRightCosetElement(H,i)); # List of right coset
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4.5.2 A2: computing H1(k; Pic X ) via Theorem 4.1.4

Fquot:=function(G,H)
# Function that computes the group H \ [G;G]

� G (H )

local l,h1,h2,U,V;

l:=[];

for h1 in H do
for h2 in H do

if IsConjugate(G,h1,h2) then Append(l,[Inverse(h1)*h2]);fi; # Note that
� G(H ) = hh� 1

1 h2 j h1; h2 2 H are G-conjugate i , see Definition 4.3.7
od;
od;

U:=Intersection(H,DerivedSubgroup(G));
V:=Subgroup(U,l);
return U/V;

end;

H1:=function(G,H)
local GG,lambda,M,HH,res,p,FHp;

GG:=SchurCover(G);
lambda:=EpimorphismSchurCover(G); # Projection map � : G ! G, where G

is a Schur covering group of G
M:=Kernel(lambda);
HH:=PreImagesSet(lambda,H); # HH =� � 1(H )

res:=Subgroup(HH,[]);

if Size(HH)=1 then return res;
else # We compute the p-part F(G; H )(p) for all primes p j jH j and then take

their direct product below
for p in Set(Factors(Size(HH))) do

FHp:=Fquot(GG,SylowSubgroup(HH,p)); # Here we use the fact that
F(G; H )(p) = F(G; Hp)(p) as follows from Theorem 4.1.4 and Corollary 4.2.6
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res:=DirectProduct(res,SylowSubgroup(FHp,p));
od;

return res;
fi;

end;

Example: Computation of H1(k; Pic X ) for an extensionK=k with degree1260and
A7-normal closure (note thatjA7j = 2520 = 2 � 1260):

G:=AlternatingGroup(7);
H:=Subgroup(G,[(1,2)(3,4)]);
StructureDescription(H);
� "C2"
Size(H1(G,H));
� 6

4.5.3 A3: computing K(L=k) via Theorem 1.6.9

Sha:=function(G,l)
local lambda,M,ImDecGps,D,ImGen,i;

lambda:=EpimorphismSchurCover(G); # Projection map � : G ! G, where G
is a Schur covering group of G

M:=Kernel(lambda);

if Size(l)=0 then return M;
else

ImDecGps:=List(l,D->Intersection(M,DerivedSubgroup(PreImagesSet(lambda,D))));
# Collecting all the groups CorGD v

(Ĥ
� 3

(Dv; Z)) �= M \ [� � 1(Dv); � � 1(Dv)] by Lemma 1.3.9
ImGen:=[];
for i in ImDecGps do

Append(ImGen,GeneratorsOfGroup(i));
od;
return M/Subgroup(M,ImGen); # Returning the group X (T)



end;

Example: Computation of K(L=k) for an octic D4-extensionL=k with decomposition
group V4 at all rami�ed places and for an octicD4-extension with cyclic decomposition
group C2 at all rami�ed places:

G:=SmallGroup(8,3);
StructureDescription(G);
� "D8"
l1:=Filtered(AllSubgroups(G),x->StructureDescription(x)="C2 x C2");
l2:=Filtered(AllSubgroups(G),x->StructureDescription(x)="C2");
Size(Sha(G,l1));
� 1
Size(Sha(G,l2));
� 2

4.5.4 A4: computing F(L=K=k) via Theorem 4.3.5

directprod:=function(l)
# Auxiliary function computing the direct product of a list of lists as the
following example illustrates: directprod([[1,2],[3],[4,5]]) outputs the list
[[1,3,4],[1,3,5],[2,3,4],[2,3,5]]



else
t:=List([2..Size(l)],x->l[x]);;
T:=directprod(t);; # Recursive step

for i in l[1] do
s:=[];;
for j in T do

s:=Concatenation([i],j);;
res:=Concatenation(res,[s]);;

od;
od;

fi;
return res;

end;

obsv:=function(G,H,Gv)
# Function that computes the group ' 1(Ker  v

2) in the notation of Diagram (4.3.3)

local K,S,l,Hv,w,Li,Sx,res,i,t,j,f,im;

K:=Intersection(H,DerivedSubgroup(G));;
S:=DoubleCosetRepsAndSizes(G,H,Gv);;
l:=List(S,x->x[1]);;
Hv:=[];;

for w in l do # Constructing the groups Hw of Diagram 4.3.3
if Size(Intersection(H,ConjugateGroup(Gv,Inverse(w)))) <> 1 then

Hv:=Concatenation(Hv,[[Intersection(H,ConjugateGroup(Gv,Inverse(w))),w]]);;
fi;

od;

Li:=List(Hv,x->(Elements(x[1])));;
if Size(Li)=0 then return Subgroup(K/DerivedSubgroup(H),[]);
else

Sx:=directprod(Li);; # Accessing all the elements of the group
L

wjv
Hw in

Diagram 4.3.3
res:=[];;
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for i in Sx do # Looping over all elements of
L

wjv
Hw :

t:=1;;
for j in [1..Size(i)] do

t:=t*Inverse(Hv[j][2])*i[j]*Hv[j][2];;
od;

# Verifying and registering all elements of
L

wjv
Hw that are in Ker  v

2:

if t in DerivedSubgroup(Gv) then res:=Concatenation(res,[i]);fi;
od;

f:=NaturalHomomorphismByNormalSubgroup(K,DerivedSubgroup(H));;
im:=List(res,x->Image(f,Product(x)));; # Computing the image via ' 1 of

every element in Ker  v
2

return Subgroup(K/DerivedSubgroup(H),im); # Returning the group ' 1(Ker  v
2)

fi;
end;

obsram:=function(G,H,l)
# Function that computes the group ' 1(Ker  r

2) (in the notation of p. 44) by using
the previous function obsv

local K,li,x;

K:=Intersection(H,DerivedSubgroup(G));;
li:=[];;
for x in l do

Append(li,Elements(obsv(G,H,x)));; # Collecting all the elements of the
groups Ker  v

2 for v ramified
od;

return Subgroup(K/DerivedSubgroup(H),li); # Outputting the groupQ
v ramified ' 1(Ker  v

2) = ' 1(Ker  r
2)

end;
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obsunr:=function(G,H)
local K,l,h1,h2,f,im;

# Function that computes the group ' 1(Ker  nr
2 ) (in the notation of p. 44), which

equals � G(H )=[H; H ] by Theorem 4.3.8

K:=Intersection(H,DerivedSubgroup(G));;
l:=[];;
for h1 in H do
for h2 in H do

if IsConjugate(G,h1,h2) then Append(l,[Inverse(h1)*h2]);fi; # Again recall
that � G(H ) = hh� 1

1 h2 j h1; h2 2 H are G-conjugate i (Definition 4.3.7)
od;
od;

f:=NaturalHomomorphismByNormalSubgroup(K,DerivedSubgroup(H));;
im:=List(l,x->Image(f,x));;

return Subgroup(K/DerivedSubgroup(H),im); # Outputting ' 1(Ker  nr
2 )

end;

1obs:=function(G,H,l)
# Function that computes the group F(L=K=k) = Ker  1=' 1(Ker  2) (Theorem 4.3.5)
by invoking all the previous functions

local K,Elts,J;

K:=Intersection(H,DerivedSubgroup(G)); # Note that H \ [G; G] = Ker  1

Elts:=Concatenation(Elements(obsunr(G,H)),Elements(obsram(G,H,l)));
# Concatenation of the elements in ' 1(Ker  nr

2 ) and ' 1(Ker  r
2)

J:=Subgroup(K/DerivedSubgroup(H),Elts); # Computing the group ' 1(Ker  2) =
' 1(Ker  nr

2 )' 1(Ker  r
2)

return K/J; # Outputting the group Ker  1=' 1(Ker  2)
end;

Example: Computation of F(L=K=k) for a degree 20 extensionK=k with A6-normal
closure and decomposition groupD4 at all rami�ed places:
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G:=AlternatingGroup(6);
H:=Filtered(AllSubgroups(G),x->Size(x)=18)[1];
StructureDescription(H);
� "(C3 x C3) : C2"
Size(G)/Size(H);
� 20
D:=Subgroup(G,[(1,2,3,4)(5,6),(1,3)(5,6)]);
StructureDescription(D);
� "D8"
Size(1obs(G,H,[D]));
� 1
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Chapter 5

Applications to An and Sn-extensions

5.1 Main results

Let K=k



Recall that Theorem 1.6.9, due to Tate, shows that the knot group of the Galois exten-
sion L=k is dual to Ker(H3(G; Z) !

Q
v H3(Dv; Z)), whereDv denotes the decomposition

group at a placev of k. Note that this kernel only depends on the decomposition groups at
the rami�ed places, since ifv is unrami�ed then Dv is cyclic and henceH3(Dv; Z) = 0 . In
the setting of Theorem 5.1.1 we are therefore able to obtain an algorithm (enabled by the
earlier algorithms described in Section 4.4) that takes as inputsG, H and the decomposi-
tion groups at the rami�ed places ofL=k and gives as its outputs the knot groupK(K=k),
the invariant H1(k; Pic X )


As a further application of Theorem 5.1.1, one can obtain conditions on the decompo-
sition groups determining whether the HNP and weak approximation hold inAn and Sn

extensions. In Propositions 5.1.7 and 5.1.8, we exhibit such a characterization forn = 4
or 5, when these local conditions are particularly simple.

Proposition 5.1.7. Suppose thatG is isomorphic toA4; A5; S4 or S5. Then K



Proposition 5.1.10 below addresses weak approximation in theA6 and A7 cases. The
local conditions controlling weak approximation are given in detail in Proposition 5.3.6;
they are a direct consequence of Propositions 5.1.9 and 5.1.10 and Voskresenski��'s exact
sequence (1.5.1) of Theorem 1.5.8.

Proposition 5.1.10. Retain the assumptions of Proposition 5.1.9. ThenH1(k; Pic X ) ,!
Z=6 and

ˆ H1(k; Pic X )(2) = 0 if and only if V4 ,! H ;

ˆ H1(k; Pic X )(3) = 0 if and only if C3 ,! H .

Remark 5.1.11. Proposition 5.1.10 and Voskresenski��'s exact sequence in Theorem 1.5.8
immediately give the validity of the HNP and weak approximation for the norm one torus
of a degree6 (respectively, degree7) extension K=k with normal closure having Galois
group A6 (respectively, A7). Moreover, one can use Theorems 4.1.2 and 5.1.1 to prove
that both the HNP and weak approximation for the norm one torus hold for a degreen
extension withAn -normal closure, ifn � 5 and n 6= 6; 7. We thus obtain a new proof of the
main theorem of Chapter 3. Similarly, our techniques can be used to reprove Voskresenski��
and Kunyavski��'s Theorem 2.0.6 and Bartels results in Theorems 2.0.4 and 2.0.5.

5.2 Proof of the main theorems

In this section we prove the main theorems of this chapter, namely Theorems 5.1.1 and
5.1.3. We also show Corollary 5.1.5. For any subgroupG0 of G, we denote byFG=G0 a
�asque module in a �asque resolution of the Chevalley moduleJG=G0, see Section 1.5. We
use the isomorphism (1.5.2) in Theorem 1.5.12 to identifyH1(k; Pic X ) with H1(G; FG=H )
to make clear that this group only depends on the pair(G; H ).

First, we complete the proof of Theorem 5.1.1



(ii) K(K=k)(2) = K(L=k)(2) and K(K=k)(2) has size at most 2.

Proof. (i) This follows from Corollary 4.2.7(i).

(ii) This is a consequence of Theorem 4.1.1 and isomorphism (1.6.5) of Theorem 1.6.9.



Proof. See Schur's original paper [84] or [45



x:=t1 * t3;
y:=t2 * t1* t2* t3* t2* t3;

Print(Inverse(x)* Inverse(y)*x*y=z);

This last line of code outputstrue , as desired.

Inductive step: Suppose thath = (1 2)(3 4) � � � (n � 1 n)(n + 1 n + 2) . Denoting the
permutation (1 2)(3 4)� � � (n � 1 n) by ~h, write h = ~h:tn+1 . Now

[� � 1(h); � � 1(x)] = [ � � 1(~h)tn+1 ; � � 1(x)] = [ � � 1(~h); � � 1(x)]tn +1 [tn+1 ; � � 1(x)]:

By the inductive hypothesis and the relations of Proposition 5.2.2,[� � 1(~h); � � 1(x)]tn +1 =
ztn +1 =



Remark 5.2.5. The method employed in this section to provide explicit and computable
formulas for the knot group and the invariant H1(k; Pic X ) in An and Sn extensions
works for other families of extensions. For example, letG0 be any �nite group such that
H3(G0; Z) = Z=2. Embed G0 into Sn for somen and suppose thatG0 contains a copy of
V4 conjugate to h(1; 2)(3; 4); (1; 3)(2; 4)i . For such a groupG0, analogues of Lemma 5.2.3
and Propositions 5.2.1 and 5.2.4 yield a systematic approach to the study of the HNP and
weak approximation forG0-extensions.

We proceed by investigating the possible isomorphism classes of the �nite abelian group
F(G; H ) (and thus, by Theorems 4.1.2, 5.1.1 and isomorphism (1.5.2), of the invariant
H1(G; FG=H ) as well).

Proposition 5.2.6. The group F(Sn ; H ) is an elementary abelian2-group. Moreover,
every elementary abelian2-group occurs asF(Sn ; H ) for somen and someH � Sn .

Proof. It su�ces to prove that for every element h 2 H \ [Sn ; Sn ], we haveh2 2 � Sn (H ).
This is clear from the de�nition of � Sn (H ) becauseh is conjugate to its inverse inSn .
The statement on the occurrence of every elementary abelian



to its inverse yields3r i 6= 3 r j and 3si 6= 3 sj for i 6= j . Since n =
kP

i =1
3r i =

lP

i =1
3si , the

uniqueness of the representation ofn in base3 implies that k = l and r i = si for every i .
Thus the cycle structures ofh1 and h2 are identical and henceh1; h2 and h2

2 are conjugate
in Sn . Therefore, at least two of these elements areAn -conjugate, whereby at least one of
h� 1

1 h2; h� 1
1 h2

2; h2 is in � A n (H ). This contradicts the assumption that the images ofh1 and
h2 generate a non-cyclic subgroup ofF(An ; H ). One can compute thatF(A12; H ) �= C3

for H = h(1; 2; 3)(4; 5; 6; 7; 8; 9; 10; 11; 12)i using GAP, for example. The statement on the
occurrence of every elementary abelian2-group is shown in Proposition 5.2.8 below.

Proposition 5.2.8. For every k � 0, there existn and a subgroupH of An such that

F(An ; H )(2)
�= F(Sn ; H )(2)

�= Ck
2 :

Proof. The casek = 0 is realised by letting H = 1. From now on, assume thatk �
1. Let H be generated byk commuting and even permutations of order2 such that,
for any x; y 2 H with x 6= y, the permutations x and y have distinct cycle structures.
We de�ne such a group recursively asH = Hk , starting from H1 = h(1; 2)(3; 4)i , H2 =
h(1; 2)(3; 4); (5; 6)(7; 8)(9; 10)(11; 12)i and adding, at stepi , a new generatorhi such that:

ˆ hi is an even permutation of order2;

ˆ hi is disjoint to the previous generatorsh1; : : : ; hi � 1;

ˆ hi moves enough points so that its product with any element ofH i � 1 has cycle
structure di�erent from that of any element of H i � 1.

Let n be large enough so thatH � An . It is straightforward to check that one then has
� A n (H ) = � Sn (H ) = 1 . Therefore,F(An ; H ) = H \ [An ; An ] = H �= Ck

2 and similarly for
F(Sn ; H ).

As a consequence of the work done so far, we can now establish Theorem 5.1.3 and
Corollary 5.1.5.

Proof of Theorem 5.1.3. For G 6�= A6 or A7 the results follow from Theorems 4.1.2 and 5.1.1
and Propositions 5.2.6 and 5.2.7. For theA6 and A7 cases, we describe how to compute
H1(k; Pic X ) in Section 5.3 � the results of these computations are in Tables 5 and 6 of the
Appendix 5.4 and theC3 and C6 cases occur therein.
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Proof of Corollary 5.1.5. Theorem 5.1.3 shows thatH1(k; Pic X )(p) = 0 for a prime p > 3
and that H1(k; Pic X )(3) = 0 if G �= Sn . Theorem 4.1.2 givesFnr (L=K=k) = F(G; H ).
By Theorem 5.1.3,H1(k; Pic X )�

(3) is 3-torsion, so Theorem 5.1.1 givesH1(k; Pic X )�
(3) =

F(G; H )[3]. Let K 3 = LH 3 and let X 3



the An -conjugacy class of� . Since theSn -conjugacy class of� splits as a disjoint union
C t gCg� 1 for any g 2 Sn n An , it is enough to show thatx 2 An if and only if l is even.
We study the cycle structure ofx by analyzing the �xed points of its powers. Ob9a0hy of2



Conversely, assume thatn � 5 is equal to
kP

i =1
3r i with r1 < r 2 < � � � < r k and jf i j

r i is oddgj odd and let H be the cyclic group of order3r k generated byh, where

h = (1 � � � 3r 1 )
| {z }

c1

(3r 1 + 1 � � � 3r 1 + 3 r 2 )
| {z }

c2

: : : (
k� 1X

i =1

3r i + 1 � � � n)

| {z }
ck

:

We will prove that F(An ; H )(3)
�= C3. By Proposition 5.2.7, it is enough to show that

h =2 � A n (H ). Observe that � A n (H ) is generated by elements of the formhs� t wherehs is
An -conjugate toht . We complete the proof by showing that� A n (H ) � h h3i . Suppose that
hs is An -conjugate toht . We claim that s � t (mod 3). Since conjugate elements have the
same order,3 j s if and only if 3 j t. Now assume that3 - s. Then hs generatesH and has
the same cycle type ash



presented as Algorithm A4 in the Appendix 4.5. The computation ofK(L=k) follows from
a simple application of isomorphism (1.6.5) of Theorem 1.6.9 together with Lemma 1.1.4
and Lemma 5.3.1 below. Note that ifG = A4; S4; A5 or S5 then H3(G;



We now solve the non-Galois case. Once again, we compute the invariantH1(k; Pic X ) =
H1(G; FG=H ) for every possibility of H = Gal( L=K ) by using the methods detailed in
Section 4.4. The result of this computation is given in Tables 5 and 6 of the Appendix 5.4
and proves Proposition 5.1.10. Building upon the outcome of this computation, we establish
multiple results on the knot groupK(K=kon)



Proposition 5.3.5. (i) If H �= C2 or D5, then K(K=k) �= K(L=k);

(ii) If H �= C4 or C5 o C4, then

K(K=k) �= K(L=k)(3) � K(M=k) �= K(L=k)(3) � F(L=M=k);

whereM is the �xed �eld of a copy of (C3 � C3) o C4 inside G containing H2
�= C4.

Proof. First, note that in all casesK(K=k)(3)
�= K(L=k)(3) , by Theorem 4.1.1. By Propo-

sition 5.1.10 and Theorem 1.5.8, it only remains to computeK(K=k)(2) . For case (i),
let A be a copy ofS3 inside G such that A \ H  7.9701 Tf 8.375 -1.7924 11.955704 H2

1030= C2 Thf 8.375 -1.7924 11.-440Td 56 Td [(let)]TJK1 7.9701 Tf 9.699 -1.953 Td [(2)]TJ/F46 11.9552 Tf 7.307 09Td  Td [(.)]TJ
0 Tf 8.375 -1.7924 11.93d [5 H



5.4 Appendix: Computation of H1(k; PicX ) for small val-
ues of n

We present the results of the computer calculations outlined in Section 5.3. In the following
tables, we distinguish non-conjugate but isomorphic groups with a letter in front of the
isomorphism class.

Table 1

G = A4

[K : k] H H1(G; FG=H )
12 1 Z=2
6 C2 = h(1; 2)(3; 4)i Z=2
4 C3 = h(1; 2; 3)i Z=2
3 V4 = h(1; 2)(3; 4); (1; 3)(2; 4)i 0

Table 2

G = S4

[K : k] H H1(G; FG=H )
24 1 Z=2
12 C2a = h(1; 2)i 0
12 C2b= h(1; 2)(3; 4)i Z=2
8 C3 = h(1; 2; 3)i Z=2
6 C4 = h(1; 2; 3; 4)i 0
6 V4 = h(1; 2); (3; 4)i 0
6 V4 = h(1; 2)(3; 4); (1; 3)(2; 4)i 0
4 S3 = h(1; 2; 3); (1; 2)i 0
3 D4 = h(1; 2; 3; 4); (1; 3)i 0
2 A4 = h(1; 2)(3; 4); (1; 2; 3)i 0
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Table 3

G = A5

[K : k] H H1(G; FG=H )
60 1 Z=2
30 C2 = h(1; 2)(3; 4)i Z=2
20 C3 = h(1; 2; 3)i Z=2
15 V4 = h(1; 2)(3; 4); (1; 3)(2; 4)i 0
12 C5 = h(1; 2; 3; 4; 5)i Z=2
10 S3 = h(1; 2; 3); (1; 2)(4; 5)i Z=2
6 D5 = h(1; 2; 3; 4; 5); (2; 5)(3; 4)i Z=2
5 A4 = h(1; 2)(3; 4); (1; 2; 3)i 0

Table 4

G = S5

[K : k] H H1(G; FG=H )
120 1 Z=2
60 C2a = h(1; 2)i 0
60 C2b= h(1; 2)(3; 4)i Z=2
40 C3 = h(1; 2; 3)i Z=2
30 C4 = h(1; 2; 3; 4)i 0
30 V4a = h(1; 2); (3; 4)i 0
30 V4b= h(1; 2)(3; 4); (1; 3)(2; 4)i 0
24 C5 = h(1; 2; 3; 4; 5)i Z=2
20 C6 = h(1; 2; 3); (4; 5)i 0
20 S3a = h(1; 2; 3); (1; 2)i 0
20 S3b= h(1; 2; 3); (1; 2)(4; 5)i Z=2
15 D4 = h(1; 2; 3; 4); (1; 3)i 0
12 D5 = h(1; 2; 3; 4; 5); (2; 5)(3; 4)i Z=2
10 A4 = h(1; 2)(3; 4); (1; 2; 3)i 0
10 S3 � C2 = h(1; 2; 3); (1; 2); (4; 5)i 0
6 C5 o C4 = h(1; 2; 3; 4; 5); (2; 3; 5; 4)i 0
5 S4 = h(1; 2; 3; 4); (1; 2)i 0
2 A5 = h(1; 2; 3; 4; 5); (1; 2; 3)i 0
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Table 5

G = A6

[K : k] H H1(G; FG=H )
360 1 Z=6
180 C2 =



Table 6

G = A7

[K : k] H H1(G; FG=H )
2520 1 Z=



Chapter 6

Examples

6.1 (G; H )-extensions

This section concerns the existence of number �elds with prescribed Galois group for which
the HNP holds, and the existence of those for which it fails. The main result is Theo-
rem 6.1.3 below, which generalizes [41, Corollary 3.3] to non-normal extensions. To prove
it, we will use the notion of k-adequate extensions, as introduced by Schacher in [82].

De�nition 6.1.1. An extension K=k of number �elds is said to bek-adequateif K is a
maximal sub�eld of a �nite dimensional k-central division algebra.

A conjecture of Bartels (see [3, p. 198]) predicted that the HNP would hold for any
k-adequate extension. This was proved by Gurak (see [41, Theorem 3.1]) for Galois ex-
tensions, but disproved in general by Drakokhrust and Platonov (see [27, Ÿ9, Ÿ11]). Given
a Galois extensionL=k, a result of Schacher (see [82, Proposition 2.6]) shows thatL is
k-adequate if and only if for every primep j [L : k] there are at least two placesv1 and
v2 of k such that Dvi = Gal( L vi =kvi ) contains a Sylowp-subgroup ofGal(L=k). This led
Schacher to establish the following result:

Theorem 6.1.2. [82, Theorem 9.1] For any �nite group G there exists a number �eldk
and a k-adequate Galois extensionL=k with Gal(L=k) �= G.

Let G be a �nite group and H a subgroup ofG. We de�ne a (G; H )-extension of
a number �eld k to be an extensionK=k for which there exists a Galois extensionL=k
containing K=k such that Gal(L=k) �= G and Gal(L=K ) �= H . We write FG=H for a �asque
module in a �asque resolution of the Chevalley moduleJG=H .
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Theorem 6.1.3. Let G be a �nite group andH a subgroup ofG. Then

(i) there exist a number �eld k and a (G; H )-extension ofk satisfying the HNP and,
furthermore, if H1(G; FG=H ) 6= 0 then weak approximation fails for the norm one
torus associated with this extension;

(ii) there exist a number �eld k and a (G; H )-extension of k whose norm one torus
satis�es weak approximation and, furthermore, ifH1(G; FG=H ) 6= 0 then this extension
fails the HNP.

Proof. (i) Let L=k be a k-adequate Galois extension with Galois groupG as given in
Theorem 6.1.2. LetK = LH and T = R1

K=k Gm . Recall that, by Theorem 1.5.13,

X (T)� = Ker

 

H2(G; JG=H ) Res��!
Y

v2 
 k

H2(Dv; JG=H )

!

:

Let p be a prime dividing jGj and let Dv be a decomposition group containing a
Sylow p-subgroup ofG. Then Lemmas 1.1.2 and 1.1.4 show that the map

H2(G; JG=H )(p)
Res��!

Y

v2 
 k

H2(Dv; JG=H )

is injective. It follows that X (T) = 0 and so K(K=k) is trivial. The statement
regarding weak approximation follows from Theorem 1.5.8 and isomorphism (1.5.2)
of Theorem 1.5.12.

(ii) By [32] there exists a Galois extensionL=k of number �elds with Gal( 1.5.12and let Dand and



6.2 Successes and failures for An and Sn-extensions

As a consequence of Theorem 6.1.3, we can also obtain a version of Theorem 5.1.3 for the
knot group and the defect of weak approximation. In what follows, letL=K=k be a tower
of number �elds whereL=k is Galois with Galois groupG and let T = R1

K=k Gm .

Proposition 6.2.1. (i) For G �= Sn the groupsK(K=k) andA



ˆ For G = A5, let K = Q(� ), where� is a root of the polynomialx5 � x4 + 2x2 � 2x + 2,
and let L=Q be the normal closure ofK=Q. We haveGal(L=Q) �= A5 and there exists
a prime p of K above 2 with rami�cation index 4, so it follows that 4 j jD2j. Since
any subgroup ofA5 with order divisible by 4 contains a copy ofV4 generated by two
double transpositions, Proposition 5.1.7 shows that the HNP holds for any subextension
of L=Q.

ˆ For G = S5, take K = Q(� ), where � is a root of the polynomialx10 � 4x9 � 24x8 +
80x7 + 174x6 � 416x5 � 372x4 + 400x3 + 370x2 + 32x � 16, and let L=Q be the normal
closure ofK=Q. One can verify that Gal(L=Q) �= S5 and that there is a primep of K
above2 with rami�cation index 8



group G = A4; S4; A5; S5; A6; A7. The existence ofQ-adequate extensions with prescribed
Galois groupG has been studied by Schacher and others. ForG = A4; S4; A5; S5; A6; A7,
there exist Q-adequate Galois extensionsL=Q with Gal(L=Q) �= G. We give some refer-
ences for the interested reader. ForG = A4; A5 see [35], [36], respectively. In fact, for these
two groups stronger results hold. ForG = A4 there exist k-adequate Galois extensions
with Galois group A4 for any global �eld k of characteristic not equal to2 or 3 (see [35,
Corollary 2.2]). For G = A5, [36, Theorem 1] constructsk-adequate Galois extensions
with Galois group A5 for any number �eld k such that

p
� 1 62k. For G = S4; S5 see [82,

Theorem 7.1]. The casesG = A6; A7 are treated in [29]. We chose not to pursue this
approach because the polynomials de�ning the �eld extensions were rather cumbersome,
particularly for A6 and A7.

6.2.2 Failures

ˆ We start with the cases whereG is A4 or S4. Let L=Q be the splitting �eld of f (x),
where

f (x) =

(
x4 + 3x2 � 7x + 4 if G = A4,

x4 � x3 � 4x2 + x + 2 if G = S4.

In both casesL=Q is a Galois extension with Galois groupG such that every decom-
position group is cyclic. Therefore, Proposition 5.1.7 shows that the HNP fails for any
subextension ofL=k falling under case (i) or (ii) of Proposition 5.1.7, i.e. an extension
where the HNP can theoretically fail.

ˆ We now �nd examples for theA5 and S5 cases using work of Uchida [90]. Examples for
the A6 and A7 cases can be obtained in a manner analogous to the construction forA5.
Let F=Q be the splitting �eld of f (x) = x5 � x + 1 and setD = Disc( f ) = 19 � 151. By
[90, Corollary and Theorem 2],F=Q(

p
D) is an unrami�ed Galois extension with Galois

group A5, while F (
p

2)=Q(
p

2D) is an unrami�ed Galois extension with Galois groupS5.
If G = A5 then set L = F; k = Q(

p
D). If G = S5 then set L = F (

p
2); k = Q(

p
2D).

Let K=k be a subextension ofL=k falling under case (i) or (ii) of Proposition 5.1.7. Since
L=k is unrami�ed, all its decomposition groups are cyclic, whereby the HNP fails for
K=k by the criterion of Proposition 5.1.7.

A similar construction allows us to provide examples of unrami�ed GaloisA6 and A7l9=

A s29n]TJ/F43 1.9552 Tb- r vis



order to get a Galois extension of number �elds with decomposition groupDv = C3 � C3

for every rami�ed placev. Since the remaining places have cyclic decomposition groups,
it follows from Proposition 5.1.9 that the knot group of this extension isC2. An analogous
construction choosingS = D4 gives a Galois extension of number �elds with knot group
equal to C3.
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Part II

The multinorm principle
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Chapter 7

Introduction

Let K = ( K 1; : : : ; K n ) be an n-tuple (n � 1) of �nite extensions of a number �eld k. In
this part of the thesis, we study the so-calledmultinorm principle for K , which is said to
hold if, for any c 2 k� , the a�ne k-variety

Tc :
nY

i =1

NK i =k(� i ) = c (7.0.1)

(where � i is a variable) satis�es the Hasse principle. In other words,K satis�es the
multinorm principle if, for all c 2 k� , the existence of points onTc over every completion
of k implies the existence of ak-point.

From a geometric viewpoint,Tc de�nes a principal homogenous space under themulti-
norm one torus T, de�ned by the exact sequence ofk-algebraic groups

1 ! T !
nY

i =1

RK i =kGm

Q
i NK i =k

�����! Gm ! 1:1



Setting n = 1 one recovers theHasse norm principle(HNP), studied in Part I of this
thesis. Recall that ifK=k is Galois, then Tate's theorem 1.6.9 gives an explicit description
of the obstruction to the HNP in terms of the group cohomology of its local and global
Galois groups. Later work of Drakokhrust allows one to obtain a more general description
of this obstruction for an arbitrary extensionK=k in terms of generalized representation
groups, see [26, Theorem 2].

It is natural to look for a similar description whenn > 1. This is the main objective
of this part of the thesis and we provide explicit formulas for the obstructions to the
multinorm principle and weak approximation for the multinorm one torus ofn arbitrary
extensions. In order to achieve this, we generalize the concept (due to Drakokhrust and
Platonov in [27] and described in detail in Section 4.3) of the �rst obstruction to the Hasse
norm principle (see Section 8.1). By then adapting work of Drakokhrust ([26]), we obtain
our main result (Theorem 8.2.6), describing the obstructions to the multinorm principle
and weak approximation in terms of generalized representation groups of the relevant local
and global Galois groups. The formulas given in Theorem 8.2.6 are e�ectively computable
and we also provide algorithms in GAP [33] for this e�ect (see Remark 8.2.7).

Multiple other questions on the multinorm principle have been analyzed in the litera-
ture. For example, if n = 2 it is known that the multinorm principle holds if

1. K 1 or K 2 is a cyclic extension ofk ([50, Proposition 3.3]);

2. K 1=k is abelian, satis�es the HNP andK 2 is linearly disjoint from K 1 ([78, Proposi-
tion 4.2]);

3. the Galois closures ofK 1=k and K 2=k are linearly disjoint over k ([77]).

Subsequent work of Demarche and Wei provided a generalization of the result in (3) to
n extensions ([25, Theorems 1 and 6]), while also addressing weak approximation for the
associated multinorm one torus. In [76], Pollio computed the obstruction to the multinorm
principle for a pair of abelian extensions and, in [5], Bayer-Fluckiger, Lee and Parimala
provided an explicit combinatorial description ofK(K; k ) as well as necessary and su�cient
conditions for the varietyTc to have ak-rational point, assuming that one of the extensions
K i =k is cyclic.

We will also apply our techniques to describe the validity of the local-global principles
in three concrete examples (see Chapter 9) motivated by the aforementioned results of
Demarche�Wei, Pollio and Bayer-Fluckiger�Lee�Parimala. To obtain these results, we use
comparison maps between the obstructions to the local-global principles in the multinorm
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and the Hasse norm principle setting. We start by proving a result inspired by [25, Theorem
6] that compares the birational invariantsH1(k; Pic X ) and H1(k; Pic Y), where X is a
smooth compacti�cation of the multinorm one torusT and Y is a smooth compacti�cation

of the norm one torusS = R1
F=kGm of the extensionF =

nT

i =1
K i . In particular, we show

(Theorem 9.2.1) that under certain conditions there is an isomorphism

H1(k; Pic X ) '�! H1(k; Pic Y):

This result further allows us to compare the defect of weak approximation forT with the
defect of weak approximation forS (Corollary 9.2.3).

Under the same assumptions, we also show (Theorem 9.3.1) the existence of isomor-
phisms

K(K; k ) �= K(F=k) and A(T) �= A(S)

when all the extensionsK i =k are abelian. This theorem generalizes Pollio's main result in
[76] on the obstruction to the multinorm principle for a pair of abelian extensions.



Chapter 8

Explicit methods for the multinorm
principle

In this chapter we de�ne the concept of the �rst obstruction to the multinorm principle and
present several of its properties. We �x a number �eldk, an n-tuple K = ( K 1; : : : ; K n ) of
�nite extensions of k and a �nite Galois extensionL=k containing all the �elds K 1; : : : ; K n .
We denoteG = Gal( L=k), H i = Gal( L=K i ) for i = 1; : : : ; n and H = hH1; : : : ; Hn i , the

subgroup ofG generated by all theH i . Note that H = Gal( L=F ), whereF =
nT

i =1
K i .

8.1 The �rst obstruction to the multinorm principle

De�nition 8.1.1. We de�ne the �rst obstruction to the multinorm principle for K corre- (L=F)]T2/F30 11.9552 11.90i669n



K(K; k



whereCL denotes the idèle class group ofL=k and the horizontal isomorphisms are given by

cup product with the canonical generator of̂H
2
(G; CL ). The hypothesis is thus equivalent

to the map
tM

i =1

n iM

j =1

CorGG i;j
:

tM

i =1

n iM

j =1

Ĥ
� 1

(Gi;j ; CL ) ! Ĥ
� 1

(G; CL ) (8.1.2)

being surjective. Using the de�nition of the Tate cohomology group̂H
� 1



Lemma 8.1.6. (Lemma 4.3.4) Let L=K=k be a tower of number �elds withL=k Galois.
Set G = Gal( L=k) and H = Gal( L=K ). Then, given a placev of k, the set of placesw of

K abovev is in bijection with the set of double cosets in the decompositionG =
r vS

i =1
Hx i Dv.

If w corresponds toHx i Dv, then the decomposition groupHw of the extensionL=k at w
equalsH \ x i Dvx � 1

i .

In our situation, for any v 2 
 k and i = 1; : : : ; n, let G =
r v;iS

t=1
H i x i;t Dv be a double coset

decomposition. By the above lemma,H i;w := H i \ x i;t Dvx � 1
i;t is the decomposition group of

L=K i at a placew of K i abovev corresponding to the double cosetH i x i;t Dv. Now consider
the commutative diagram:

nL

i =1
H ab

i
 1 //Gab

nL

i =1
(

L

v2 
 k

(
L

wjv
H ab

i;w ))
 2 //

' 1

OO

L

v2 
 k

D ab
v

' 2

OO (8.1.4)

Here the superscriptab above a group denotes its abelianization and the inside sum over
wjv runs over all the placesw of K i above v. Additionally, the maps ' 1;  1 and ' 2 are
induced by the inclusionsH i;w ,! H i ; H i ,! G and Dv ,! G, respectively, while 2 is
obtained from the product of all conjugation mapsH ab

i;w ! D ab
v sendinghi;t [H i;w ; H i;w ] to

x � 1
i;t hi;t x i;t [Dv; Dv]. We denote by v

2 (respectively,  nr
2 ) the restriction of the map  2 to

the subgroup
nL

i =1
(
L

wjv
H ab

i;w ) (respectively,
nL

i =1
(

L

v2 
 k
v unrami�ed

(
L

wjv
H ab

i;w ))). With this notation set,

we can now establish the main result of this section (generalizing Theorem 4.3.5):

Theorem 8.1.7. In the notation of diagram (8.1.4), we have

F(L; K; k ) �= Ker  1=' 1(Ker  2):
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Proof. Diagram (8.1.4) can be written as

nL

i =1
Ĥ

� 2
(H i ; Z)

 1 //Ĥ
� 2

(G; Z)

nL

i =1
(

L

v2 
 k

(
L

wjv
Ĥ

� 2
(H i;w ; Z)))

 2 //

' 1

OO

L

v2 
 k

Ĥ
� 2

(Dv; Z)

' 2

OO
(8.1.5)

By the local (respectively, global) Artin isomorphism, we havêH
� 2

(H i;w ; Z) �= Ĥ
0
(H i;w ; L �

w)

and Ĥ
� 2

(Dv; Z) �= Ĥ
0
(Dv; L �

v) (respectively, Ĥ
� 2

(H i ; Z) �= Ĥ
0
(H i ; CL ) and Ĥ

� 2
(G; Z) �=

Ĥ
0
(G; CL ), where CL is the idèle class group ofL=k). Additionally, by [18, Proposition

7.3(b)] there are identi�cations
L

v2 
 k

(
L

wjv
Ĥ

0
(H i;w ; L �

w)) �= Ĥ
0
(H i ; A �

L ) and
L

v2 
 k

Ĥ
0
(Dv; L �

v) �=

Ĥ
0
(G; A �

L ). Since all these isomorphisms are compatible with the maps in diagram (8.1.5),
this diagram induces the commutative diagram

nL

i =1
Ĥ

0
(H i ; CL )

 1 //Ĥ
0
(G; CL )

nL

i =1
Ĥ

0
(H i ; A �

L )
 2 //

' 1

OO

Ĥ
0
(G; A �

L )

' 2

OO
(8.1.6)

where' 1; ' 2 are the natural projections and 1;  2 are induced by the product of the norm
mapsNK i =k. Using the de�nition of the cohomology groupĤ

0
, this diagram is equal to

nL

i =1

A�
K i

K �
i NL=K i

(A�
L )

 1 // A�
k

k � NL=k (A�
L )

nL

i =1

A�
K i

NL=K i
(A�

L )

 2 //

' 1

OO

A�
k

NL=k (A�
L )

' 2

OO
(8.1.7)

From diagram (8.1.7), it is clear that

Ker  1 = f (x i K �
i NL=K i (A

�
L ))n

i =1 j
nY

i =1

NK i =k(x i ) 2 k� NL=k (A �
L )g
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and

' 1(Ker  2) = f (x i K �
i NL=K i (A

�
L ))n

i =1 j
nY

i =1

NK i =k(x i ) 2 NL=k (A �
L )g:

Now de�ne

f : Ker  1=' 1(Ker  2) �! F(L; K; k )

(x i K �
i NL=K i (A

�
L ))n

i =1 7�! x
nY

i =1

NK i =k(K i
� )(k� \ NL=k (A �

L ))

where x is any element ofk� \
nQ

i =1
NK i =k(A �

K i
) such that

nQ

i =1
NK i =k(x i ) 2 xN L=k (A �

L ). It is

straightforward to check that f is well de�ned and an isomorphism.

Remark 8.1.8. Given the knowledge of the local and global Galois groups of the towers
L=K i =k, the �rst obstruction to the multinorm principle can be computed in �nite time
by employing Theorem 8.1.7. First, it is clear that the computation of the groupsKer  1

and ' 1(Ker  v
2) for the rami�ed places v of L=k is �nite. Moreover, from the de�nition of

the maps in diagram (8.1.4), it is clear that ifv1; v2 2 
 k are such that Dv1 = Dv2 , then
' 1(Ker  v1

2 ) = ' 1(Ker  v2
2 ). This shows that the computation of' 1(Ker  nr

2 ) is also �nite.







Proof. We construct a vector� 2
nL

i =1
(

L

v2 
 k
v unrami�ed

(
L

wjv

eH ab
i;w )) such that e 2(� ) = 1 and e' 1(� ) =

h. Let v be an unrami�ed place ofk such that eSv = hmi . By de�nition, if eG =
r v;iS

t=1

fH i ex i;t
eSv

is a double coset decomposition ofeG, then eH i;w = fH i \ ex i;t
eSvex � 1

i;t . Let us suppose, without
loss of generality, that ex i 1 ;n1 = 1 = ex i 2 ;n2 for some index1 � n1 � r v;i 1 (respectively,
1 � n2 � r v;i 2 ) corresponding to a placew1 2 
 K i 1

(respectively, w2 2 
 K i 2
) via Lemma

8.1.6. In this way, we havem 2 eH i 1 ;w1 and m� 1 2 eH i 2 ;w2 . Setting the (i 1; v; w1)-th
(respectively, (i 2; v; w2)-th) entry of � to be equal tom (respectively, m� 1) and all other
entries equal to1, we obtain e 2(� ) = 1 and e' 1(� ) = h.

Theorem 8.2.5. In the notation of diagram (8.2.2), we have

K(K; k ) �= Ker e 1=e' 1(Ker e 2):

Proof. By Theorem 8.1.7 and Proposition 8.2.1, we haveK(K; k ) �= Ker  1=' 1(Ker  2),
where the notation is as in diagram (8.2.2) with respect to the groups of Proposition
8.2.1. Therefore, it su�ces to prove that

Ker e 1=e' 1(Ker e 2) �= Ker  1=' 1(Ker  2):

De�ne

f : Ker e 1=e' 1(Ker e 2) �! Ker  1=' 1(Ker  2)

(eh1; : : : ;ehn ) 7�! (h1; : : : ; hn )

where, for eachi = 1; : : : ; n, the elementhi 2 H i is selected as follows: takehi 2 H i such
that � (hi ) = e� (ehi ) (note that hi is only de�ned moduloM = Ker � ). In this way, we have
� (h1 : : : hn ) = e� (eh1 : : : ehn ). Additionally, by Lemma 8.2.2(i), � (� (eh1 : : : ehn )) = e� (eh1 : : : ehn )
and thus

� (eh1 : : : ehn ) = h1 : : : hnm (8.2.3)

for somem 2 M . Changinghn if necessary, we assume thatm = 1 so that h1 : : : hn 2 [G; G]
and therefore(h1; : : : ; hn ) 2 Ker  1.

Claim 1: f is well de�ned, i.e. it does not depend on the choice of the elementshi and
f ( e' 1(Ker e 2)) � ' 1(Ker  2).
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Proof: We �rst prove that f does not depend on the choice ofhi . Suppose that, for
eachi = 1; : : : ; n, we choose elementshi 2 H i satisfying e� (ehi ) = � (hi ) and � (eh1 : : : ehn ) =
h1 : : : hn . We show that (h1; : : : ; hn ) = ( h1; : : : ; hn ) in Ker  1=' 1(Ker  2). Writing hi =
hi mi for some mi 2 M , it su�ces to prove that (m1; : : : ; mn ) 2 ' 1(Ker  2). Since
h1 : : : hn = � (eh1 : : : ehn ) = h1 : : : hn and the elementsmi are in M � Z (G), we ob-

tain m1 : : : mn = 1. As M �
nT

i =1
H i , multiplying (m1; : : : ; mn ) by (m2; m� 1

2 ; 1; : : : ; 1)

(which lies in ' 1(Ker  2) by Lemma 8.2.4), we have(m1; : : : ; mn ) � (m1m2; 1; m3; : : : ; mn )
(mod ' 1(Ker  2)) . Repeating this procedure, we obtain(m1; : : : ; mn ) � (m1 : : : mn ; : : : ; 1) =
(1; : : : ; 1) (mod ' 1(Ker  2)) and therefore(m



for somem 2 M . We prove that m is also in [Dv; Dv] so that, by multiplying one of the
elementsh1;t by m� 1 2 M \ [Dv; Dv] if necessary (note that doing so does not change
condition (8.2.5)), we obtainf (eh1; : : : ;ehn ) = ( h1; : : : ; hn ). As (h1; : : : ; hn ) is in ' 1(Ker  

v
2),

this proves the claim.

Note that
nY

i =1

r v;iY

t=1

ehi;t = (
nY

i =1

r v;iY

t=1

ehi;t )(
1Y

i = n

1Y

t= r v;i

ex � 1
i;t

eh� 1
i;t ex i;t ) e 2(� ):

Denote (
nQ

i =1

r v;iQ

t=1

ehi;t )(
1Q

i = n

1Q

t= r v;i

ex � 1
i;t

eh� 1
i;t ex i;t ) by � . Then � 2 [ eG; eG] and using an explicit de-

scription of � as a product of commutators and Lemma 8.2.2(ii), we deduce that� (� ) = � 0,

where� 0 = (
nQ

i =1

r v;iQ

t=1
hi;t )(

1Q

i = n

1Q

t= r v;i

x � 1
i;t h

� 1
i;t x i;t ). Therefore, we have

nY

i =1

hi =
nY

i =1

r v;iY

t=1

hi;t � � 0 = � (� ) � � (
nY

i =1

ehi ) (mod [Dv; Dv]);

and thus m 2 [Dv; Dv], as desired.

Claim 2: f is a homomorphism.

Proof: Let h = ( eh1; : : : ;ehn ); h0 = ( eh0
1; : : : ;eh0

n ) 2 Ker e 1 and write f (h) = ( h1; : : : ; hn )
and f (h0) = ( h

0
1; : : : ; h

0
n ) for some elementshi ; h

0
i 2 H i . We havef (h)f (h0) = ( h1h

0
1; : : : ; hnh

0
n ).

On the other hand,hh0 = ( eh1
eh0

1; : : : ;ehn
eh0

n ) and

� (eh1
eh0

1 : : : ehn
eh0

n ) � � ((eh1 : : : ehn )(eh0
1 : : : eh0

n )) = ( h1 : : : hn )(h
0
1 : : : h

0
n ) � h1h

0
1 : : : hnh

0
n (mod [G; G]):

Since e� (ehi
eh0

i ) = � (hi h
0
i ) for all i = 1; : : : ; n and (h1 : : : hn )(h

0
1 : : : h

0
n ) 2 [G; G], by the

de�nition of f it follows that f (hh0) = ( h1h
0
1; : : : ; hnh

0
n ) = f (h)f (h0).

Claim 3: f is surjective.

Proof: For i = 1; : : : ; n, let hi 2 H i be such thath1 : : : hn 2 [G; G]. Take any elements
ehi 2 fH i satisfying e� (ehi ) = � (hi ). As above, by Lemma 8.2.2(i) this implies that there
exists m 2 M such that

� (eh1 : : : ehn ) = h1 : : : hnm 2 [G; G]:
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Sinceh1 : : : hn 2 [G; G], we havem 2 M \ [G; G]. But M \ [G; G] = � ( fM \ [ eG; eG]) by
Lemma 8.2.2. Thereforem = � (m0) for somem0 2 fM \ [ eG; eG] and thus (h1; : : : ; hn ) =
f (eh1; : : : ;ehnm0� 1).

Claim 4: f is an isomorphism.

Proof: We have seen thatf is surjective. Now we can analogously de�ne a surjec-
tive map from Ker  1=' 1(Ker  2) to Ker e 1=e' 1(Ker e 2). It follows that the �nite groups
Ker e 1=e' 1(Ker e 2) and Ker  1=' 1(Ker  2) have the same size and sof is an isomor-
phism.

Using this theorem, one can also obtain descriptions of the birational invariantH1(k; Pic X )
and the defect of weak approximationA(T) for the multinorm one torus T:

Theorem 8.2.6. Let T be the multinorm one torus associated withK and let X be a
smooth compacti�cation of T. In the notation of diagram (8.2.2), we have

X (T) �= Ker e 1=e' 1(Ker e 2);

H1(k; Pic X )� �= Ker e 1=e' 1(Ker e nr
2 );

A(T) �= e' 1(Ker e 2)=e' 1(Ker e nr
2 ):

Proof. The �rst isomorphism is the statement of Theorem 8.2.5 (recall thatX (T) is iso-
morphic to K(K; k )). In order to show the second isomorphism, letL0=k0 be an unram-
i�ed Galois extension with Galois groupG (such an extension always exists by [32]), let
K 0

i = L0H i for i = 1; : : : ; n and let K 0 = ( K 0
1; : : : ; K 0

n ). Let T0 be the multinorm one
torus over k0 associated withK 0 and let X 0 be a smooth compacti�cation ofT0. Note that
H1(k; Pic X ) �= H1(k0; Pic X 0) since bT �= bT0 as G-modules. AsL0=k0 is unrami�ed, by [91,
Corollary 2] we haveA(T0) = 0 and thus Voskresenski��'s exact sequence of Theorem 1.5.8
givesH1(k0; Pic X 0)� �= X (T0). The result follows sinceX (T0) �= Ker e 1=e' 1(Ker e nr

2 ) by
the �rst isomorphism. Finally, in order to obtain the third isomorphism apply again Voskre-
senski��'s Theorem 1.5.8 and note that the surjectionH1(k; Pic X )� � X (T) given in this
theorem corresponds to the natural surjectionKer e 1=e' 1(Ker e nr

2 ) � Ker e 1=e' 1(Ker e 2)
(this fact follows from an argument analogous to the one given in the Hasse norm principle
case, see Theorem 4.3.11).

Remark 8.2.7. As explained in Remark 8.1.8, all the groupsKer e 1; e' 1(Ker e 2) and
e' 1(Ker e nr

2 ) in Theorem 8.2.6 can be computed in �nite time. To this extent, we as-
sembled a function in GAP [33] (whose code is available in [63]) that, given the relevant
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local and global Galois groups, outputs the obstructions to the multinorm principle and



Proposition 8.2.9. Suppose that there existsj 2 f 1; : : : ; ng such that, for every primep

dividing jĤ
� 3

(G; Z)j, p2 does not divide[K j : k]. Then, in the notation of diagram(8.1.4),
we have

X (T) �= Ker  1=' 1(Ker  2);

H1(k; Pic X )� �= Ker  1=' 1(Ker  nr
2 );

A(T) �= ' 1(Ker  2)=' 1(Ker  nr
2 ):

Proof. We prove only that H1(k; Pic X )� �= Ker  1=' 1(Ker  nr
2 ) (the other two isomor-

phisms can be obtained by a similar argument). Assume, without loss of generality,
that j = 1 and eG is a Schur covering group ofG so that fM is contained in [ eG; eG] and
fM �= Ĥ

� 3
(G; Z). We show that the map

� : Ker e 1=e' 1(Ker e nr
2 ) �! Ker  1=' 1(Ker  nr

2 )

h = ( eh1; : : : ;ehn ) 7�! (e� (eh1); : : : ; e� (ehn ))

is an isomorphism, which proves the desired statement by Theorem 8.2.6.

We �rst verify that � is well de�ned. It is enough to check that � ( e' 1(Ker e v
2)) �

' 1(Ker  v
2) for an unrami�ed placev of L=k. Note that if eG =

r v;iS

t=1

fH i ex i;t
eSv is a double coset

decomposition of eG, then G =
r v;iS

t=1
H i x i;t Dv is a double coset decomposition ofG, where

x i;t = e� (ex i;t ). From this observation, it is straightforward to verify that � ( e' 1(Ker e v
2)) �

' 1(Ker  v
2).

We now prove that � is surjective. Suppose that we are given, fori = 1; : : : ; n, elements
hi 2 H i such that h1 : : : hn 2 [G; G]. Since fM � [ eG; eG], any choice of elementsehi 2 fH i

such that e� (ehi ) = hi will satisfy eh1 : : : ehn 2 [ eG; eG] and thus (h1; : : : ; hn ) = � (eh1; : : : ;ehn ).

We �nally show that � is injective. Suppose that(h1; : : : ; hn ) = � (h) 2 ' 1(Ker  v
2)

for some unrami�ed placev of L=k. Write hi = ' 1(
r v;iL

t=1
hi;t ) for some elementshi;t 2 H i \

x i;t Dvx � 1
i;t . As (h1; : : : ; hn ) 2 ' 1(Ker  v

2), we have
nQ

i =1

r v;iQ

t=1
x � 1

i;t hi;t x i;t = 1. Picking elements

ehi;t 2 e� � 1(hi;t ) and ex i;t 2 e� � 1(x i;t ) for all possiblei; t , we obtain
nQ

i =1

r v;iQ

t=1
ex � 1

i;t
ehi;t ex i;t = m for

somem 2 fM = Ker e� . As m 2 Z( eG) \
nT

i =1

fH i , we have(eh1m� 1; eh2; ; : : : ;ehn ) 2 e' 1(Ker e nr
2 ).
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Therefore, in order to prove thath 2 e' 1(Ker e nr
2 ) it su�ces to show that (m� 1; 1; : : : ; 1) 2

e' 1(Ker e nr
2 ). We prove that m 2 � eG( fH1), which completes the proof by (8.2.6).

Claim: If p2 does not divide[K 1 : k] for every primep dividing j fM j, then fM � � eG( fH1).

Proof: We show that fM (p) � � eG( fH1). We have[K 1 : k] = [ G : H1] and therefore[Gp :
(H1)p] = [ eGp : ( fH1)p] = 1 or p. In any case,( fH1)p E eGp and we can write eGp = hxpi :( fH1)p

for somexp 2 eGp. Since fM (p) � eGp \ [ eG; eG] \ Z ( eG) and eGp \ [ eG; eG] \ Z ( eG) � [ eGp; eGp] by
Lemma 8.2.8, we havefM (p) � [ eGp; eGp] and so it su�ces to prove that [ eGp; eGp] � � eG( fH1).
Let z = [ xa

ph1; xb
ph0

1] for somea; b2 Z andh1; h0
1 2 ( fH1)p. Using the commutator properties,

we havez = [ xa
p; h0

1]h1 [h1; h0
1][h1; xb

p]h
0
1 . As ( fH1)p E eGp and � eG( fH1) E fH1, it follows that

each one of the commutators above is in� eG



Chapter 9

Applications

In this chapter we illustrate the scope of the techniques developed in Chapter 8 by in-
vestigating the multinorm principle and weak approximation for the multinorm one torus
in three di�erent situations. Namely, we extend results of Demarche�Wei [25], Pollio [76]
and Bayer-Fluckiger�Lee�Parimala [5]. The notation used throughout this section is as in
Chapter 8, except we now assumeL=k to be the minimal Galois extension containing all
the �elds K 1; : : : ; K n . Additionally, we will make use of the norm one torusS = R1

F=kGm

of the extensionF =
nT

i =1
K i and we letY denote a smooth compacti�cation ofS. We start

by establishing two auxiliary lemmas to be used in later sections.

9.1 Two useful lemmas

Lemma 9.1.1. In the notation of diagram (8.2.2), we have

e' 1(Ker e nr
2 ) � f (h1

fH1(K



Proof. Since e' 1(Ker e nr
2 ) =

Q

v2 
 k
v unrami�ed

e' 1(Ker e v
2), it su�ces to prove that

e' 1(Ker e v
2) � f (h1

fH1
0
; : : : ; hn

fHn
0
) j h1 : : : hn 2 �

eG( eH )g

for any unrami�ed place v of L=k. Let � 2 Ker e v
2 and �x a double coset decomposition

eG =
r v;iS

t=1

fH i ex i;t
eSv. Write eSv = hgi and � =

nL

i =1

r v;iL

t=1

ehi;t for someg 2 eG, ehi;t = ex i;t gei;t ex � 1
i;t 2

fH i \ ex i;t hgi ex � 1
i;t and someei;t 2 Z. By hypothesis, we have1 = e 2(� ) = g

P
i;t ei;t and

therefore X

i;t

ei;t � 0 (mod m);

wherem is the order ofg. Sincegm = 1, by changing some of theei;t if necessary, we can
(and do) assume that X

i;t

ei;t = 0: (9.1.1)

Letting hi =
r v;iQ

t=1

ehi;t for any 1 � i � n, we have e' 1(� ) = ( h1
fH1; : : : ; hn

fHn ) 2 Ker e 1.

We prove that
nY

i =1

hi =
nY

i =1

(
r v;iY

t=1

ehi;t ) =
nY

i =1

(
r v;iY

t=1

ex i;t gei;t ex � 1
i;t ) 2 �

eG( eH )

by induction on s :=
n



Sinceei;t f n;r v;n = en;r v;n f i;t ; we have

e 2(� ) = g

� P
i;t

( i;t )6=( n;r v;n )

ei;t f n;r v;n ai;t

�
� en;r v;n

= g

� P
i;t

( i;t )6=( n;r v;n )

en;r v;n f i;t ai;t

�
� en;r v;n

= 1

and so� 2 Ker e v
2.

Additionally, if e' 1(� ) = ( eh1; : : : ;ehn ), we have

nY

i =1

ehi =

0

B
B
@

Y

i;t
( i;t )6=( n;r v;n )

ex i;t gei;t f n;r v;n ai;t ex � 1
i;t

1

C
C
A exn;r v;n g� en;r v;n ex � 1

n;r v;n
=

=

0

B
B
@

Y

i;t
( i;t )6=( n;r v;n )

ex i;t gei;t f n;r v;n ai;t ex � 1
i;t

1

C
C
A exn;r v;n g

� en;r v;n
P
i;t

( i;t )6=( n;r v;n )

f i;t ai;t

ex � 1
n;r v;n

�

�

0

B
B
@

Y

i;t
( i;t )6=( n;r v;n )

ex i;t gei;t f n;r v;n ai;t ex � 1
i;t exn;r v;n g� ei;t f n;r v;n ai;t ex � 1

n;r v;n

1

C
C
A (mod [ eH; eH ])

(9.1.2)

since the elementsex i;t gei;t ex � 1
i;t (for all possiblei; t ) are in eH .

We claim that
nQ

i =1

ehi 2 � eG( eH ). To show this note that the elementsex i;t gei;t f n;r v;n ai;t ex � 1
i;t

and exn;r v;n g� ei;t f n;r v;n ai;t ex � 1
n;r v;n

are in eH and soex i;t gei;t f n;r v;n ai;t ex � 1
i;t 2 eH \ (ex i;t ex � 1

n;r v;n
) eH (exn;r v;n ex � 1

i;t ).
We thus see thatex i;t gei;t f n;r v;n ai;t ex � 1

i;t exn;r v;n g� ei;t f n;r v;n ai;t ex � 1
n;r v;n

= [ ex i;t g� ei;t f n;r v;n ai;t ex � 1
i;t ; ex i;t ex � 1

n;r v;n
]

is in � eG( eH ) for all i; t such that (i; t ) 6= ( n; r v;n ) and from (9.1.2) we deduce that
nQ

i =1

ehi 2

� eG( eH ).

Finally, we prove that h1



It is clear that � 0, being the product of two elements inKer e v
2, is also in this set. By the

induction hypothesis, if e' 1(� 0) = ( bh1; : : : ;bhn ) we havebh1 : : : bhn 2 � eG( eH ). Sincebhi � hi
ehi

(mod [ eH; eH ]) for all i = 1; : : : ; n, we conclude thath1 : : : hn 2 � eG( eH ).

Lemma 9.1.2. (i) There exists a surjection f : H1(k; Pic X )� �! H1(k; Pic Y)� . If in
addition

e' 1(Ker e nr
2 ) � f (h1

fH1
0
; : : : ; hn

fHn
0
) j h1 : : : hn 2 �

eG( eH )g

(in the notation of diagram (8.2.2)), then f is an isomorphism.

(ii) If F=k is Galois, f induces a surjectionX (T) � X (S).

Proof. Consider the analog of diagram (8.2.2) for the extensionF=k (note that this is the
�xed �eld of the group H inside L=k):

eH ab
b 1 // eGab

L

v2 
 k

(
L

wjv

eH ab
w )

b 2//

b' 1

OO

L

v2 
 k

eSab
v

b' 2

OO (9.1.3)

Here all the maps with theb notation are de�ned as in diagram (8.2.2) with respect to the
extensionF=k. Now de�ne

f : Ker e 1=e' 1(Ker e nr
2 ) �! Ker b 1=b' 1(Ker b nr

2 )

(eh1
fH1

0
; : : : ;ehn

fHn
0
) e' 1(Ker e nr

2 ) 7�! (eh1 : : : ehn [ eH; eH ]) b' 1(Ker b nr
2 )

Since b' 1(Ker b nr
2 ) = � eG( eH )=[ eH; eH ] (see [27, Theorem 2] or Theorem 4.3.8), the mapf

is well de�ned by Lemma 9.1.1. Additionally, as the target group is abelian, it is easy to
check thatf is a homomorphism and surjective. By Theorem 8.2.6 we haveH1(k; Pic X )� �=
Ker e 1=e' 1(Ker e nr

2 ) and H1(k; Pic Y)� �= Ker b 1=b' 1(Ker b nr
2 ). The statement in the �rst

sentence follows. Finally, if we assumee' 1(Ker e nr
2 ) � f (h1

fH1
0
; : : : ; hn

fHn
0
) j h1 : : : hn 2

� eG( eH )g, then it is clear that f is injective.

We now prove (ii). By Theorem 8.2.6, it is enough to show thatf ( e' 1(Ker e 2)) �
b' 1(Ker b 2). Since e' 1(Ker e 2) =

Q

v2 
 k

e' 1(Ker e v
2), it su�ces to verify f ( e' 1(Ker e v

2)) �

b' 1(Ker b 2) for all v 2 
 k . Let � 2 Ker e v
2 and write � =

nL

i =1

r v;iL

t=1

ehi;t for someehi;t 2
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fH i \ ex i;t
eSvex � 1

i;t . Hence, we obtaine' 1(� ) = ( eh1; : : : ;ehn ), whereehi =
r v;iQ

t=1

ehi;t , and we wish to

show that
nQ

i =1

ehi 2 b' 1(Ker b 2). SinceF=k is Galois, eH is a normal subgroup ofeG and thus

� eG( eH ) = [ eH; eG]



Let � = ( h1
fH1

0
; : : : ; hn

fHn
0
) be such that h1 : : : hn 2 � eG( eH ). Renaming the �elds K i

if necessary, we assume thati 0 = 1 and j 0 = 2. Denoting B I i = Gal( L=E I i ); BJ i =
Gal(L=EJ i ) for all 1 � i � n, the hypothesisE I i \ EJ i � K i is equivalent to B I i BJ i � H i

and thus
fH i � fB I i

fBJ i (9.2.1)



Corollary 9.2.3. Let c 2 k� . Assume the hypothesis of Theorem 9.2.1 and thatF=k is
Galois. Suppose that thek-variety NF=k (�) = c satis�es weak approximation. Then the

k-variety
nQ

i =1
NK i =k(� i ) = c satis�es weak approximation if and only if it has ak-point.

Corollary 9.2.4. Assume the hypothesis of Theorem 9.2.1 and suppose that the Hasse prin-
ciple and weak approximation hold for all norm equationsNF=k (�) = c, c 2 k� . Then the

Hasse principle and weak approximation hold for all multinorm equations
nQ

i =1
NK i =k(� i ) = c.

9.3 Abelian extensions

In this subsection we generalize the main theorem of [76] ton abelian extensions under the
conditions of Theorem 9.2.1.

Theorem 9.3.1. Let K = ( K 1; : : : ; K n ) be an n-tuple of abelian extensions ofk and
suppose that the conditions of Theorem 9.2.1 are satis�ed forK . Then

X (T) �= X (S) and A(T) �= A(S):

Proof. Note that if A(T) �= A(S), then by Theorem 9.2.1 and Voskresenski��'s exact se-
quence of Theorem 1.5.8 we deduce thatjX (T)j = jX (S)j. SinceX (T)





Proof. The casen = 1 was proved in [21, Proposition 9.1] and forn = 2 the result follows
from Theorem 9.2.1, so assumen � 3.

Suppose �rst that [K 1 : : : K n : k] > p 2. Reordering the �elds K 3; : : : ; K n if necessary,
we can (and do) assume that each one of the �eldsK 1; : : : ; K s� 1 is contained inK 1K 2 (for
some3 � s � n), while none ofK s; : : : ; K n is contained inK 1K 2. We prove two auxiliary
claims:

Claim 1: fH i � ( fH1 \ fH i ):fHs for any i = 1; : : : ; s � 1.

Proof: Observe thatK 1K i \ K s = k as otherwise we would haveK s � K 1K i � K 1K 2,
contradicting the assumption ons. Therefore K i � k = K 1K i \ K s and passing to
subgroups this implies thatH i � (H1 \ H i ):Hs, from which the claim follows.

Claim 2: fH i � ( fH1 \ fH i ): fH2 for any i = s; : : : ; n.

Proof: Observe that K 2 6� K 1K i as otherwise we would haveK i � K 1K i = K 1K 2,
contradicting the assumption onK i . Therefore K i � k = K 1K i \ K 2 and passing to
subgroups this implies thatH i � (H1 \ H i ):H2, from which the claim follows.

Let us now prove thatH1(k; Pic X ) = 0 . Since
T

i
K i = k, by Lemma 9.1.2(i) it su�ces

to show that

e' 1(Ker e nr
2 ) � f (h1

fH1
0
; : : : ; hn

fHn
0
) j h1 : : : hn 2 �

eG( eH )g:

Let � = ( h1
fH1

0
; : : : ; hn

fHn
0
) be such that h1 : : : hn 2 � eG( eH ). By Claim 1 above, for

i = 3; : : : ; s� 1 we can writehi = h1;i hs;i , whereh1;i 2 fH1\ fH i and hs;i 2 fHs \ fH i . Using this
decomposition, we can apply Lemma 8.2.4 as done in the proof of Theorem 9.2.1 in order to
simplify � modulo e' 1(Ker e nr

2 ) and assume it has the form(h0
1; h2; 1; : : : ; 1; h0

s; hs+1 : : : ; hn )
for someh0

1 2 fH1; h0
s 2 fHs. Using Claim 2 and Lemma 8.2.4 in the same way, we further

reduce� modulo e' 1(Ker e nr
2 ) to a vector of the form(h00

1; h0
2; 1; : : : ; 1) for someh00

1 2 fH1; h0
2 2

fH2 such that h00
1h0

2 2 � eG( eH ). Finally, since K 1 \ K 2 = k, we have eH = fH1
fH2 and thus

� eG( eH ) � � eG( fH1)� eG( fH2). The result follows by an argument similar to the one given at
the end of the proof of Theorem 9.2.1.

Now assume that[K 1 : : : K n : k] = p2 (note that this is only possible if n � p + 1 as
a bicyclic �eld has p + 1 sub�elds of degreep) and thereforeG = Cp � Cp is abelian. By
Proposition 8.2.9 it su�ces to prove that Ker  1=' 1(Ker  (Ker0



and � =
nL

i =1

r v;iL

t=1
hi;t for someg 2 G and hi;t 2 H i \ x i;t hgi x � 1

i;t = H i \ h gi . If g 62H i for all

i = 1; : : : ; n, then � is the trivial vector and ' 1(� ) = (1 ; : : : ; 1). Otherwise, if g 2 H i 0
�= Cp

for some indexi 0, then g 62H i for all i 6= i 0 and thus hi;t = 1 for i 6= i 0. In this way, it

follows that 1 =  2(� ) =
nQ

i =1

r v;iQ

t=1
x � 1

i;t hi;t x i;t =
r v;i 0Q

t=1
hi 0 ;k . Therefore, if ' 1(� ) = ( h1; : : : ; hn ),

we havehi = 1 if i 6= i 0 and hi 0 =
r v;i 0Q

t=1
hi 0 ;k = 1. In conclusion,' 1(� ) = (1 ; : : : ; 1).

On the other hand, we haveKer  1 = f (h1; : : : ; hn ) j hi 2 H i ;
nQ

i =1
hi = 1g. This group is

the kernel of the surjective group homomorphism

f : H1 � � � � � Hn �! G

(h1; : : : ; hn ) 7�! h1 : : : hn

and thus Ker  1 = Ker f �= (Z=p)n� 2, as desired.

Corollary 9.4.2. Let K = ( K 1; : : : ; K n ) be a tuple ofn � 3 non-isomorphic cyclic exten-
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Chapter 10

Introduction

A considerable motivation for providingqualitative studies of local-global principles (such
as the Hasse norm principle or weak approximation) as done in Parts I and II of this thesis
is to enable a statistical analysis of these principles in families of algebraic varieties. Such
quantitative studies of local-global principles have attracted signi�cant interest in the area
of Arithmetic Geometry in the past decade, see [16] for a survey of recent developments
around this topic. In this last part of the thesis, our goal is to prove several quantitative
results on the Hasse norm principle and weak approximation for norm one tori and, in
this way, contribute to the ongoing rapid progress in the area of statistics of local-global
principles.

In Chapter 11 we start by establishing a result (Theorem 11.0.1) showing that, in a
precise sense, the HNP holds foralmost all degreen extensions of a �xed number �eld
k. This result is conditional on theweak Malle conjectureon the distribution of number
�elds with prescribed Galois group (see (11.0.1) below), a conjecture that has also received
signi�cant attention lately and where progress is rapidly being made (see [99] for recent
results on this conjecture). We then present two unconditional results (Theorems 11.0.3
and 11.0.6



solvable group, then there exists aG-extension ofk failing the Hasse norm principle if and
only if H3(G; Z) 6= 0 (see [30



Chapter 11

Statistics of local-global principles for
degree n extensions

In this chapter we present some results on the density of degreen extensions of a �xed num-
ber �eld that fail the Hasse norm principle, when extensions are ordered by discriminant.
Although counting degreen > 4 extensions of number �elds with bounded discriminant is
an intricate problem and precise asymptotics may be out of reach at present, there are very
precise conjectures for the number of such extensions. Namely, the weak Malle conjecture
on the distribution of number �elds (see [69]) predicts that the numberN (k; G; X ) of de-
green extensionsK of a number �eld k with Galois group G and jNk=Q(DiscK=k )j � X
satis�es

X
1

� ( G ) � N (k; G; X ) � X
1

� ( G ) + � ; (11.0.1)

where � (G) = min
g2 Gnf 1g

f ind(g)g and ind(g) equalsn minus the number of orbits ofg on

f 1; : : : ; ng. Using the computational method developed by Hoshi and Yamasaki to de-
termine H1 (Disc1



Proof. Note that an extensionK=k of degreen is a (G; H )-extension (as de�ned in Sec-
tion 6.1), where G is a transitive subgroup ofSn and H is an index n subgroup ofG.
Since there are a �nite number of possibilities forG and H , one can compute all possi-
bilities for H1(G; FG=H ) using the aforementioned algorithms of Hoshi and Yamasaki. If
H1(G; FG=H ) = 0 , then both the HNP for K=k and weak approximation forR1

K=k Gm hold
by Theorem 1.5.8 and the isomorphism (1.5.2) of Theorem 1.5.12. IfH1(G; FG=H ) 6= 0, one
can compute the integer� (G) of Malle's conjecture and for every such case one veri�es
that � (G) > 1. Thus, if the conjecture holds, then the number of degreen extensions
with discriminant bounded by X and for which the HNP or weak approximation fails is
o(X ). The result then follows by observing that Malle's conjecture also implies that the
number of degreen extensions ofk with discriminant bounded by X is asymptotically at
least c(k; n)X for some positive constantc(k; n).

Remark 11.0.2. We list a few observations about Theorem 11.0.1 and its proof.

(i) The reason for excluding degreesn = 8 and 12 is that in these cases there are pairs
(G; H ), where G � Sn is a transitive subgroup andH is an index n subgroup of
G, such that H1(G; FG=H ) is non-trivial and � (G) = 1 . A more detailed analysis of
the proportion of these(G; H )-extensions for which the local-global principles fail is
needed in these cases. In the next chapter we give a �rst result in this direction by
investigating the frequency of the HNP forD4-octics.

(ii) Computing the values of� (G) for all transitive subgroupsG of Sn with H1(G; FG=H ) 6=
0 and [G : H ] = n yields an upper bound (conditional on Malle's conjecture) on the
number of degreen extensions for which the HNP (or weak approximation for the
norm one torus) fails. For example, the number of degree14 extensions ofk for
which the HNP (or weak approximation for the norm one torus) fails is� k;� x

1
6 + � ,

when ordered by discriminant.

(iii) In the statement of Theorem 11.0.1 it su�ces to assume Malle's conjecture only for
the few transitive subgroupsG � Sn containing an indexn H1(G; FG=H

H( G S



(iv) To simplify the statement we only presented results for degreen � 15 but one can
obtain results for higher degrees in a similar way. However, Hoshi and Yamasaki's
algorithms require one to embed the Galois groupG as a transitive subgroup ofSn ,
whereupon one quickly reaches the limit of the databases of such groups stored in
computational algebra systems such as GAP. To overcome this problem, one may
use the modi�cation of Hoshi and Yamasaki's algorithms presented as Algorithm A1
in the Appendix 4.5.

An analysis of the invariant H1(k; Pic X ) for extensionsK=k of degreen � 15 has also
recently been carried out independently by Hoshi, Kanai and Yamasaki in [48] and [49].
In these works, the computation ofH1(k; Pic X ) for such extensions (which here happened
behind the scenes of the above proof) is made explicit and, additionally, necessary and
s446 Td [(s446co-Lm0 11.956TJ/Fthmn82(,)-s27(endtensionApp)-27(e6)28(t)]nianang27(e6)11.9552 124 26.332 0 Td 08.2)-33(;)]TJK.9552 Tf 10.655 0 Td7(but)-359(o)3 11.9552 Tf 4.552 0 Td [(k)-34(;)]TJJ/F40 11.9552 Tf 10.655 0 Td]0 51145c



Proof. See, for example, [94, Ÿ2.2].

Theorem 11.0.6. The HNP holds for 100% of sextic extensions ofQ, when ordered by
discriminant.

Proof. Since the total number of sextic extensions ofQ with absolute discriminant < X
is � X (see Remark 11.0.2(iii) above), by Lemma 11.0.4 it su�ces to show that the
number of A4-sextics (respectively,A5-sextics) overQ is o(X ). We present the argument
for A5-sextics � the case ofA4-sextics is analogous.

Let L 5(X ) (respectively, L 6(X )) be the set of isomorphism classes ofA5-quintics (re-
spectively,A5-sextics) overQ with absolute discriminant< X . Let K 6 be a sextic extension
of Q with A5-normal closure. Denote the quintic sibling �eld1 of K 6 by K 5. We will show



Chapter 12

Statistics of local-global principles for
D4-octics

In this chapter we provide the �rst density result in the simplest non-abelian setting where
failures of the Hasse norm principle are possible, namely for the family ofD4-octics. Note
that, since H3(D4; Z) = Z=2, failures of this principle (over any number �eld k) always
exist by [30, Theorem 1.2]. Nonetheless, our main result shows that such failures are rare:

Theorem 12.0.1. When ordered by discriminant or by conductor1, 100% of D4-octics over
Q satisfy the Hasse norm principle.

Remark 12.0.2. We remark that the density result onD4-octics ordered by discriminant
in Theorem 12.0.1 is conditional on the work in progress [85] of Shankar�Varma, outlined
below in Section 12.1.2.

While for an abelian group G there are precise asymptotics for the number ofG-
extensions of bounded discriminant (see [67], [100]), conductor (see [68]) and even more
general counting functions (see [98]), the problem of enumerating non-abelian �elds is much
more complicated and results in this setting are still quite limited (see [99] for a survey of
recent developments in this area).

In spite of this, Altu§�Shankar�Varma�Wilson [1] have recently combined arithmetic
invariant theory with techniques from geometry of numbers and the algebraic structure of
D4 in order to determine the asymptotic number of quarticD4-�elds over Q ordered by
conductor. Furthermore, in their upcoming work [85], Shankar and Varma also compute

1See Section 12.1.2 for the de�nition of the conductor of aD4-octic over Q.
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the asymptotic number of octicD4-�elds over Q ordered by discriminant, verifying the
strong form of Malle's conjecture (see (12.1.5) below) for this family of extensions.



12.1.1 Local-global principles for norms of D4-�elds

Hasse norm principle

In [39], Gerth provided an explicit characterization of the Hasse norm principle for Galois
extensions with metacyclic Galois group. In particular, Gerth's work gives us the following
description of this principle forD4-octics:

Proposition 12.1.1. Let M=k be a D4



Remark 12.1.4. Ordering norm one tori of D4-octics overQ by the conductor or dis-
criminant of the associated extension, one gets a one-to-one correspondence between (iso-
morphism classes of) tori and �eld extensions (see [30, Proposition 6.3]). Therefore, it
follows from Theorem 12.0.1 and Proposition 12.1.3 that 0% of norm one tori ofD4-octics
over Q satisfy weak approximation, when ordered by conductor or by discriminant of the
associated �eld extension.

12.1.2 Counting D4-�elds with local speci�cations

In this section we recall results of Altu§�Shankar�Varma�Wilson [1] and describe work
in progress of Shankar�Varma [85] on the number ofD4-�elds over Q satisfying local
conditions at �nitely many places. Throughout the section,L and M will always denote a
D4-quartic and a D4-octic overQ, respectively. By anétale algebra over a �eldk we mean
a k-algebra which is isomorphic to a �nite product of �nite separable �eld extensions ofk.

Counting by conductor

Following [1], we de�ne theconductor f(M ) of M as the Artin conductor of the (unique
up to conjugacy) irreducible2-dimensional Galois representation

� M : Gal(Q=Q) ! GL2(C)

that factors through Gal(M=Q) �= D4. Similarly, the conductor f(L) of L is de�ned to be
the conductor of its normal closure. In [1], the authors determined the asymptotic number
of D4-quartics ordered by conductor with prescribed local speci�cations, de�ned as follows:

De�nition 12.1.5. ˆ For each placev of Q, a quartic local speci�cation is a set� v con-
sisting of pairs (L v; K v), where L v is (an isomorphism class of) a quartic étale algebra
over Qv and K v is (an isomorphism class of) a quadratic subalgebra ofL v.

ˆ A collection of quartic local speci�cations� = (� v)v is said to beacceptableif, for all but
�nitely many primes p, the set� p contains all pairs(Lp; K p) with conductor not divisible
by p2, where the conductor of(Lp; K p) is de�ned asC(Lp; K p)



Theorem 12.1.6. [1, Theorem 3] If � = (� v)v is an acceptable collection of quartic local
speci�cations such that� 2 contains every pair(L2; K 2), consisting of a quartic étale algebra
L2 over Q2 containing a quadratic subalgebraK 2, then

N4(� ; jfj < X ) �
1
2

�
� X

(L;K )2�1

1
# Aut( L; K )

�
�
Y

p

� X

(L p;K p)2�p

1
# Aut( L p; K p)

1
Cp(L p; K p)

��
1�

1
p

� 2

�X logX;

(12.1.4)

where for all placesv, Aut( L v; K v) consists of the automorphisms ofL v which sendK v to
itself and Cp(Lp; K p) := p-part of C(Lp; K p).

In Table 1 of the Appendix we record the values of the invariantsCp(Lp; K p) and
Aut( L v; K v) for the di�erent isomorphism classes of pairs(Lp; K p). As a consequence of the
data therein (which is given in terms of thesplitting typesof Lp andK p, see De�nition 12.2.1
and the paragraphs preceding Table 1), we obtain the asymptotic numberN4(D4; jfj < X )
of D4-quartics with conductor bounded byX :

Corollary 12.1.7. N4(D4; jfj < X ) � 3
8 �

Q

p

�
1 + 2

p + 2
p2

��
1 � 1

p

� 2
� X logX .

Counting by discriminant

The strong form of Malle's conjecture [70] predicts that the numberN (k; G; X ) of degree
n extensionsK of a number �eld k with Galois group G and jNk=Q(DiscK=k )j � X satis�es

N (k; G; X ) � c(k; G)X
1

� ( G ) (log X )� (k;G)� 1; (12.1.5)

where � (G) and � (k; G) are explicit positive constants andc(k; G) > 0. This prediction
has been veri�ed in plenty of cases, for example whenG is an abelian group by work of
Wright ([100]), for100



masses, derived from the heuristic assumption that local behaviors of a random extension
at di�erent places of k are independent. In the same paper, Bhargava also conjectures that
such a local-global compatibility holds whenn > 5 and further speculates that a similar
phenomenon might hold for any Galois groupG and any base �eldk. Such a compatibility
is now called theMalle�Bhargava principle and it has only been analyzed in a few cases.
For instance, it is also known to hold whenG is an abelian group of prime exponent by
the work of Mäki [68] and Wright [100] (see also [98]) as well as for sexticS3-extensions by
the work of Bhargava�Wood [10].



where for all placesv, Aut D 4 (� v) denotes the centralizer of the subgroupIm � v of D4.

Using the tabulated values of�( M p) and Aut D 4 (� p) in Table 1, we obtain the follow-
ing asymptotic formula for the numberN8(D4; j� j < X ) of D4-octics with discriminant
bounded byX :

Corollary 12.1.10. N8(D4; j� j < X ) � 1
4 � 3

4 � 1
8( 56+3

p
2

16 )�
Q

p
(1+ 3

p + 1

p
3
2
)(1� 1

p)3�X
1
4 log2(X

1
4 ).

12.2 Proof of the main theorem

In this section we show how to deduce Theorem 12.0.1 from the results of Sections 12.1.1
and 12.1.2. We require the following de�nition:

De�nition 12.2.1. Let p be a prime andM p an étale algebra overQp. Then M p =
gL

i =1
K p;i ,

where K p;i are �nite �eld extensions of Qp, and we de�ne thesplitting type &(M p) of M p

at p as the symbol(f e1
1 f e2

2 : : : f eg
g ), where ei (respectively, f i ) is the rami�cation index

(respectively, residue degree) ofK p;i . Given a number �eld M , we de�ne the splitting type
&p(M ) of M at p as the splitting type of M 
 Qp.

12.2.1 Proof of the conductor result of Theorem 12.0.1

For each n � 1, we de�ne a collection of quartic local speci�cations� 4
n = ((� 4

n )v)v as
follows. Let Pn be the set of the �rst n odd primes. For a primep 2 Pn , we require
that (� = ((� 4

n



D4-quartics whose normal closure fails the Hasse norm principle is contained inL (� 4
n ) for

all n. Since, up to isomorphism, eachD4-octic has two distinct quartic sub�elds which are
D4-quartics, we have

# f M j M is a D4-octic failing the HNP and f(M ) < X g
# f M j M is a D4-octic and f(M ) < X g

=
1
2# L fail (jfj < X )
1
2N4(D4; jfj < X )

�
N4(� 4

n ; jfj < X )
N4(D4; jfj < X )

for all n and so to prove Theorem 12.0.1 it su�ces to show thatlim
n!1

lim
X !1

N4 (� 4
n ;jfj<X )

N4 (D 4 ;jfj<X ) = 0/F2.3 Tf 15585m606 2d [0X /F552 Tf 15.449 111.726 -30.514im
9 !1 4 ( 4

n ; jf < X )





Table 1

Dp &(M p) (&(L p); &(K p)) #( L p; K p) Aut( L p; K p) Cp(L p; K p) �( M p)
f 1g (11111111) ((1111),(11)) 1 D4 1 1
hr 2i (2222) ((22); (11)) 1 D4 1 1
hrsi (2222) ((22); (2)) 1 V4 1 1
hsi (2222) ((112); (11)) 1 V4 1 1
hr i (44) ((4) ; (2)) 1 C4 1 1
f sg (12121212) ((1211); (11)) 2 V4 p p4

hs; r2i (2222) ((122); (11)) 2 V4 p p4

hrsi (12121212) ((1212); (12)) 2 V4 p p4

hrs; r2i (2222) ((22); (12)) 2 V4 p p4

hr 2i (12121212) ((1212); (11)) 2 D4 p2 p4

hr 2; si (2222) ((1212); (11)) 1 V4 p2 p4

hrs; r 2i (2222) ((22); (2)) 1 V4 p2 p4

hr i (2222) ((22); (2)) 1 C4 p2 p4

hr i (1414) ((14); (12)) (4; 0) C4 p2 p6

D4 (24) ((14); (12)) (0; 2) C2 p2 p6

In the column of Table 1 containing the number of pairs#( Lp; K p), the number (a; b)
equalsa if p



hr 2i (12121212) ((1212); (11)) 4 D4 26 212

hr 2; si (2222) ((1212); (11)) 1 V4 24 28

hr 2; si (2222) ((1212); (11)) 2 V4 26 212

hr 2; si (1414) ((1212); (11)) 4 V4 26 216

hr 2; si (1414) ((1212); (11)) 8 V4 25 216

hrs; r 2i

;
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