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Abstract

This dissertation is concerned with the 
ow of chemical agents through porous media

at low levels of saturation, giving rise to a fast di�usion process. A velocity based

moving mesh method based upon the assumption of local mass conservation is applied

to the porous medium equation in one dimensional cartesian and radial coordinates and

discretised using both �nite di�erences and �nite elements. Comparisons are drawn

between the fast and slow di�usive regimes, evaporation is also considered from the

domain. An appropriate numerical model output in three dimensions is successfully

compared to some real experimental data.
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Chapter 1

Introduction

This dissertation is concerned with the application of moving meshes applied to nonlin-

ear di�usion, speci�cally the porous medium equation. We shall discuss a conservation

based moving mesh method based on advecting the nodes with the 
uid velocity. In

particular this method will be applied to modelling the dispersion of liquid chemicals

in the porous medium (otherwise known as the fate of chemical agents).

1.1 Background

Exposure to chemical agents can have a major impact on the environment. Being able

to model the fate of the agent accurately is therefore an extremely useful tool.

When a chemical agent is released into a porous medium, di�usion will occur and

the substance will spread. The rate of di�usion depends, among other factors, on the

properties of the medium as well as those of the chemical agent. To model the di�usive

properties of the medium, features such as the size and coarseness of grains are con-

sidered. Also, when modelling the chemical agent, properties such as the viscosity and

the temperature at which it vaporizes are important.

It is well known that a spreading liquid in a porous medium can form a capillary
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2 CHAPTER 1. INTRODUCTION

bridge network, which aids the di�usive process. As described in [11], at very low levels

of saturation the liquid bridges between grain particles are only connected by the thin

�lms covering grain particles, see �gure 1.1. These low levels of saturation cover a wide

range of values, so understanding the change in transport properties of the medium at

these levels is of vital importance. The network properties are de�ned by the di�usive

regime imparted by these conditions.

Figure 1.1: Schematic to show two grains within a porous medium at low levels of

saturation

Capillary transport at low levels of liquid saturation is generally a slow process com-

pared to di�usion at higher levels of liquid saturation [4], but it is the process responsible

for the long term distribution and therefore for environmental e�ects.

In the situation where saturation levels are low a process can occur referred to in mod-

elling terms as fast di�usion. The features that distinguish this fast di�usion regime

from normal or slow di�usion are that the liquid is only contained in isolated capillary

bridges and on the rough surface of particles.
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1.3. OVERVIEW OF THE DISSERTATION 5

properties of the porous medium equation.

We split Chapter 3 into two main sections for modelling di�usion by the porous medium

equation which (i) excludes and (ii) includes evaporation. (i) In this �rst section we

have the property of local mass conservation. This allows us to derive a Lagrangian

velocity-based moving mesh method. This essentially takes an initial mesh and advects

the nodes at the Darcy velocity using local mass conservation, allowing the solution

to evolve with the mesh. (ii) In the second section we no longer have mass conser-

vation because we include evaporation into the di�usion process. This requires us to

take a slightly di�erent approach whereby local mass fractions are conserved. Both ap-

proaches are implemented in both 1D Cartesian and d-dimensional radially symmetric

coordinates. We begin modelling in 1D Cartesian coordinates since the procedure is

clearer in that case. The key coordinate system for comparing the numerical model

to the experimental data will be radially symmetric in 3D, allowing us to capture the

hemispheric geometry of the di�using chemical agent.
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We end with Chapter 6 where we conclude our �ndings and suggest avenues for further

work in this �eld.

Apart from the comparison between the numerical model with some experimental data,

in Chapter 5 we will not be concerned with precise physical values. Instead we shall

use values that are representative of the phenomena that we expect to see.





8 CHAPTER 2. THE POROUS MEDIUM EQUATION

(i) Mass balance

Also known as the continuity equation, the equation of mass conservation is given by

�� t + r � (� V ) = 0 (2.2)

where � 2 (0; 1) is the porisity of the medium, V is the velocity, r� is the divergence

operator, and � is the density.

(ii) Darcy's Law

Darcy’s Law is generally used to describe the dynamics of 
ows through porous media

and is given by

� V = � � r p (2.3)

where p is the pressure of the gas, � is the viscosity and � is the permeability tensor

which we take to be a constant.

(iii) Equation of state

An equation of state for a 
uid is the ideal gas law

p = p0� 
 (2.4)

where p0 is some chosen reference pressure and 
 � 1 is the speci�c heat ratio.

To form the PME (2.1), we �rst substitute (2.4) into (2.3) to give

V = �
�
�

r p0� 


= �
�p 0

�
r � 


= �

�p 0

�
� 
 � 1r �; (2.5)

which can then be substituted into (2.2) to give

� t =

�p 0

��
r � (� 
 r � ): (2.6)
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By writing � = u and 
 = m and scaling out the constant 
�p 0
�� we arrive at the PME

(2.1).

2.2 The PME with a source term

We also want to study the e�ects of evaporation by the introduction of a negative source

term in (2:1), arising from mass balance. The PME with a source term is known as the

CPME [17] and takes the form

ut = r � (um r u) + s(x) (2.7)

where s(x) is the source term.

2.3 Initial data and boundary conditions

Due to the physical nature of the problem discussed in x1.1, we have a Dirichlet bound-

ary condition and zero total 
ux at the moving boundary i.e.

u = ub and uv + um r u � n̂ = 0; (2.8)

where n̂ is the normal to the boundary and we choose u = ub to be a small fraction of

the total initial value of u. This represents the threshold value beyond which the capil-

lary network bridges of 
uid between granules of the porous media break, as described

in x1.1.

In the standard PME problem u = 0 on the boundary, although putting u 6= 0 re-

moves one of the di�culties of the equation since the standard PME is degenerate at

u = 0. A consequence is that waiting times do not arise in this problem.

We also assume an initial data function

u(x; 0) = u0(x) (2.9)
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2.4 Mass conservation

A property of the PME (2.1) with the boundary conditions (2.8) is conservation of

mass, which we now verify using similar methods to those in [3]. For a region 
(t) with

a boundary @
(t) moving with the normal velocity v �n̂ we begin by di�erentiating the

total mass integral with respect to time and applying Reynolds Transport Theorem [18],

so that

d
dt

Z


( t )
udx =

Z


( t )
utdx



2.5. ONE DIMENSIONAL REPRESENTATION OF THE PROBLEM 11

The 1D Cartesian form of (2.1) is

ut =
@

@x

�
um @u

@x

�
; (2.14)

with moving boundaries at a(t) and b(t), which will be solved on a moving mesh x̂ i (t),

for i = 0; :::N , such that

a(t) = x̂0(t) < x̂1(t) < ::: < x̂N � 1(t) < x̂N (t) = b(t) (2.15)

The boundary conditions are

u = ub and uv + umux = 0 at x(t) = a(t); b(t); t > 0; (2.16)

which are equivalent to the multi-dimensional boundary conditions (2.8).

The one dimensional version of the initial data (2.9), for (2.14) is

u(x; 0) = u0(x) (2.17)

in the region x̂ i (t0) 2 [a(t0); b(t0)]. From (2.17), we choose
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the entire domain which in the case of d = 1; 2 is the whole domain, consistent with

the physical problem. However in the case d = 3 modelling evaporation in this way

becomes invalid as it only occurs over the boundary.

The change in boundary conditions and initial data from Cartesian to radial coordinate

systems is a trivial alteration from (2.16) and (2.17) respectively.



Chapter 3

A velocity-based moving mesh

method

In this chapter we describe a Lagrangian approach used to design a moving mesh

method for the PME. The idea of the method is to use the principle of local mass

conservation to generate a velocity with which to advance the mesh. When dealing

with a mass conserving problem the velocity based moving mesh method is consistent

with the total integral of the density being constant. We initially look at the mass

conserving problem where there is no evaporation occuring and then at the non-mass

conserving evaporation case. In both cases we go on to show how the solution u can be

recovered algebraically from the new mesh and the constant masses using conservation

properties.

3.1 Deriving the velocity from mass conservation

We shall describe the method to generate the velocity of the nodes from the local mass

conservation principle for both the 1D Cartesian case and the radially symmetric case

in d dimensions.

13



14 CHAPTER 3. A VELOCITY-BASED MOVING MESH METHOD

3.1.1 One dimension

Here we consider the PME (2.14) in one dimension, with zero 
ux and u = ub on the

boundaries. We know that the total mass is conserved from equation (2.13) which in

1D is Z b(t )

0
udx = c (3.1)

For local mass to be conserved we require it to be constant for all time. The mass from

0 to a general point x̂ i (t) in (0; b(t)) is

Z x̂ i (t )

0
udx = ci (3.2)

for u > 0. We assume that the x̂ i (t) are such that the ci ’s are constant in time, corre-

sponding to mass conservation in the segment from 0 to x̂ i (t).

We now di�erentiate (3.2) with respect to time and apply Leibnitz’ integral rule to

�nd that
d
dt

Z x̂ i (t )

0
udx =

Z x̂ i (t )

0

@u
@t

dx +

�
u

dx
dt

� x̂ i (t )

0

(3.3)

Substituting from (2.14) we have

d
dt

Z x̂ i (t )

0
udx =

Z x̂ i (t )

0

@
@x

�
um @u

@x

�
dx +

�
u

dx
dt

� x̂ i (t )

0

=

�
um @u

@x
+ u

dx
dt

� x̂ i (t )

0

=

�
u

�
um� 1 @u

@x
+

dx
dt

�� x̂ i (t )

0

= u
�

um� 1 @u
@x

+
dx
dt

� �
�
�
�
x= x̂ i (t )

= 0 (3.4)

using the assumption that the ci ’s in (3.2) are constants. We note that (3.4) is equivalent

to zero total 
ux through all segment boundaries. We can now rearrange (3.4) to give

the velocity at any point x̂ i (t) as

vi =
dxi

dt
= � um� 1

i

�
@u
@x

�

i

= �
1

m

�
@

@x
(um)

�

i

(3.5)
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provided that ui 6= 0. So we know that in order to preserve mass we must move nodes

with this velocity. We notice at this point that the velocity (3.5) is that arising from

Darcy’s Law (2.3).

3.1.2 The Finite Di�erence Method

In the �nite di�erence method (3.5) is approximated by

vi =
dxi

dt
= �

1

m

 �
un

i +1

� m
�

�
un

i � 1

� m

xn
i +1 � xn

i � 1

!

(3.6)

To obtain the new mesh from (3.6) we employ explicit Euler timestepping, as in

xn+1
i � xn

i

�t
= �

1

m

 �
un

i +1

� m
�

�
un

i � 1

� m

xn
i +1 � xn

i � 1

!

; (3.7)

taking the values of x i and ui on the right hand side at the previous time level n. A

stability condition on �t is required, in addition to which there is a condition to prevent

node overtaking also required. To do the latter we impose in e�ect a Lagrangian type

CFL condition on the scheme, limiting the size of the timestep that we can take relative

to the size of the space step such that for a general point x i

j(vi +1 � vi )�t j < jx i +1 � x i j ; 8i; t (3.8)

The condition (3.8) may not guarantee stability of (3.7), but by following this restric-

tion we can prevent nodes overtaking. In practice the value of �t is estimated by trial

and error.

Conservation tells us that the ci ’s in (3.2) remain constant for all time. This tells

us that for a general point x̂ i (t
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where the ci ’s are from (3.2).

3.1.3 Semi-implicit timestepping

We now describe a semi-implicit timestepping method for �nding the nodal position.

This is useful because it allows us to take a longer timestep than with an explicit method

and also prevents nodes overtaking. This method is still �rst order in time but avoids

the Lagrangian type CFL condition (3.8), allowing larger timesteps to be taken.

We begin with a form of the scheme (3.7) for the nodal velocity formulated in x3.1.2,

taking m = 1 for clarity. We can write

xn+1
i � xn

i

�t
= �

un
i + 1



3.1. DERIVING THE VELOCITY FROM MASS CONSERVATION 17

for (1 � i � N � 1), where

en
i = �

ui + 1
2
�t

�
xn

i � xn
i � 1

� �
xn

i + 1
2

� xn
i � 1

2

�

f n
i = 1 +

ui � 1
2
�t

�
xn

i +1 � xn
i

� �
xn

i + 1
2

� xn
i � 1

2

� +
ui + 1

2
�t

�
xn

i � xn
i � 1

� �
xn

i + 1
2

� xn
i � 1

2

�

gn
i = �

ui � 1
2
�t

�
xn

i +1 � xn
i

� �
xn

i + 1
2

� xn
i � 1

2

�

We can now determine xn+1
i by inverting the tridiagonal matrix on the left hand side

of the following tridiagonal system

0

B
B
B
B
B
B
B
B
B
@

f n
1 gn

1 0 : : : 0

en
2 f n

2 gn
2 : : : 0

...
. . . . . . . . .

...

0 : : : en
N � 2 f n

N � 2  0 Td [(2)]TJ/F25 11.9552td [(2)]TJ/F274o4.58 -2.92o662 Td [3.07 0 J 0. c.7750f 14.777 3.02 Td [sd24.529 -2

N.

08.293 3.064 Td [(�)]TJ/F25 11.9552 Tf 11.955 0 Tf
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3.1.4 Radial symmetry

The radially symmetric porous medium equation (2.18) is

@u
@t

=
1

r d� 1

@
@r

�
r d� 1u
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since the ci ’s are constants. As before this is equivalent to zero total 
ux through all

section boundaries.

We can rearrange (3.23) to �nd the velocity as in x3.1.1, giving

vi =
dr̂ i

dt
= � um� 1

i

�
@u
@r

�

i

= �
1

m

�
@
@r

(um)

�

i

(3.24)

Once again, as would expected for a mass conserving problem, we have derived the

Darcy velocity as in (3.5) except in terms of the radial coordinate.

In the �nite di�erence method using radially symmetric coordinates (3.24) is approxi-

mated as

vi =
dr i

dt
= �

1

m

 �
un

i +1

� m
�

�
un

i � 1

� m

r n
i +1 � r n

i � 1

!

; (3.25)

and to �nd the new nodal positions r̂ i (t) we use explicit Euler timestepping as in x3.1.2,

or semi-implicit timestepping as in x3.1.3.

Due to the conservation in each section we can use the new mesh spacing to recover

the solution u, as in (3.10), which in the radial sense is

ui (r; t n+1 ) =
ci +1 � ci � 1

r d� 1
i (tn+1 ) (r i +1 (tn+1 ) � r i � 1(tn+1 ))

(3.26)

3.2 Including evaporation from the boundary

In the remainder of the chapter we consider the evaporation case, as described physi-

cally in x1.1. In this case global mass conservation no longer applies. This requires us

to take a slightly di�erent approach to �nding the nodal velocity, this time based on

local conservation of mass fractions.

As in x3.1 we �rst describe the method to �nd the velocity in 1D Cartesian coordi-

nates and then generalise to radially symmetric coordinates in d dimensions (although

d = 2 is the only realistic value physically).
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3.2.1 One dimension

We consider the CPME (2.7) with evaporation from the boundary in one dimension. A

source term is present and for now we shall keep the general form s(x) so that

ut =
@

@x

�
um @u

@x

�
+ s(x) (3.27)

where in practice s(x) is negative. Evaporation will cause total the mass to reduce,

eventually to zero and local mass cannot be conserved. We therefore require another

way to derive the velocity. Let us de�ne the total mass to be

Z b(t )

0
udx = � (t); (3.28)

say, which now varies with time. Taking the time derivative of (3.28) using Leibnitz

Integral Rule we �nd that

� 0(t) =
d
dt

Z b(t )

0
udx

=

Z b(t )

0
utdx + [uv]b(t )

0 (3.29)

Substituting in (3.27) we have

� 0(t) =

Z b(t )

0

�
@

@x

�
um @u

@x

�
+ s(x)

�
dx + [uv]b(t )

0

=

�
um du

dx
+ uv

� b(t )

0

+

Z b(t )

0
s(x)dx

= u(b)

�
u(b)m� 1 @u(b)

@x
+

db
dt

�
+

Z b(t )

0
s(x)dx (3.30)

=

Z b(t )

0
s(x)dx (3.31)

since the �rst term of (3.30) vanishes by virtue of the zero total 
ux boundary condition

in (2.16).

Although local mass cannot be conserved, the integral of u in the segment from 0 to
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x̂ i (t) can be assumed to be a constant fraction of � (t), so the following mass fractions

integral � i :

1

� (t)

Z x̂ i (t )

0
udx = � i (3.32)

is constant for all time. Note that � N = 1.

We approach conservation of � i in a similar fashion as for the ci in x3.1.1. We be-

gin by multiplying both sides of (3.32) by � (t) and taking the time derivative of the

resulting equation so that

d
dt

Z x̂ i (t )

0
udx =

d
dt

(� (t)� i )

= � 0(t)� i (3.33)

Evaluating the left hand side of (3.33), it can be shown in a similar manner as for (3.30)

that

d
dt

Z x̂ i (t )

0
udx = u(x̂)

�
u(x̂)m� 1 @u(x̂)

@x
+

dx̂
dt

�
+

Z x̂ i (t )

0
s(x)dx

Now substituting (3.31), (3.32) and (3.34) into (3.33) we can rearrange to �nd the nodal

velocity

dx̂
dt

=

Rb(t )
0 s(x)dx� (x̂)

u(x̂)
� u(x̂)m� 1 @u(x̂)

@x
�

1

u(x̂)

Z x̂ i (t )

0
s(x)dx (3.34)

which consists of the Darcy velocity (3.5), together with a contribution from the source

term. As in x3.1, we can employ explicit Euler timestepping for x̂ i (t) or use semi-

implicit timestepping, although the latter requires the terms in (3.34) to be written as

a derivative.

Conservation of partial mass in each segment tells us that the � i ’s in (3.32) remain

constant in time, therefore for a general point x̂ i (t)

� i =

Rx̂ i +1 (tn +1 )
x̂ i � 1 (tn +1 ) u(x; t n+1 )dx
Rb(tn +1 )

0 u(x; t n+1 )dx
=

Rx̂ i +1 (t0 )
x̂ i � 1 (t0 ) u(x; t 0)dx
Rb(t0 )

0 u(x; t 0)dx
(3.35)
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allowing us to �nd the solution u
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Substituting in (3.37) we have

� 0(t) =

Z b(t )

0
r d� 1

�
1

r d� 1

@
@r

�
r d� 1um @u

@r

��
+ r d� 1s(r )dr + [ur d� 1v]

b(t )
0

=

�
r d� 1um @u

@r
+ ur d� 1v

� b(t )

0

+

Z b(t )

0
s(r )dr

= u(b)r (b)d� 1

�
u(b)m� 1 @u(b)

@r
+

db
dt

�
+

Z b(t )

0
s(r )r d� 1dr (3.39)

=

Z b(t )

0
s(r )r d� 1dr (3.40)

where the �rst term of (3.39) vanishes by the zero 
ux boundary condition in (2.16).

The integral of u from 0 to r̂ i (t) is now assumed to be a constant fraction of � (t)

so the following mass fraction integral � i :

1

� (t)

Z r̂ i (t )

0
ur d� 1dr = � i (3.41)

is constant for all time.

We approach the conservation of � i as we did in x3.2.1, except for the radial case.

We begin by multiplying both sides of (3.41) by � (t) and then taking the time deriva-

tive of the resulting equation so that

d
dt

Z r̂ i (t )

0
udr =

d
dt

(� (t)� i ) (3.42)

= � 0(t)� i (3.43)

Evaluating the left hand side of this, for a general point r̂ i (t) it can be shown in a

similar manner as for (3.39) that

d
dt

Z r̂ i (t )

0
ur d� 1dr = u(r̂ i )r̂ i

�
u(r̂ i )

m� 1 @u(r̂ i )

@r
+

dr̂ i

dt

�
+

Z r̂ i (t )

0
s(r )r d� 1dr (3.44)

Now substituting (3.40), (3.41) and (3.44) into (3.42) we can rearrange to �nd the nodal

velocity

dr̂ i

dt
=

Rb(t )
0 s(r )r d� 1dr� (r̂ i )

r̂ d� 1
i u(r̂ i )

� u(r̂ i )
m� 1 @u(r̂ i )

@r
�

1

r̂ i u(r̂ i )

Z r̂ i (t )d� 1

0
s(r )r d� 1dr (3.45)



24 CHAPTER 3. A VELOCITY-BASED MOVING MESH METHOD

which as in x3.2.1 consisits of the Darcy velocity together with other terms due to the

source. We can therefore employ the same timestepping methods as for (3.34) to re-

cover the new mesh spacing.

Due to the conservation of partial mass in each section we can use the new mesh

spacing to recover the solution u. We apply a mid-point rule to (3.41) to give

ui (r; t n+1 ) = � (tn+1 )
� i +1 (x) � � i � 1(x)

r d� 1
i (tn+1 ) (r i +1 (tn+1 ) � r i � 1(tn+1 ))

(3.46)

where � (tn+1 ) = � (tn) + �t� 0(tn+1 ) and � 0(tn+1 ) can be found directly after each redis-

tribution of nodes using (3.40).

3.3 The Finite Di�erence Algorithm

Without loss of generality, we write the algorithms for Cartesian coordinates, as it is

a trivial change to use radial coordinates. We shall be solving this problem on a mesh

x̂ i , for i = 0; :::N , such that

a(t) = x̂0(t) < x̂1(t) < ::: < x̂N � 1(t) < x̂N (t) = b(t) (3.47)

with moving boundaries at a(t) and b(t), where the movement of x̂ i (t) is caused by the
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2. Compute the nodal velocity as in x3.1.1. (If using the semi-implicit method as in

x3.1.3 skip to step 4.)

3. Compute the updated mesh using

xn+1
i = xn

i + �t v i (3.49)

where �t is the time-step.

4. Recover the new mass distribution as described in x3.1.2 using the initial masses

c0
i found in step one of this algorithm.

5. Repeat previous three steps for chosen number of time steps

3.3.2 PME in Non-conservation form (with evaporation)

Given the mesh x̂ i (t0) and solution u(x̂ i ; t0) at initial time t0, the algorithm is:

1. Compute the initial total mass � (t0)

� (t0) =

Z b(t0 )

0
u0dx (3.50)

and also the initial partial masses

c0
i =

Z x̂ i (t0 )

0
u0dx (3.51)

and then compute the mass fractions � i

� i =

Rx̂ i (t0 )
0 u0dx

Rb̂(t0 )
0 u0dx

(3.52)

2. Compute the nodal velocity as in (3.34).

3. Compute the updated mesh using

xn+1
i = xn

i + �t v i : (3.53)

and the new total mass

� n+1 = � n + �t (� 0)
n

(3.54)
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4. With the new partial mass

ci = � i � n+1 (3.55)

recover the new mass distribution, using (3.36), with the partial mass fractions

� i ’s found in step one of this algorithm.

5. Repeat previous four steps for chosen number of timesteps



Chapter 4

Finite element formulation

In this chapter we describe a �nite element approach to deriving a moving mesh method

for the PME. As in the previous chapter we describe the method based on the assump-

tion of local mass conservation (consistent with the total integral of density being

constant). The method will �rstly be used to �nd the velocity of nodes in the non-

evaporation case where conservation applies, and then in the evaporation case where

conservation no longer applies.

The �nite element formulation combines a particular �nite representation of the so-

lution u with a weak form of the PME. To implement this we introduce a weak form of

the conservation principle using a continuous and once-di�erentiable test function wi

for (0 � i � N ) advected with the mesh velocity v. We de�ne a distributed mass ci as

Z b(t )

0
wi udx = ci (4.1)

for (0 � i � N ).

So as not to alter the total mass of the problem we require the wi ’s to be a parti-

tion of unity, so that
NX

j =0

wj = 1 (4.2)

27
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Here we choose w to be a standard piecewise linear �nite element hat function � i where

� i =

8
>>><

>>>:

x i +1 � x
x i +1 � x i

if x 2 (x i ; x i +1 );

x� x i � 1

x i � x i � 1
if x 2 (x i � 1; x i );

0 otherwise:

(4.3)

for (2 � i � N � 1) (with suitable modi�cations at i = 0; N ), which agrees with

the condition (4.2) enforced upon w whilst at the same time providing useful compact

support. The solution u is a linear combination of the basis functions (4.3).

4.1 Deriving the velocity from mass conservation

4.1.1 1D �nite element method

We now propose a mass conservation principle in which the distributed mass ci will

remain constant for all time. As in x3.1.1, to get the velocity we di�erentiate the mass

and apply Leibnitz’ Integral rule to (4.1) so that

d
dt

 Z b(
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dimensional Cartesian PME (2.14),

d
dt

 Z b(t )

0
� i udx

!

=

Z b(t )

0
� i

�
@

@x

�
um @u

@x

�
+

@(uv)

@x

�
dx = 0 (4.6)

Integrating (4.6) by parts we �nd

Z b(t )

0
� i

�
@

@x

�
um @u

@x

�
+

@(uv)

@x

�
dx =

�
� i

�
um @u

@x
+ uv

�� b(t )

0

�
Z b(t )

0

@�i
@x

�
um @u

@x
+ (uv)

�
dx (4.7)

= �
Z b(t )

0

@�i
@x

�
um @u

@x
+ (uv)

�
dx (4.8)

= 0; (4.9)

for (0 � i � N
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As we can see from the K matrix entries, we have averaged u across the nodes. This is

because it is a linear function of x.

Imposing  
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which results in the matrix system

Mu = c (4.23)

where M is a non-singular mass matrix and c is a vector of ci ’s which can be pre-

computed at t = t0, that we can solve for (4.22). Hence

u = M � 1c (4.24)

The coe�cient matrix M is tridiagonal of the form

M =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

M 0;0 M 0;1 0 : : : : : : : : : 0

M 1;0 M 1;1 M 1;2 0
...

0
. . . . . . . . .

...
... M i;i � 1 M i;i M i;i +1

...
...

. . . . . . . . . 0
... MN � 1;N � 2 MN � 1;N � 1 MN � 1;N

0 : : : : : : : : : 0 MN;N � 1 MN;N

1
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begin with the total mass Z b(t )

0
udx = � (t); (4.25)

which varies with time. The derivative of (4.25) has already been shown in x3.2.1 to be

� 0 =

Z b(t )

0
s(x)dx (4.26)

We also de�ne the distributed mass from 0 to b(t) as

Z b(t )

0
� i udx (4.27)

We express the distributed mass as a fraction of the total mass to give

1

� (t)

Z b(t )

0
� i udx = � i (4.28)

which we assume to be constant in time. Now multiplying both sides of (4.28) by � (t)

and taking the time derivative we have

d
dt

Z b(t )

0
� i udx = � i � 0(t) (4.29)t
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where we have used the zero 
ux boundary condition from (2.16).

Putting this all together into (4.29), we rearrange to make the velocity term the subject

giving

Z b(t )

0

@�i
@x

uvdx =

"

� i

Z b(t )

0
s(x)dx

#b(t )

0

�
Z b(t )

0

@�i
@x

 

um @u
@x

Z b(t )

0
s(x)dx

!

dx

+� i

Z b(t )

0
s(x)dx (4.34)

We can treat this in an almost identical way, as we did (4.10), the only di�erence being

the right hand side which we now call f . Once again we write the velocity as the

derivative of the velocity potential and solve the matrix system

K = f (4.35)

from which we �nd the velocity potentials  . As in x4.1.1 we can di�erentiate  to �nd

the velocity and then interpolate, using equation (4.20), to recover v at the nodes.

4.2.2 Recovering the solution u with evaporation

As in x4.1.2 the solution u can be recovered directly from the �nite element form. Since

the � i ’s are constant for all time we have

� i =
1

� (t)

Z b(t )

0
� i (x)u(x)dx =

"
1

� (t)

Z b(t )

0
� i (x)u(x)dx

#

t= t0

(4.36)

As in x4.1.2 we expand u(x) in terms of the basis function � and the partial mass at

time t from (4.36) becomes

1

� (t)

Z b(t )

0
� i udx =

Z b(t )

0
� i (x)

NX

j =0

uj � j (x)dx (4.37)

=
NX

j =0

Z b(t )

0
� i (x)� j (x)dxuj = � i (4.38)
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This results in the non-singular matrix system

Mu = d (4.39)

) u = M � 1d



36 CHAPTER 4. FINITE ELEMENT FORMULATION

4. Compute the new solution by solving the matrix system (4.24) where the right

hand side can be computed using the ci ’s from step 1.

5. Repeat the previous four steps for the chosen number of time steps.

4.3.2 Non mass-conserving algorithm (with evaporation)

Given the mesh and solution at initial time t0, the algorithm is:

1. Compute the initial total mass � (t0)

Z b(t0 )

0
u0dx = � (t0) (4.43)

the weak form of the initial masses di

Z x̂ i (t0 )

0
� i u0dx = di : (4.44)

and the mass fractions � i

� i =

Rb(t0 )
0 � i u0dx
Rb(t0 )

0 u0dx
(4.45)

2. Compute the nodal velocitys from the velocity potentials as described in x4.2.1.

3. Compute the updated mesh using

xn+1
i = xn

i + �t v i : (4.46)

Use the new mesh distribution to calculate � 0(tn+1 ) directly from (4.26) and from

this the new total mass

� (tn+1 ) = � (tn) + �t � 0(tn+1 ) (4.47)

4. Use the new total mass (4.47) to recover the solution u as described in x4.2.2.

5. Repeat the previous four steps for the chosen number of time steps.
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Results

We split the results chapter into two main sections. We begin by presenting numerical

results for the methods described in Chapter 3 and Chapter 4, followed by a comparison

of the numerical model with some real data.

5.1 Numerical results

We �rst describe numerical results for the methods derived in Chapter 3 and Chapter

4. We pay particular attention to the di�erences between fast di�usion and slow di�u-

sion and also the e�ects of evaporation. Since the various methods described provide

similar results we do not show them all for each one. Instead we display results for

chosen cases, illustrating the various methods described.

We begin by comparing results for fast di�usion and slow di�usion using the mass

conserving 1D �nite element model derived in x4.1. We analyse several plots that have

been produced to give good supporting arguments to our observations, allowing us to

deduce the various behaviour.

We then investigate the e�ects of evaporation on the two dimensional radially sym-

metric PME for both the fast and slow di�usive regimes. We show that we can force

37
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retreat of the boundary in both cases.

5.1.1 The Numerical model test problem

To run the numerical model we need to de�ne boundary conditions and initial data.
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Figure 5.2: Velocities of the nodes for numerical solutions of the PME with Plot A:

m = � 1:5, Plot B: m = 1

imately one order of magnitude di�erence between the velocities of the nodes between

the two regimes, explaining how fast the mass spreads for the fast di�usive regime.

We also see that for the slow di�usive regime the distribution between the variables is

almost linear, which supports the idea of little deformation occuring from the initial

spread. For the fast di�usive regime the nodes close to the boundary are moving much

faster than those near the origin, displayed by the 
attening of the distributions near

the boundary positions in Plot A. This supports the idea of larger deformation from the

initial data. A further key di�erence is that the velocities for the fast di�usive regime

are decreasing a signi�cant amount more than those for slow di�usion, implying that

the fast di�usion process is more powerful initially but tends towards a more similar

rate. A �nal interesting observation for �gure 5.2 is that the velocities for fast di�usion

keep a similar form throughout the time that the model is run for. This contradicts

what was observed in 5.1 where the distribution appeared to initially change from the

initial distribution and then return to a similar form.
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Figure 5.3: Trajectories of the nodes for the numerical solutions of the PME with Plot

A: m = � 1:5, Plot B: m = 1

Finially, �gure 5.3 shows the trajectories of the nodes from �gure 5.1. We see that

for the fast di�usive regime, because of the increasing nodal velocities, as we get to-

wards the free moving boundary of u, the distribution initially spreads at a very high

rate compared with that of slow di�usion which, as would be expected from Plot B of

�gure 5.2, stays almost linear. However by the end of the time period Plot A shows

that the nodal speed is rapidly decreasing as the gradient appears to tend towards that

of Plot B, agreeing with similarities between later distributions in �gure 5.1.

The results displayed in this section are all consistent with what we would expect

from the PME in the fast di�usion regime, since it contains um which becomes large

when m < 0 and u is small. (We note that the magnitude of m taken, 1:5 for fast

di�usion, is not too large as to trigger superfast di�usion [16])

5.1.3 Evaporation e�ects for fast and slow di�usion

We now take a look at the e�ects of evaporation on the 2D radially symmetric PME

with a source term ((3.37) with d = 2) for both the fast and slow di�usive regimes.
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(Ideally this would be modelled in 3D, however as mentioned in x3.2.2 this cannot be

done in the radially symmetric case since the evaporation only occurs at the boundary

which wouldn’t be taken into account in the model developed here.)

We plot the elapsed time against the position of the free moving boundary r (N ) for

both fast and slow di�usion.
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the fast di�usive regime also appears to amplify the e�ect of the source term. After

reaching it’s peak distance at a later time, the boundary in Plot A recedes around 0:17

spacial units as opposed to around 0:08 spacial units in Plot B.

If we choose the value of s(r ) to be too large the distribution of mass falls below

the boundary u = 0:1 just before the leading edge. This behaviour is unphysical in

the context of the prroblem described in x1.1. This is because we chose our boundary

conditions and initial data x5.1.1 based on there being a limit at this point, beyond

which the liquid capillary network bridges are no longer connected.

5.2 The model problem

We now compare the numerical results to some experimental data. This will give us

an idea of how accurately the models work in a particular application. This particular

example is representative of those described by the aims set out in x1.1.

The experimental data from the University of Santa Barbara [12] is for liquid spreading

of TEHP, which is an organophosphate liquid with low vapour pressure at room tem-

peratures. This means that the evaporation e�ects will be negligable in this case.

The liquid begins on the surface of the porous medium. Once it has di�used into

the medium, only at saturation levels below around 20% can we start to consider the

fast di�usion process [12]. We would then expect the geometry to be hemispherical,

therefore the most appropriate model we have to compare to experimental data is the

one described in x3.1.4 for the radially symmetric PME (3.16) with d = 3.

Since the received data has dimensions, we take the PME in the appropriate form,

using the derivation in x2.1 and non-dimensionalise it. By doing this we can compare

numerical results produced by the program to the non-dimensional experimental results
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quantitavely. We begin with the 3D radially symmetric PME in the form

@S
@t

= D0
1

r 2

@
@r

�
r 2

(S � S0)m

@S
@r

�
(5.3)

where S is the saturation measured as a percentage of full saturation, S0 is taken to be

a fraction of the boundary value and D0 is the di�usion coe�cient with units m2s� 1.

The given data provides the volume in (m3) of the saturated area, which by the hemi-

spheric geometry gives the position of the boundary, i.e. the radius as

R =

�
3V0

2�

� 1
2

(5.4)

We would like (5.3) in a similar form as (3.16) so we de�ne the non-dimensional variables

t0 and r 0 such that

r 0 =
r

R0
; t0 = t
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porous grain particles will break and the model no longer applies. The value Smax is

the highest level of saturation from the data set. From (5.8), the factor (Smax � S(b))

in front of the cosine function is equivalent to k from (2.17). The results are as follows:

Figure 5.5: Numerical solutions of the radiall symmetric 3D PME plotted against values

from experimental data.

From �gure 5.5 we see that there is a very good match between the numerical method

output and the experimental values. Therefore for this data set we can conclude that

the model provides a good representation for fast di�usion in porous media.



Chapter 6

Conclusions and further

developments

In this �nal chapter we summarise the work carried out in this project, followed by

ideas for future development in this area of research.

6.1 Summary

In this dissertation we have looked at a variety of ways in which to use a velocity based

moving mesh method to model both fast and slow di�usion in a porous medium. In

particular, we have implemented such a numerical method in various geometries for the

fast di�usion process and found a strong correlation between the output produced and

experimental data modelling a chemical agent di�using in a porous substrate under

similar conditions.

We worked throughout the project on a one-dimensional domain. In Chapter 3 we

began by formulating a velocity based moving mesh method based on the principle of

local mass conservation, in order to model the evolution of the PME in time. This was

done in both 1D Cartesian coordinates and also in d-dimensional radially symmetric

coordinates. The advantage of the radially symmetric coordinates was that we could
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model 3D spherical phenomenon in 1D, making the later comparison with experimental

results possible. Using the same coordinate systems we then modelled the PME with a

source term to represent evaporation happening within the domain under the principles

of conservation of mass fractions.

In Chapter 4 we followed up the work from the previous chapter by deriving a �nite

element formulation of the problem. This used a similar methodology with a velocity

based moving mesh method employed for both the mass conserving and evaporative

situations. This was modelled in 1D Cartesian coordinates. Had it not been for time

constraints the model would have been moved into higher dimensions. It would have

been of particular interest to be able to extend the model to 3D �nite elements, since

this would have provided the opportunity to model the evaportation process at the

boundaries of a 3D domain. The model output could then have been compared to the

appropriate experimental data, further developing the framework of applications to be

considered.

In Chapter 5 we discussed the results, which were split into two main sections. We

began from a mathematical modelling standpoint by using the various models to com-

pare the fast and slow di�usive regimes, followed by comparisons between the e�ects of

incoorporating evaporation into both of these cases.

Finally we looked at results from an experimental point of view. We ran the most

appropriate model with some conditions imparted by experimental data from [12] and

compared the output of the numerical model to the normalised experimental data.



48 CHAPTER 6. CONCLUSIONS AND FURTHER DEVELOPMENTS

fast di�usion in porous media, in general geometries.

6.2 Future work

To complement this dissertation we now suggest some ideas for future development in

this area.

Evaporation

Currently, outside this dissertation there is apparantly no work within this application

of how to model evaporation mathematically. Ideally the next development in this

�eld would be to accurately model this process. However this poses several di�cul-
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concerning wet granular systems. Drying and separation of granular molecules can have

catastrophic e�ects such as causing landslides and avalanches.

In the study of the dynamics of wet granular matter knowledge of the levels of sat-

uration within a porous material is highly important. In [11] it is described how dry

sand acts as if it were in a liquid state, whereas saturated sand can be formed into

reasonably stable structures. A particular example is presented in [11] of a large land-

slide where a part of the slope has moved downwards and has left a parabola shape in

the remaining earth, implying that it was in a viscous liquid state as it fell. A further

observation is that the adjacent parts of the land where conditions would most likely

be similar nothing has happened. This could imply that this is a threshold process

whereby if the saturation of soil falls below a certain level then it reaches a liquid state.

In the study of avalanches, as described in [10], the water saturation of natural snow

cover varies. The snow acts as a porous medium and in general water �lls up to 20% of

the pore volume. When the saturation level is around 7%, we enter the fast di�usion

regime. Saturation below this level can be critical as the bridges between pores might

break causing the snow granules to part. On a large scale this could cause an avalanche.

Since the two previous examples include much larger height scales and masses than

in the chemical agents problem, when formulating a model for these processes we
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2D and 3D Finite element method

The natural progression in a modelling sense would be to attempt to increase the

Catesian coordinate spatial dimensions for the �nite element method. We suggest this

approach rather than �nite di�erences because, in general for curved boundaries, the

�nite element method provides a better approximation to the solution. Modelling with

2D �nite elements was close to being put into practice for this project and would have

provided a good addition to the current framework.
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for the 1D cartesian version and see [3] for the 1D radially symmetric version. However

these would not have been useful in the fast di�usive regime, which is another reason

why similarity solutions have not been followed up in this dissertation.

Other meshing techniques

We �nally consider two ways in which to adjust the mesh being used.

In order to increase the accuracy of the moving mesh method, the initial mesh can

be altered. One way is to create an optimal initial mesh as in [1]. This essentially ad-

justs the initial distribution of the mesh so as to minimize the L2 norm of the di�erence

between the approximation to the initial conditions to and the exact initial function

over the mesh values.

Another reason to alter the initial mesh is when higher resolution is required in a partic-

ular part of the solution. One way in which this can be done is by using equidistribution

which relocates grid points without increasing the total number of them. Altering the

initial mesh in this way could be useful for example, when tracking a moving boundary

by increasing the resolution near the boundary.
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