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Notation

Given a eld k, we use the notationk for a ( xed) algebraic closure ofk, unless stated
otherwise. Ifk is a global eld andL=k is a Galois extension, we use the following notation:

Ag
Ok

k
Ly
Dy

the idele group ofk

the ring of integers ofk

the set of all places ok

the completion ofL at some choice of place abowe2
the Galois group ofL =k,

Given a eld K, a variety X over K and an algebraicK -torus T, we use the following

notation:

Gm;K

XL

X
Pic X
Rk=k X
P

the multiplicative group SpecK [t;t !]) of K (when K is clear from the
context we omit it from the subscript)

the base changeX ¢ L of X to a eld extension L=K

the base change oK to an algebraic closure oK

the Picard group ofX

the Weil restriction of X to a sub eld k of K such that [K : k] is nite
the character groupHom(T;Gm;?) of T

Let G be a nite group. The label G-module' shall always mean a fre&-module of
nite rank equipped with an action of G. Given a subgroupH of G, a G-module A, an
integer g, a non-negative integei and a prime numberp, we use the following notation:

iGj
exp(G)
Z(G)
[H; G]
G(H)

Gab

G

GP
Hi(G: A)
H'(G; A)

the order of G

the exponent ofG

the center of G

the subgroup ofG generated by all commutatorgh; gl with h2 H;g 2 G
the subgroup ofH generated by all commutatorgh; g] with g 2 G and
h2H\ gHg !

the abelianizationGHG; G] of G

the Q=Z-dual Hom(G; Q=2) of G

a Sylow p-subgroup ofG

the i-th homology group

the i-th cohomology group



p'OI(G; A) the g-th Tate cohomology group o
X 9(G;A) the kernel of the restriction mapA*(G; A)t R 26 A%hgi: A).

We also use the notationG° for the derived subgroup[G;G] of G. If H is a normal
subgroup ofG, we write H E G. For x;y 2 G we adopt the convention[x;y] = x 1y Ixy
andxY =y Ixy. If G is abelian andd 2 Z,, we use the following notation:

G[d] the d-torsion of G
G(g) the d-primary part of G.

We often use =' to indicate a canonical isomorphism between two objects.

1Since Iqq(G;A) =HYG;A) for g 1, we will omit the hat in this case.
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If you're walking down the right path and you're
willing to keep walking, eventually you'll make
progress.

- Barack Obama
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Chapter 1

Background

In this chapter we review several background concepts and results which will be used
throughout the thesis.

1.1 Group cohomology

Given a homomorphisnt : G! H of groups and anH -module A, we can regardA as an
G-module viaf and there are induced homomorphisms of cohomology groupd



Lemma 1.1.2. LetK H G be a tower of groups withG : K] nite. Then

Re§ =Res! Reg$ and Cori =Cor? Corf :

Proof. See [15, Ill, Proposition 9.5(i)]. m

Lemma 1.1.3. Let G be a nite group andH a subgroup ofG. Let A be aG-module.

Then _ .
co® Re€ A (G:A)! A(G;A)

equals the multiplication by1082 Td3Td [(i)]TJ 8213.759 0 Td [([)]TJ/F43 11.9552 Tf 3.252 0 Td [(G)]

Proof. See [15, Ill, Proposition 9.55(i)].



Lemma 1.1.7 (Shapiro's lemma) Let H be a subgroup of a grouf. Let A be anH-
module. Then _ _
H'(G;IndS(A) =H'(H;A)

for eachi 0.

Proof. See [18, IV, Y4, Proposition 2]. O

Lemma 1.1.8. Let H be a subgroup of a grou. Let A be aG-module and leti be a
positive integer. Letf : H(G;A) ! H'(G;IndS (A)) be the map on cohomology induced by
the homomorphismA ! IndS(A) sendinga 2 A to the function g 7! ga of IndS (A). Let
sh be the canonical isomorphism given in Shapiro's lemma 1.1.7. Then

sh f =Rest : H(G;A)! H(H;A):

Proof. See [95, Ex. 3.7.14(iii), p. 131]. O

We will mainly use the concept in De nition 1.1.6 wherA = Z is the H -mpdule with the

trivial action. In this case, it is easy to check that the assignment 7! f (g YH)gH
gH2G=H

identi es Ind$ (Z) with the G-module Z[G=H].

Lemma 1.1.9. Let G be a group. ThenH'(H; Z[G]) = O for all integersi > 0 and all
subgroupsH of G.

Proof. See [34, lll, Lemma 3.3.15]. ]

1.2 Duality

De nition 1.2.1. Let G be a nite abelian group. ThePontryagin dual of G is the group
G :=Hom(G;Q=2):

De nition 1.2.2.  Let G;G%be nite abelian groups. Iff : G! GP%is a group homomor-
phism, then thedual f of f is the homomorphismf :G° ! G de ned by

f(d)(9) = gf (@)
forall g2 G;g°2 G° .



Lemma 1.2.3. If f: G! G®is a homomorphism of nite abelian groups, then
Ker(f ) = Coker(f)

Proof. Applying the left-exact contravariant functor Hom( ; Q=Z) to the exact sequence

a' G Cokerf)! 0

gives the exact sequence
0! Hom(Coker(f);:Q=Z)! Hom(G%Q=z)! Hom(G;Q=2)
and the result follows. O

Let G be a group and letA; B be G-modules.

Theorem 1.2.4 (Cup-products). There exists a unique family of bi-additive pairings
(called cup-products)

[ H(G;A) H(G;B)! H"'(G:A B)
(a;b 7" a[ b

de ned for all integersi;j O satisfying the following conditions:
1. for any homomorphismA ! A°of G-modules, the induced diagram

H(G;A) H(G;B)1—/H"I(G;A B)

H(G;A9 H(G;B) L—/H"I(G;A° B)

commutes. Similarly, the analogous diagram for a homomorphisB ! B of G-
modules commutes.

2552 Tf 10.036 0 Td [(I5 d913ules)-350(c)50(omm,[(0)] TI/F436-2.les]0 d 124.9.015 1 Tf6.587 0 T



3.if0! Al A% A% Qijs an exact sequence @-modules such that
0! A B! A2 B! A® B! 0
IS also exact, then
(a%[ b= (@ b; 8a%2 H(G;A%; 8b2 H (G:B)
where the map on the left denotes the connecting homomorphism
H(G;A% ! H'(G;A)
and on the right denotes the connecting homomorphism
H*I(G,A® B)! H'I*™(GA B):
4.if 0! B! BY B% O0isan exact sequence @b-modules such that
0! A B! A B A B 0
is also exact, then
al (b =( 1) (a[ By; 8a2 H(G;A); 8H°2 H(G;:B%
where again, by abuse of notation, denotes the corresponding boundary maps.

Proof. See [71, Il, Proposition 1.38]. O

If G is further assumed to be nite, then for every integel the cup-product above
de nes a pairing

Fe: A (G:2) A'G2! RG22 = z5Gjz:

Theorem 1.2.5. The above pairing induces an isomorphistg : A i(G;Z) = ﬁi(G;Z)
de ned by

1 -1 _ .
Fe(9)(f) = iGi (f[ 9)22z259GjZ = jEjZ_Z Q=Z
forany f 2 A'(G;2):g2 A '(G:2).

Proof. See [15, VI, Theorem 7.4]. O



Lemma 1.2.6. Let G be a nite group, letH be a subgroup o6 and leti be an integer.
Then the dual of the restriction mapRes : ﬁ'(G;Z) ! ﬁ'(H; Z) is the corestriction map
co®:A 'H:2)! A (G;2).

Proof. The cup-product satis es the projection formula
Cori (f [ Resi(g) =Cori(f)[ g

foranyf 2 l’—\li(H; Z)andg?2 A i(G;Z), see [18, IV, Y7, Proposition 9]. As the corestriction
map

cor® 1 A’(H: 2) = z5Hjz! Z5Gjz = R'(G;2)
in dimensionO is induced by multiplication by [G : H], multiplying the projection formula
above byjéj on both sides gives

1 1
jH_j(f [ Resi(9) = jEJ-(COYS(f)[ 9) .

Fu (Resi (9))(f) = Fa(g)(Corg (f)):
We thus have a commutative diagram
A '(G:2) "IN (G: 2)

G

Res;



De nition 1.3.2.  The homology groupA 3(G;Z) is called the Schur multiplier of G.

Lemma 1.3.3. The base normal subgroup of any Schur covering group o6 is isomor-
. T 3
phic to the Schur multiplierA “(G; Z) of G.

Proof. See [38, Y9.9, p. 214] O

Proposition 1.3.4. A Schur covering group ofG always exists.

Proof. See [54, Theorem 2.1.4]. O

Remark 1.3.5. Despite the fact that Schur covering groups o always exist, these are
not necessarily unique. For example, it is easy to check that both the group






1.4 Algebraic tori

Let k be a eld with ( xed) separable closurek.

De nition 1.4.1.  An algebraic torusT (or torus, for simplicity) over k is a k-algebraic
group such that, overk, T becomes isomorphic to



We now analyze tori of the formRy-x G, whereK=k is a nite separable eld extension
and Rg=¢ is the Weil restriction functor (recall that this functor is characterized by the
property (Rk=x X )(S) = X(S « K) for any K -schemeX and any k-algebras).

Lemma 1.4.5. Let L=k be the Galois closure oK=k. SetG = Gal(L=k) and H =
Gal(L=K). Then T = Rk=« Gn, is a torus split byL=k of rank d = [K : k]. Moreover, we
haveP = Z[G=H] as G-modules.

Proof. Write K = k( ) for some primitive element of K=k and let f be the minimal
polynomial of overk. We have

_ _ _ Mo _
T(k) = (K k) = (Kx]=(f (x))) = (KIx]=x g ) = (k)5 (1.4.1)

gH2G=H

where we used the Chinese remainder theorem in the third isomorphism. It follows that
is a torus of rankd and since the isomorphisms in (1.4.1) are de ned ovér, T is split by
L=k.
_ L
Moreover, the isomorphism (1.4.1) allows us to write any 2 T(k) asx = XgH
gH2G=H

for uniquely determinedxgy 2 k . Dene gy : T ! G by X 7! Xgu. It is clear that

g1 IS @ character of T and, conversely, any character of can be uniquely written as a
product of characters of this form. In other words, the homomorphism of abelian groups

:Z[G=H]! P
gH 7! 4u
is an isomorphism. We prove that is G-equivariant, nishing the proof of the lemma.
Note that the action of Gy = Gal(k=k) on Z[G=H] is induced by its G-action and the
projection map : Gy ! G. Similarly, the action of G on P is induced by the action of

Gk on P and . It thus su ces to check that s Gk-equivariant. Since theGg-action on
T(k) isgiven by( X )gn = (X () 1gn), We have

(0 g)()= Con( D= (C gn) = ( X ()gn)) = X ()gn = Xgn

L _
forall 2 Gg;gH 2 G=H andx = Xgn 2 T(K). m
gH2G=H

10



1.5 Arithmetic of tori

Let T be an algebraic torus over a global eld.

De nition 1.5.1. The Tate-Shafarevich groupX (T) of T is de ned as the kernel of the



We now present one of the main results in the arithmetic of algebraic tori, tying together
weak approximation for a torusT and the Hasse principle for principal homogeneous spaces
under T. We will make use of the following lemma:

Lemma 1.5.7. There exists a smooth complete-variety X containing T as an open subset.
Proof. See [22, Corollary 1]. ]

Throughout the thesis, we will refer to a varietyX in the conditions of Lemma 1.5.7
as asmooth compacti cation of T.

Theorem 1.5.8 (Voskresenski). Let T be a torus de ned over a number eldk and let
X=k be a smooth compacti cation ofT. Then there exists an exact sequence

0! A(T)! HY{(k:PicX) ! X (T)! O (1.5.1)

Proof. See [91, Theorem 6]. ]

Theorem 1.5.9. If X; and X, are two smooth compacti cations of a torusl de ned over
a number eld k, then
H*(k; PicX1) = H (k; Pic X>):

In particular, the group H*(k; Pic X) is a birational invariant of T.
Proof. Voskresenski showed (see [91, Theorem 1]) that there exists a canonical isomor-

phism of Gy-modulesPic(X1) P; =Pic(X,) P, for somepermutation Gg-modules (see
below for the de nition of a permutation module) Py; P,



Voskresenski proved Theorem 1.5.8 by working with aasque resolution of ¥, a notion
that was later put into a general framework by Colliot-Théléne and Sansuc ([20]). We
explain this concept below as it will be useful for us in later chapters.

Let G be a nite group and let A be a G-module. We say thatA is a permutation
module if it has aZ-basis permuted byG. We say that A is asque if Aif 3



The Tate Shafarevich group X (T) also has a description in terms of the cohomology

of P:

Theorem 1.5.13 (Tate). Let T be a torus de ned over a number eldk and split by
a nite Galois extension L=k with G = Gal(L=k). Then Poitou Tate duality gives a

canonical isomorphism
X (T) =X 2G;P); (1.5.4)

Q
whereX 2(G;P) =Ker H(G;P) " ~ _H*(D,






Lemma 1.6.6. Let G be a nite group andH a subgroup ofG. Then, for everyi 2 Z
and for every subgrous® of G, the diagram obtained by taking the group cohomology of
the exact sequenc€l.6.1)



and using Lemmas 1.4.4 and 1.4.5 gives the exact sequenc&-ohodules
or z! z[G]! P! O

Taking the group cohomology of the above sequence and using Lemma 1.6.6 gives the
following commutative diagram of abelian groups with exact lines:

H%(G;Z[G]) — H¥(G;P) —— H3(G;2) ———— H¥(G;Z[Q))

lRes lRes lRes lRes

Wi zie) —— O WAt D) —— O Wi Z) —— ° H(hgi;Z[G))

902G 092G 92G 92G
(1.6.4)

where the vertical arrows are the products of the restriction maps. By Lemma 1.1.9 we
have H' (G; Z[G]) = H'(hgi; Z[G]) = O for i = 2;3. Additionally, by the 2-periodicity of
group cohomology of cyclic groups, we havd®(hgi; Z) = H *(hgi; Z) = Hom(hgi;Z) = 0.
Therefore diagram (1.6.4) shows thaH3(G;Z) = H2(G; P) = X 2(G;P), as desired. O

Theorem 1.6.9 (Tate). If T = Rl_, Gy, is the norm one torus of a Galois extensioh=k
of number elds with Galois groupG, we have
!

Y
X (T) =Ker H3G:;z)y " H3(D,:2) : (1.6.5)

v2 K
whereD, = Gal(L,=k,) is the decomposition group av.

Proof. See [18, p. 198]. H
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Chapter 2

Introduction

In this part of the thesis we study a local-global principle for norms known as thidasse
norm principle. Let K=k be an extension of number elds with associated idéle groupg

and A,. One can naturally de ne a norm mapNg=x : A ! A, by
0 1

Y
Nk=k (Xw)w) = @ N, =k, (XW)A

wijv V2



This principle was formally introduced and rst investigated in [43] by Hasse, who
proved the following result:

Theorem 2.0.2 (The Hasse norm theorem, [43])The HNP holds if K=k is a cyclic
extension.

Hasse also showed that this principle can fail in general, with biquadratic extensions
providing the simplest setting where failures are possible.

P

Theorem 2.0.3. The HNP fails for the extensionQ(p 3 13)=Q. Indeed, 3 is not a

global norm, despite being the norm of an idele.
Proof. See [43, Y2]. O

In general, the HNP fails for a biquadratic extension if and only if all its decomposition
groups are cyclic, see [18, p. 199]. Since this principle was rst introduced, multiple cases
have been analyzed in the literature. For instance, iK=k is Galois, there is an explicit
description of the knot group due to Taté

Res

K(K=k) =Ker H3G;Z2) H3(D:;Z) ; (2.0.1)

V2k

as it follows from Proposition 1.6.7 and Theorem 1.6.9. Using this characterization, many
results on the validity of the HNP were obtained in the Galois setting, with a particular
emphasis on the abelian case, see e.g. the works of Gerth ([39], [40]), Gurak ([41], [42]) and
Razar ([79]).

Nevertheless, results for the non-abelian and non-Galois cases are still limited. For
example, if N=k is the normal closure ofK=k, the following instances of the HNP are
known:

Theorem 2.0.4 (Bartels). If [K : k] is prime, then the HNP holds forK=K.

Proof. See [3, Lemma 4]. O

Theorem 2.0.5 (Bartels). If [K : k] = n and Gal(N=k) = D, is the dihedral group of
order 2n, then the HNP holds forkK=K.

Proof. See [4, Satz 1]. ]

Ipart of this characterization also appeared in earlier work of Scholz, see [83, I, Satz 3.

20



Theorem 2.0.6 (Voskresenski and Kunyavski). If [K : k] = n and Gal(N=k) = S,, then
the HNP holds forK=k.

Proof. See [92] or [93]. m

The main underlying theoretical tool used to derive these results is the geometric in-
terpretation of the HNP: by Proposition 1.6.7 the knot groupK(K=k) is identi ed with
the Tate Shafarevich group X (T) of the norm one torusT = R%_ Gy and thus by
Lemma 1.5.4 the HNP holds foK=k if and only if the Hasse principle holds for all principal
homogeneous spaces

Te:Nk=x()= ¢ (2.0.2)

(where is avariable) underT. In this way, one can explore techniques from the arithmetic
of algebraic tori (as presented in Section 1.5) to investigate the group (T) and thus
deduce results on the validity of the HNP.

Over the next four chapters, we exploit this toric interpretation of the Hasse norm
principle and related tools in order to do a comprehensive study of this principle in several
families of extensions. In Chapter 3 we add to the above list of non-Galois cases where the
HNP is known to hold by establishing this principle for any degree 5 extensionK=k
of number elds such that Gal(N=k) is isomorphic toA,.

We subsequently give theoretical results and explicit methods for the computation of
the obstructions to the Hasse principle and weak approximation for norm one tori of non-
Galois extensions in Chapter 4. We start by applying techniques from the arithmetic of
algebraic tori to provide some comparison isomorphisms between these obstructions for a
xed extension and its subextensions/superextensions (see Theorem 4.1.1 and the results of
Section 4.2). We then use certain quotients of the knot group and the birational invariant
H!(k; PicX) to derive explicit formulas for the the p-primary part of the obstructions we
study for all but nitely many primes p, see Corollary 4.1.3 and the results of Section 4.3.
We also utilize generalized representation groups and outline work of Drakokhrust which
uses these groups to describe the invariami’(k; PicX) (see Theorem 4.1.4). We end
the chapter by describing in detail how to compute some of the obstruction groups using
computer algebra systems such as GAP [33], see Section 4.4.

In Chapter 5 we make use of the techniques developed in Chapter 4 to do a broad study
of the local-global principles for any extension whose normal closure has symmetric or al-
ternating Galois group, generalizing Theorem 2.0.6 above and the main result of Chapter 3.
In this setting, we provide explicit formulas for the knot group and the birational invariant

21






Chapter 3

The Hasse norm principle for
Ap-extensions

3.1 Main result

In this chapter we investigate the Hasse norm principle for a degree extension K=k
of number elds with normal closure N=k such that Gal(N=k) is isomorphic to A,, the
alternating group on n letters. We also look atweak approximation recall that this
prderty is said to hold for a variety X=k if X (k) is dense (for the product topology)
in =,  X(ky). In particular, we examine weak approximation for the norm one torus
R}@k G associated with a degree extensionK=k of number elds with A,-normal closure.

The rst non-trivial case is n = 3. In this case,K = N is a cyclic extension ok and the
Hasse norm theorem 2.0.2 implies that the HNP holds fd¢=k. Moreover, one can show
that weak approximation holds for the associated norm one torus by invoking a result of
Colliot-Thélene and Sansuc, see Remark 3.1.3 below.

The casen = 4 was analyzed by Kunyavski in his work [57] on the arithmetic of
three-dimensional tori:

Theorem 3.1.1 (Kunyavski) . Let K=k be a quartic extension of number elds and let
N=k be its normal closure. IfGal(N=k) = A4, then K(K=k) = 0 or Z=2 and K(K=k) is
trivial if and only if there existsv 2 | such that the decomposition group, = Gal( N,=k,)
is not cyclic. Moreover, the HNP holds foK=k if and only if weak approximation fails for
R&_, Gm.

23



The main goal of this chapter is to complete the picture for this family of extensions
by proving the following theorem.

Theorem 3.1.2. [62, Theorem 1.1] LetK=k be a degrean 5 extension of humber elds
and let N=k be its normal closure. IfGal(N=k) = A,, then the HNP holds forK=k and
weak approximation holds for the norm one toruBx_, Gn.

Our strategy to establish this result is twofold. First, we combine the toric interpreta-
tion of the HNP described in Sections 1.5 and 1.6 with several cohomological facts about
A,-modules to prove the aforementioned result fan 8. Next, we use a computational
method developed by Hoshi and Yamasaki to solve the case= 6. The remaining cases
n =5 and 7 follow from the remark below. In Chapter 5 we will also see how to ob-
tain Theorem 3.1.2 and further results orA,-extensions by using di erent techniques, see
Remark 5.1.11.

Remark 3.1.3. We note that whenn = pis a prime number, Theorem 3.1.2 was already
known. Indeed, in this case the HNP always holds by Theorem 2.0.4 and a result of Colliot-



This map will play an important role in the proof of Theorem 3.1.2, so we begin by
establishing the following result.

Lemma 3.2.1. Letn 8andletH be a copy ofA, ; inside G = A,. Then the corestric-
tion map CorS is surjective.

In order to prove this lemma, we will use multiple results about covering groups &%,
and A, together with the characterization of the image ofor given in Lemma 1.3.9. To
put this plan into practice, we will use the following presentation of &chur covering group
(as de ned in Section 1.3) ofS,



Lemma 3.2.4. In the notation of Proposition 3.2.2, the groupV :=  1(A,) denes a
Schur covering group oA, for n=4;50ranyn 8.

Proof. It is well-known that A, is generated by then 2 permutations g := tiitj,; =
a2)(@i+1i+2) forfor



Given a copyH of A, ; inside A,, one can subsequently repeat the same procedure of
this last lemma and further restrict to W :=  %(H) to seek a Schur covering group of
H. The same argument works, but with two small caveats.

First, it is necessary to assure that we still have 2 [W;W]. To show this we will use
the following lemma:

Lemma 3.2.5. Letn 7. Then any subgroupH A, isomorphic to A, ; iS conjugate
to the point stabilizer(A,), of the lettern in A,

Proof. This is a consequence of [96, Lemma 2.2]. O

By Lemma 3.2.5 we haved = (A,),’ for somey 2 S,. As is surjective,y = (x) for
somex 2 U and hencez = z* = [, 'ever; & = [( e, 'eve)*; €] is in [W; W], as clearly
;8 2 (Ann.

Secddd, note that we are making use of the fact that the Schur multipliers 8§, ;



Using this lemma we show the vanishing of the cohomology gro#3(G; Jg-1) (Where
Je=n Is the Chevalley module oiG=H, as de ned in Section 1.6), which we will then use
to prove Theorem 3.1.2 fom 8.

Proposition 3.2.7. Letn 8andH be acopy oA, ;insideG = A,. Then H*(G; Jg=n) =
0.

Proof. Taking the G-cohomology of the exact sequence de ning-y
0! 2 Z[G=H]! Jgx! O

P
(where : Z ! Z[G=H] is the norm map de ned by 1 7! gH) gives an exact
gH2G=H
sequence of abelian groups

H*(G;Z[G=H]) ! H*(G;Je=n)! H(G;Z)! H3G;Z[G=H]):

Applying Shapiro's Lemma 1.1.7, the fundamental duality Theorem 1.2.5 in the cohomol-
ogy of nite groups and the fact that A 2(GO; Z) = GGG for any group G° (see [18,
IV, Y3, Proposition 1]), we havéd?(G; Z[G=H]) = H?(H; Z) = A 2(H; Z) = H=[H;H] =0,
asH is perfect. Therefore, this last exact sequence becomes

0! H*G;Jg-n)! H3G;Z)! H3G;Z[G=H]);

which shows thatH?(G;Js-n) = 0 if s injective. Since the composition of the map
with the isomorphism of Shapiro's lemma

H3(G;2)!  H¥G;Z[G=H]) = HH;2)
gives the restriction map by Lemma 1.1.8, it su ces to prove that the restriction

Res : H3G;2)! H3(H;2)

is injective. By Lemmas 1.2.3 and 1.2.6, this is the same as proving that the corestriction
map

cor A °H;2)! A *G;2)

is surjective. But this is the content of Lemma 3.2.1 and so it follows thatl?(G; Jg-n ) =
0. O
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We now prove Theorem 3.1.2 fon 8. We will make use of the following auxiliary
lemma:

Lemma 3.2.8. Let n 5 and let H be a subgroup of5 = A, with index n. Then
H = An 1-

Proof. G acts by multiplication on the set of cosets oH in G and identifying this set

with f1;:::;ng gives a homomorphism : G! S,. SinceA, is simple, is injective and
thereforelm = A,. Finally, note that (H) is a point stabilizer of a letter inf1;:::;ng
and so (H) = A, ;. It follows that the restriction of to H gives an isomorphism
H=A, 1. O

Proof of Theorem 3.1.2 forn 8. Set G = Gal(N=k) = A, and H = Gal(N=K). By
Theorems 1.5.8 and 1.5.12, it is enough to show that the grourﬁ(G;‘b) is trivial, where
T = Ri., G is the norm one torus associated with the extensioK=k. Recall that
P = Js-y asG-modules by Proposition 1.6.5, so it su ces to prove thatH?(G; Jg-n) = 0.
But since [G : H] = n, we haveH = A, ; by Lemma 3.2.8 and so the result follows from


https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/
https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/

" Norml1TorusJ(d,m) (Algorithm N1T in [47, Section 8]), computing the action ofG
on Jg=y, Where G is the transitive subgroup ofSy with GAP index number m (cf.
[17] and [33]) andH is the stabilizer of one of the letters inG;

" FlabbyResolution(G) (Algorithm F1 in [47, Section 5.1]), computing a asque res-
olution of the G-lattice Mg (see [47, De nition 1.26]);

"~ H1(G)(Algorithm FO in [47, Section 5.0]), computing the cohomology groud*(G; M¢)
of the G-lattice M¢.

Using these algorithms, we can easily prove th& case of Theorem 3.1.2 as follows:

Proof of the casen = 6 of Theorem 3.1.2. Set G = Gal(N=k) = Ag;H = Gal(N=K) and
T = R:_,Gm. Note that H = As by Lemma 3.2.8 and thatP = Je=n (as G-modules)
by Proposition 1.6.5. Therefore, by Theorems 1.5.8 and 1.5.12 it is enough to prove that
HY(G:Fg=n) = 0, whereFg-y is a asque module in a asque resolution 08g-y;. Writing

of ; and so the above algorithmNorm1TorusJ59hm



Chapter 4

Explicit methods for the Hasse norm
principle

4.1 Main results

While results of Colliot-Thélene and Sansuc (Theorem 1.5.12) give concise descriptions of
the birational invariant H!(k; Pic X)) of an algebraic torusT, and a result of Tate (Theo-
rem 1.5.13) does the same for its Tate Shafarevich group, actually computing these groups
in practice can be challenging. In this chapter we address this problem by giving theoreti-
cal results and explicit methods for computing the groupX (T); H(k; PicX) and A(T)

for the norm one torusT = RE_, G of an extension of number eldsK=k.

Except where stated otherwise, our assumptions throughout the rest of the chapter will
be as follows. LetT = R%_, Gy and let X denote a smooth compacti cation ofT. Let
L=k be a Galois extension containingt=k and set



Theorem 4.1.1. Let L=K=k be a tower of nite extensions. LefT, = Rﬁ:ka, let T =
R Gm



As a corollary, one can use this object to compute thp-primary parts of the knot
group, the invariant H(k; Pic



Lemma 4.2.1. Let K=k be a nite extension and letX be a smooth com@cti cation of
T = R, Gn. Then T K is stably rational. ConsequentlyH'(K; PicX) = 0 and
H(k; Pic X) is killed by[K : K].






Let d=[L : K] and let [d] denote the mapx 7! x9. The natural inclusionj : Rk= G !
Ri=kGm satises N, -« | =[d]. Usingi andj, we obtain a morphism of algebraic tori

'S RkxkGm! R=«Gn
(xy) 7t i(x)j(y)
Note that if (x;y) 2 Ker ,i.e.i(X)j(y) =1, thenj(y) 2 S and thereforel = N = (j (y)) =
yd. We thus see thatker = f(i (j(x));x ) j X 2 R 40 (Where 4 is the group of
d-th roots of unity) is nite. Moreover, is surjective: givenz 2 R - Gn(k), we have

N = (2) = y9 for somey 2 Rg=xGm(K), and thus N - (z2) = N_= (j (Y)), which gives
z= (x;y) for somex 2 S. We conclude that is an isogeny with kernel killed byd.

Let Z, W and W, be smooth compgcti cati@s ofS, Rk=x G, and R =« G,, respectively.
By [91, Lemma 3],Pic(Z W) =Pic Z PicW. Thus, Corollary 4.2.5 yields

H(k;PicZ) HY(K; PicW)p = HY(k; PicWo)(p):
Furthermore, Rx= Gm and Ry~ G, are k-rational so H'(k; Pic W) = H *(k; PicWo) = 0 by
[20, Proposition 6] and henced'(k; PicZ), = 0. Therefore, X (S) = A(S)(y = 0 by

Theorem 1.5.8. The result now follows from an application of Corollary 4.2.5 similar to
the one done above, but to the surjective morphism

S R:,Gn! R, Gn
whose nite kernel is killed by d. m
The following special case of Theorem 4.1.1 reduces the calculatioA¢T ), H2(k; Pic X)
and X (T) to the case whereK=k is the xed eld of a p-group.
Corollary 4.2.6. Let L=K=k be a tower of nite extensions withL=k Galois. Let G =

Gal(L=k) and H = Gal(L=K ). For p prime, let H, denote a Sylowp-subxJERAHaYRHRFLABAEZS



As a consequence of Corollary 4.2.6, we obtain the following result which deals with
the two extremes in terms of the power op dividing jHj.

Corollary 4.2.7. Retain the notation of Corollary 4.2.6.
(i) If p-jHj, then HY(k; PicX)y = H3(G;Z) ).

(i) If H contains a Sylowp



Proof. We give the proof forA(T) the other proofs are analogous. Led = [L : K],
e = exp(A(To)) and letx 2 A(T). SinceN, -« j =[d], we havex® = N (j (x)®) =1,
asj (x) 2 A(Ty). ]

Corollary 4.2.10. Retain the notation of Theorem 4.1.1.
() If exp(A(Ty)) [L : K]is coprime to[K : k], then weak approximation holds foK=K.
(i) If exp(X (Tp)) [L :K]is coprime to[K : k], then the HNP holds forK=k.

Proof. This follows immediately from Corollaries 4.2.2 and 4.2.9. O

The following result is a slight generalization of [42, Proposition 1].

Proposition 4.2.11. Let L=K=k be a tower of nite extensions and let = [L : K]. Then
the mapx 7! x9 induces a group homomorphism

' K(K=k) ! K(L=K)

)

with Ker' K(K=k)[d] and fx9 j x 2 K(L=k)g Im"' . In particular, if jK(K=k)j is
coprime tod, then' induces an isomorphisnK(K=Kis ¢



Proof. The commutative diagram comes from Lemma 4.2.3. [K : k] and [M : k] are
coprime, then any prime number divides at most one dL : K] and [L : M], whence
Lemma 4.2.1 and Theorem 4.1.1 show that the vertical maps in the diagram are isomor-
phisms.



Lemma 4.2.15. Let K=k and M=k be nite subextensions oL=k such that[K : k] and
[M : k] are coprime. If weak approximation holds foR%,,_,, Gm, then it holds forR%_, Gn,.
Under the additional assumption that=k is Galois, weak approximation forRy_, G,
implies weak approximation foR¥,,_; Gm.

Proof. Let T = R&szm, Ty =T (MandTx = T K. Suppose rst that weak
approximation holds for Rg,,.; Gm = Tw. By Lemma 4.2.1 and Theorem 1.5.8, weak
approximation holds for Tx. To complete the proof, observe that weak approximation
for T« and Ty, implies weak approximation forRg=x Tx and Ry=x Ty . Since[K : k] and
[M : k] are coprime, the surjective morphism of algebraic groups

Rk=k Tk Ry=«Tm! T
(X;y) 7! Ng=k (X)Nm=x (Y)

has a section. Therefore, weak approximation foF follows from weak approximation for

Now suppose thatk=k is Galois and that weak approximation holds foR;_, Gr,. Then
KM=M is Galois with Galois group isomorphic taGal(K=k). Let w be a place oM and
let v be the place ofk lying below w. The various restriction maps give a commutative
diagram

H3(Gal(K=k); Z) —/H3(Gal(KM=M ); Z)

Res, Resy

H3(Dy;Z) ———H%(Dw; 2):

Since weak approximation holds foR}_, Gn, isomorphism (4.2.4) of Proposition 4.2.14
shows that Res, is trivial, and hence Res, is also trivial. As w was arbitrary, weak ap-
proximation for Ry,,_,, Gm follows from (4.2.4). O

Remark 4.2.16. The hypothesis thatK=k is Galois in the second implication of Lemma 4.2.15
iIs necessary. To see this, consider a Galois extenslork with Galois groupG = C3 S3

and with a decomposition grouD,, containing the Sylow3-subgroup ofG for some placey

of k (such an extension always exists, see Chapter 6). Ue¢tk and M=k be subextensions

of L=k of degree9 and 2, respectively. One can verify that the invariantH(k; Pic X)
vanishes forK=k (see the example in Algorithm Al of the Appendix 4.5) and thus weak
approximation holds forR;_, G by Theorem 1.5.8. On the other handKM=M = L=M

is Galois with Galois groupC; C;3 and decomposition groupCs; Cs for a prime of M
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abovev. It follows that weak approximation fails for R%,,_,, Gm by isomorphism (4.2.4)
of Proposition 4.2.14. See [60] for some other examples of varieties over number elds that
satisfy weak approximation over the base eld but not over a quadratic extension.

Proposition 4.2.17. Let L=k be a Galois extension such thdb = Gal( L=k) is nilpotent.
For every primep, Ieté%p be a Sylowp-subgroup ofG. Let k, and L, be the xed elds of
the subgroupss, and = G, respectively. The following assertions are equivalent:

a6 p
() Weak approximation holds forR!_, Gn.
(i) Weak approximation holds for eachR{ _ Gm.
(i) Weak approximation holds for eachRﬁzkme.
Proof. (i) =) (ii): Follows from Corollary 4.2.10.

(i) =) (iii): Follows from Lemma 4.2.15.

(i) =) (i): We prove A(R!_, Gm)( = 0 for every primep. Let v be a place ok and
let w be a place ok, abovev. The various restriction maps give a commutative diagram

H.293 0 Td [(p[(v)]TJ/F40 11.9552 Tf1350(assertions)-350(ar)50(e)-35C(



remark that several results presented below will later be generalized in Section 8.1 for the
multinorm principle.

We again x a tower of number elds L=K=k such that L=k is Galois and letX and
Xo be smooth compacti cations of the toriR%_, G and R!_, Gn,, respectively. Applying

Lemma 4.2.3 to the norm mapN -« : Rﬁszm ! R}(:ka gives a commutative diagram
with exact rows as follows, where the vertical arrows are induced By, - :

0——A(RL, Gn) —/H'(k; PicXo) ——/X (Rl Gn) —0 (4.3.1)
f|_=K OL=k

0—J/A(RL,, Gn) —/H'(k; PicX) —IX (Ri,, Gn) —0:
De nition 4.3.1.  In the notation of diagram (4.3.1), we de ne

1. F(L=K=k) := Coker(gi=x ) = (k \ Ng=k (Ag))=Nk=x (K )(k \ N_=«(A.)), called the
rst obstruction to the HNP for K=k corresponding to the towel.=K=k, see [27,
De nition 1];

2. For (L=K=k) := Coker(f=¢ ), called theunrami ed cover of F(L=K=Kk).
Clearly the knot group K(K=k) (which is sometimes called the total obstruction to the

HNP) surjects onto F(L=K=k) and F(L=K=k) equalsK(K=k) if the HNP holds for L=k. In
[



their results here in a slightly more general setting. LeG be a nite group, letH G,
and let S be a set of subgroups d&. Consider the following commutative diagram:

H:[|-5H ] ! /G:[% G] (4.3.2)

"1 ‘2

L L L
HigHi;H] ——/  D=[D;D]
D2S  Hx;D2HnG=D D2s

where thex;'s are a set of representatives of thel D double cosets ofs, the sum over
D is a sum over all subgroups its, and H; := H \ x;Dx; ! The maps ;' and' , are
induced by the natural inclusionsH ! G,H; ] H andD ! G, respectively. Ifh 2 H;,
then

»(N[Hi; H;i]) = x;, *hx;[D;D] 2 D=[D;D]:

Given a subgroupD 2 S, we denote by D the restriction of the map  in diagram (4.3.2)
to the subgroup Hi=[H;; Hi].
Hx D 2HnG=D

Lemma 4.3.3. In diagram (4.3.2), ' 1(Ker D) ' i(Ker 2°) wheneverD D°

Proof. The proof proceeds in the same manner as the proof of [27, Lemma 2]. ]

Lemma 4.3.4. ([27, Lemma 1] or [72, |, Y9]) SetG = Gal(L=k) and H = Gal(L=K).

Given a placev of k, the set of placesv of K abovev is in one-to-one correspondence with
[r5ITI/F79 11.9552 Tf 11.9552 552 T 9.528 0 Td [(he)-363(de)50(c)50(52 55

the set of double cosets in the decompositiGh=



Theorem 4.3.5. [27, Theorem 1] With the notation of diagram(4.3.3), there is a canonical
isomorphism
F(L=K=k) =Ker =" (Ker »,):

We write 2" for the restriction of the map , to the subgroup

M M
Hw={Hw; Hu]

v unramied in L=k wjv
and de ne % similarly using the rami ed places.

Lemma 4.3.6. SetG = Gal(L=k) and H = Gal(L=K). Let C be the set of all cyclic
subgroups ofs and let' § and § denote the relevant maps in diagrart¢.3.2) with S = C.
Then

"a(Ker ) =" f(Ker 3)

where the maps in the expression on the left are the ones in diagréhB.3).
Proof. This follows from the Chebotarev density theorem and Lemma 4.3.3. ]
De nition 4.3.7. Let H be a subgroup of a nite groupG. The focal subgroup oH in
Gis
S(H)= rh,*h,j hy;hy, 2 H and h, is G-conjugate toh,i
=Hh;x]jh2 H\ xHx %x2 Gi E H:
Theorem 4.3.8. [27, Theorem 2] In the notation of diagram(4.3.3), we have

tu(Ker 3)= S(H)FHH]:

Theorem 4.3.8 is very useful quite often one can show that®(H) = H\ [G;G] and
hence the rst obstruction F(L=K=k) is trivial. In fact, since [Ng(H);H] S(H), if one
can show that[Ng(H);H] = H\ [G;G], then F(L=K=k) = 1. This criterion generalizes
[42, Theorem 3].

Remark 4.3.9. The groupKer ;=" ;(Ker ) featured in Theorem 4.3.5 can be computed
in nite time. Indeed, Ker ; is given in terms of the relevant Galois groups, and by [27,
p. 307] we have

"i(Ker o) =" (Ker 2')' (Ker J%): (4.3.4)
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By Theorem 1.5.12 and Lemmam



Proof of Corollary 4.1.3. This is a direct consequence of diagram (4.3.1) and Theorems 1.5.12,
1.6.8 and 4.3.11. O

Corollary 4.3.12. If H is a Hall subgroup ofG, then F, (L=K=k) = F(L=K=k) =1.

Proof. The focal subgroup theorem [44] asserts that for a Hall subgroup of G, we
have F(G;H) = 1. The result therefore follows from Theorem 4.1.2 and the surjection

We end this chapter by giving a proof of Theorem 4.1.4 and presenting a lemma to be
used alongside this theorem in Chapter 5.

Proof of Theorem 4.1.4.Foranyv 2 , de ne

Y(D,) if vis ramied in L=k;
a cyclic subgroup of 1(D,) with (S,) = D, otherwise.

Consider the version of diagram (4.3.2) with respect to the group3, H and S = fS, j
V2 0. In this setting, Drakokhrust shows in [26, Theorem 2] that

H(k;PicX) =Ker ;=" ;(Ker ¥



Lemma 4.3.13. We haveF(G;H) = F(G;H) if and only if Ker \ [G;G]
where the notation is as in Theorem 4.1.4.

Proof. Let : F(G;H)! F(G;H)

o

(

I

),



Example 4.4.1. Since A, is the fourth transitive subgroup of S, in the GAP library
TransitiveGroups , the command

gap> Product(H1(FlabbyResolution(Norm1TorusJ(4,4)).actionF));

2
computes the order of the groufH}(G; Fg-n) for G= A, and H = As, i.e. the size of the
invariant H!(k; PicX) for an As-quartic, con rming Kunyavski's result in [57] that this
group is isomorphic toZ=2.

As noted above, Hoshi and Yamasaki's algorithlorm1TorusJrequires one to embed
the Galois groupG as a transitive subgroup ofS,, whereupon one quickly reaches the
limit of the databases of such groups stored in computational algebra systems such as
GAP. This would be a problem if one were to use this function to compute the invariant
H(k; Pic X) for some of the groups we will analyze later on (namely, in Propositions 5.1.7
and 5.1.9). To overcome this issue, we have employed a small modi cation of Hoshi and
Yamasaki's function Norm1TorusJthat does not require one to view the Galois groufs
as a transitive subgroup ofSy. Instead, our function simply takes as input a pair of nite
groups(G; H) whereH is a subgroup ofG and computes theG-moduleJg-y . Analogously
to the Norm1TorusJalgorithm, our routine will output the module Jg-4 as aMg-module
de ned as follows:

De nition 4.4.2.  [47, De nition 1.26] Let n be a positive integer and letG be a nite
subgroup ofGL,(Z). The G-lattice Mg of rank n is de ned to be the G-module with

Z-basisfu



P1
2.1f (i)=d, ie.(Hgi):g= Hga =  Hgi inside Jg-n, then the k-th entry of the

i=1
i-th row of Ry is set to be equal to 1 for everyk.

Let Rg be the grouphRy j g2 Gi  GLg4 1(Z). Itis then clear that the Chevalley
module Jg-y is isomorphic to the G-module Mg, which is the output of our function.
The code for this function is presented in Algorithm Al in the Appendix 4.5 and it consists
of two routines:

~ row(s,d) (an auxiliary routine to action ), constructing the i-th row of the matrix
Ry as explained above;

" action(G,H) , assembling the matriceRy for g 2 G and returning the groupRg.

These GAP functions can then be combined with Hoshi and Yamasaki's algorithms
FlabbyResolution and H1to compute H(G; Fs-y) as described above and we present an
example of such a computation in the Appendix 4.5.

For some of our future computational applications, we do not employ the algorithms
of Hoshi and Yamasaki and instead use the formula of Theorem 4.1.4 which expresses
H*(k; Pic X) in terms of generalized representation groups &. We also implemented this
formula, along with the simpli cation a orded by Corollary 4.2.6, as an algorithm in GAP
(see Algorithm A2 in the Appendix 4.5, where we also include an example).

Remark 4.4.3. It is noteworthy to compare the method of computingH!(k; Pic X) via
Theorem 4.1.4 with Hoshi and Yamasaki's algorithm. The approach based on Theo-
rem 4.1.4 involves the computation of the focal subgroup®(H), which is generally fast for
small subgroupsH but impractical for large ones. On the contrary, Hoshi and Yamasaki's
method using asque resolutions deals only with th&-moduleJg- , whoseZ-rank L 1

jHj
decreases ag



4.5 Appendix: Algorithms for the Hasse norm principle

In the following algorithms, we add a few comments in gray (marked with a #, which
is also the GAP command for a comment and treated as white space by this program)
explaining the goal of several selected lines of code.

4.5.1 Al: computing the Chevalley module  Jg-q

row:=function(s,d)
local 