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Abstract

The Saint�Venant equations provide a one�dimensional model of free surface water

�ow in a channel� This thesis is concerned with both analytical and numerical aspects

of steady state solutions to this model� with particular emphasis on the subject of

transcritical �ows�

Under certain conditions it is shown that there is at most one physically allow�

able steady solution for given boundary conditions� and when a solution exists� we

demonstrate the convergence of a certain family of numerical methods to the solution

as the grid size vanishes�

The numerical schemes are obtained from applying a family of monotone shock

capturing schemes to a scalar conservation law which has identical steady soluth
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Notation for the Saint�Venant Model

x Distance along channel 
m�

t Time 
s�

L Length of channel 
m�

zb Bed level 
m�

� Height relative to the bed level 
m�

� Width of channel as a function of x and � 
m�

g Acceleration due to gravity 
ms���

� Density 
kgm���

h Depth 
m�

Q Discharge 
m�s���

A Wetted area 
m��

T Free surface width 
m�

P Wetted perimeter 
m�

F � Q�

A
� gI� Momentum �ux per unit density 
m�s���

I� �
R h
�

h� ���d� Hydrostatic pressure term 
m��

D � gA
S� � Sf� � gI� Source term 
m�s���

S� � �z�b Bed slope

Sf �
jQjQ
K� Friction slope

K Conveyance 
m�s���

n Friction coe�cient

I� �
R h
�

h� ���xd� Side reaction term for a non�prismatic channel 
m��

u � Q

A
Component of �uid velocity in x direction 
ms���

c �
�
gA

T

� �

� Wave celerity 
ms���

hc� hn Critical and normal depths 
m�

S�c Critical bed slope

Fr �
�
Q�T

gA�

� �

� Froude number

E � Q�

�A� � gh 
m�s���

B� Z Width 
m� and side slope for a trapezoidal channel

w � 
A�Q�T te000(
m�)-15000(an)]TJ
1886�
(c)Tj
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Q
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Chapter �

Introduction

The study of free�surface water �ow in channels has many important applications�

one of the most signi�cant being in the area of river modelling� With major river en�

gineering projects� such as �ood prevention measures� becoming ever more common

and ambitious� there is an increasing need to be able to model and predict the far

ranging consequences on the environment as a whole of any potential project� A ma�

jor part of this process is to predict the new hydraulic characteristics of the system�

For example constricting the river at some point may result in an increased risk of

�ooding at a point upstream� The basic equations expressing hydraulic principles

were formulated in the ��th century by de St Venant and Boussinesq� Properties

of these relationships were studied in the �rst half of this century� but application

to real river engineering projects awaited the advent of electronic computers� The

hydraulic equations are also of great importance in the modelling and design of net�

works of arti�cial channels� as for example may occur in industrial plants or sewage

systems�

The original hydraulic model of de St Venant	��
 is written in the form of a system

of two partial di�erential equations� known as the Saint�Venant equations� These are

derived under the hypothesis that the �ow is one�dimensional� One�dimensional �ows

do not actually exist in nature� but the equations remain valid provided the �ow is

approximately one�dimensional� Until recently� two or three�dimensionalmodels have

been too computationally expensive to be practical� Even now it is often prohibitively

expensive to obtain the amount of survey data for a river network necessary to make

�



use of the added realism of a higher dimensional model� For this reason the bulk

of river modelling still makes use of a one�dimensional model� with key parts of the

network perhaps modelled with a higher�dimensional model� Empirical correction

factors are often included in the one�dimensionalmodel t



most one physically possible steady solution for any given boundary conditions� The

proof relies on a novel formulation of the steady �ow problem� with the solutions

constructed as the vanishing viscosity limit of solutions to a singular perturbation

problem� Properties of the smooth solutions of the singular perturbation problem

give information about the not necessarily continuous solutions of the steady �ow

problem�

As well as theoretical results for the steady �ow problem� this thesis is also

concerned with numerical computation of solutions� The steady �ow di�erential

equation can be accurately and e�ciently integrated in order to compute the free

surface pro�le� This is in general only useful for computing smooth solutions� al�

though Humpidge and Moss	��
 present an algorithm for discontinuous solutions

which works b



In this thesis we attempt a new approach for improving e�ciency of the com�

putation of steady solutions� Instead of applying shock capturing method to the

Saint�Venant system as it stands� we apply shock capturing methods to a suitable

scalar partial di�erential equation which is chosen so as to have identical steady solu�

tions to the Saint�Venant model� The �rst bene�t of this approach �which we refer

to as the �scalar approach�� is that analysis for scalar methods is much simpler than

for the case of systems� and in Chapter � we present theory for a particular family

of schemes� Under identical conditions to the theory in Chapter 
 we show that at

steady state the system of di�erence equations has a unique solution and we also

demonstrate convergence to the unique physical solution of the steady �ow problem

�as the grid spacing vanishes��

In Chapter � we give a relatively simple technique for constructing test problems

with known exact solutions� Although analytic solutions have previously been con�

structed for idealised problems� this appears to be the �rst time that solutions for

problems with realistic features have been made available	��
� Such features include

varying channel geometries and discontinuous solutions� Details are given for a wide

selection of test cases so as to allow other resso amnrc]TJ
24atk



schemes and Roe�s scheme to the case of non�prismatic channels and compare the

accuracy of the various schemes�

�



Chapter �

The Saint�Venant Equations

In this chapter the Saint�Venant equations are introduced and some of their properties

discussed� Attention is then �xed on the st



control volume technique can be found� for example� in 	���

Before we introduce the Saint�Venant equations� we introduce the notation used

to describe the channel geometry� We let x� y� z denote a Cartesian coordinate

system with z pointing vertically upwards� and we consider a channel of length L

along the x direction� For simplicity th



as follows�

��� The �uid is incompressible� homogeneous and internal stresses are negligible�

��� The �ow is one�dimensional with the �uid velocity depending solely on x and

time �t��

��� At each cross�section the free surface is represented by a horizontal line�

��� The streamline curvature is small and the vertical accelerations are negligible

so the pressure can be taken as hydrostatic�

The depth h�x� t� is the level of the free surface above the bed level and is illus�

trated in Figure ���� The discharge Q�x� t� is de�ned to be the total volume �ux

through a given cross�section� If u�x� t� is the x component of the �uid velocity then

Q �
Z h

�

Z �

�

��

�

udyd� � Au� �����

where the wetted area A�x� t� �the instantaneous area of the �ow through any cross�

section� is given by

A �
Z h

�

�d�� �����

Using the above assumptions the Saint�Venant equations can be derived b

como6T35 0 0 0 (d)0 0 0 . 1 (iv)]�



Applying conservation of momentum �x component� to the same control region

and same time interval yields the equation

�
Z x�

x�

	Q�x� t��t�t� dx� �
Z t�

t�

	F �x� t��x�x� dt � �
Z t�

t�

Z x�

x�

D�x� t�dxdt� �����

Here F �x� t� is given by

F �
Q�

A
� gI�� �����

where I� is given by

I� �
Z h

�

�h� ���d��

and g is the acceleration due to gravity� �F represents the momentum�ux through a

cross�section and is composed of the advected momentumand a contribution from the

hydrostatic pressure forces over the cross�section� �Ddx represents the instantaneous

external forces acting on the �uid at a cross�section due to the channel boundary�

It is composed of frictional forces and the reaction forces from hydrostatic pressure

acting on the boundary



is continuous� then it may be shown that the following di�erential equations hold on

this region�
�A

�t
�
�Q

�x
� �� �����

�Q

�t
�
�F

�x
� D� ������

These are the di�erential form of the Saint�Venant equations�

����� Discontin



If functions h and Q satisfy the di�erential form of the Saint�Venant equations

except at discontinuities� where the Rankine�Hugoniot conditions ������ and ������



Now ������ can be written as

�w

�t
� J

�w

�x
� �D� ������

where J is the Jacobian given by

J �
�F

�w
�

�
B� � �

c� � u� �u

�
CA �

c is the wave celerity given by

c �

s
gA

T
�

and T � ��x� h� is the free surface width� The modi�ed source term is given by

�D �

�
B� �

gA�S� � Sf � �
gA

T

R h
�
�xd�

�
CA �

The Jacobian J has real and distinct eigenvalues

	� � u� c� 	� � u� c�

which give the characteristic speeds� The theory of characteristics can be found in 	��

and 	���� The system of equations can be decomposed into two ordinary di�erential

equations which hold along characteristic curves given by dx�dt � 	� and dx�dt � 	��

respectively� Examples of this type of decomposition are given in 	��� and 	���� It

is important to know the directions of 	� and 	�� since information is transmitted

along these curves� The �ow is classi�ed according to the Froude number

Fr �
juj
c

�

s
Q�T

gA



of �ow is known as supercritical �ow and occurs when inertial forces dominate over

gravitation





	F �x�
x�

�
Z x�

x�

Ddx� ������

must be satis�ed for all � � x� � x� � L� These are the integral form of the

steady �ow equations� Equation ������ clearly implies that Q is constant throughout

the entire reach� Without loss of generality the constant discharge Q is assumed

positive� since if the discharge is negative then the x direction can be rev



denominator of the right�hand side vanishes� i�e� when

F �

r �
Q�T

gA�
� �� ������

which corresponds to critical �ow�

����� The Hydraulic Jump

In this section we consider the rest5 019 Th



��� F �� as h���

��� �F��h � � at h � hc�

��� �F��h 
 � for h 
 hc�

��� �F��h � � for h � hc�

To interpret the implications of ������ and ������ we ask what depths hr �� hl satisfy

both of these conditions� There are three cases to consider

� If hl 
 hc� then there is exactly one hr �� hl satisfying ������� This depth

hr � hc is called the sequent depth of hl and is denoted by





so that
d

dh

�
T

A�

�
�
��B� � ��BZh � ��Z�h�

h��B � hZ��

 ��

hence satisfying ���������� Condition ��������� is also clearly satis�ed�

Suppose now that equation ����
� is used for the conveyance with k� � � and

k� � k�� which includes both the widely used Manning and Chezy formulae� The

conveyance is now given by

K �
�Bh� h�Z�k�

n�B � �h
p
� � Z��k�

�

giving

dK

dh
�

K

AP



Bk��B � �hZ� � �h

p
� � Z� �B�k� � k�� � hZ��k� � k���

�
� ��

������

satisfying ���������� For the case of a rectangular channel �Z � �� B � ��� we have

K �
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Figure ���� Behaviour of free surface for a channel with constant mild bed slope
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x
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Figure ���� Beha
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A�

x

hc

Figure ��
� Behaviour of free surface for a channel with constant adverse bed slope
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Hydraulic Jump

M��

M�

x

hc

hn

Figure ���� Example of problem with hydraulic jump

Varying Bed Slope

We now consider the situatW



At such a point it is possible for equation ������ to have a solution which passes

smoothly through the critical depth hc � hn�xc�� Equation ������ cannot immedi�

ately be used to calculate the gradient when passing through the critical depth� but

we can apply L
H�opitals rule 	���� 	��� to the right hand side of ������ to obtain

dh

dx



so in this case the �ow cannot change from subcritical to supercritical at such a

point� If the value under the square root in ������ is zero there is only one value� and

this is again posit



due to contraction or expansion of the channel cross�section must compete with each

other� A new more complex de�nition of normal depth requires taking into account

the variation of the channel cross�section with x� The theory of singular points also

becomes more complicated� The theory for non�prismatic channels is beyond the

scope of this thesis� but it is discussed in for example 	���

�����



steady state is said to be stable if for any such small perturbation� the �ow eventually

tends back to the original steady state� If for some small perturbation the �ow does

not tend back to the original state� then it is said to be unstable� In any practical

situation small perturbations are always present� so any unstable steady state will

not be maintainable inde�nitely� Such steady stat



Chapter �

Shock Capturing Methods

The Saint�Venant equations form a system of conservation laws of hyperbolic type�

Such systems of equations occur frequently in applied mathematics an



giving details of how this method can be implemented for the Saint�Venant equations�

Consider the system of equations

�u

�t
�

�



Fortunately a simple requirement exists that if satis�ed ensures that a scheme

does approximate the correct conservation law� This requirement is that the scheme

can be written in conservation form� A scheme is in conservation form if it is written

in the form
u







where �w satis�es

f �� �w���� � ��

For this solution



for w��� can still be found �see 
����� giving the general form for the numerical �ux

gGod
j� �

�

�

���
��
maxff�s� � uj�� � s � ujg for uj�� � uj

minff�s� � uj � s � uj��g for uj�� � uj�
�
����

The notation we use is to omit the n superscripts in the de�nition of quantities

when it is clear that the de�nition at a particular time level n is simply obtained

by introducing n superscripts to all the time dependen

oTD
16.99TJ
156 0 T48.a000(it)-86 0 T0 T48.equencex

it



the Saint�Venant equations and uses this as part of a Godunov approach� Even

when the structure of the Riemann solution is known� it tends to be computationally

expensive to compute the actual solution� since intersections of the Hugoniot and

integral curve must be found �usually numerically�� For this reason it is often not

practical to base a numerical scheme on the exact solution of the Riemann problem�

Instead an attempt is made to compute an approximation plu lu(ust)



where the functions f� are given by

f��u� �
Z u

c
minff ��s�� �gds�

f��u� �
Z u

c
maxff ��s�� �gds

and c is arbitrary� For a convex or concave �ux function this form is equivalent to

the Godunov �ux for a rarefaction wave and only di�ers in the case of a shock�

In the case of systems of conservations laws the need for an approximate Riemann

solver is more pressing� By far the most used approximate Riemann solver is that due

to Roe
���� This works by linearising the system of equations at each cell interface

and then calculating the �ux at the interface by exactly solving the resulting linear

Riemann problem� Solving a linear Riemann problem is straightforward and is

described in 

��� At the interface at xj� �

�

and at time tn the linearised system is

given by
�u

�t
� �Jn

j� �

�

�u

�x
� �� �
����

where �Jj� �

�

� �J�uj���uj� is a constant matrix which approximates the Jacobian

J�u� � �f��u at the interface� Roe gives the properties that the matrix �J should

satisfy� These are�

��� f �ur�� f�ul� � �J�ur�ul��ur � ul� for all ul� ur�

��� �J�ur�ul� is diagonalisable for each ul� ur

�
� For each u� �J�ur�ul�� J�u� as ul� ur � u�

Condition ��� is necessary to ensure the resulting scheme is conservative� Condition

��� ensures that the linearised system is hyperbolic and hence solvable� Condition

�
� ensures that the the system �
���� is a true linearisation of the nonlinear system

so that the scheme is valid for smooth solutions� A matrix satisfying the above three

conditions is often called a Roe matrix� There is not in general a unique choice for

the Roe matrix for a particular problem� In his paper Roe demonstrates how to

calculate a Roe matrix via an intermediate variable called a parameter vector� We

specify a Roe matrix for the Saint�Venant system at the end of this chapter� Before


�



we state the numerical �ux function we must de�ne some notation� For the scalar

quantity s� we de�ne

s� �
s� jsj
�

�

���
��
� s � �

s s � ��

s� �
s� jsj
�

�

���
��

s s � �

� s � ��

��s� �

���
��
� s � �

� s � ��

To generalise these quantities to the matrix �J we diagonalise this matrix� Suppose

���� � � � � ��m denote the eigenvalues of �J and �e�� � � � � �em





The value of un��j depends only on the values of unj and u
n
j�� and so again the discrete

solution only depends on the solution at upwind points� We observe that the schemes

switch their behaviour depending on the on the local wave direction� Schemes which

exhibit this behaviour are known as upwind schemes� In the case of a system of

equations� upwind schemes� such as Roe!s approximate Riemann solver� essentially

decompose the solution into its component waves and apply a scalar upwind scheme

to each individual wave� As opposed to upwind schemes� schemes such as Lax�

Wendro� and Lax�Friedrichs are known as symmetric schemes� These schemes have

a constant stencil regardless of the wave direction of the solution� Upwind schemes

are in general found to be far superior for computing discontinuous solutions�

��� Nonlinear Stability

The Lax�Wendro� Theorem
��� mentioned in section 
�� shows that any convergent

sequence of solutions to a conservative di�erence method must converge to a weak

solution of the conservation law� However it does not guarantee that a sequence of

solutions with �x��t � � will conv





If we write the scheme in the form

un��j � G�unj�k � � � � � u
n
j��� u

n
j � � � � � u

n
j�k����

then the scheme is monotone if the function G is an increasing function of all

of its arguments� It is shown in 
�� and 
�
� that any conservative� monotone

scheme converges to the unique entropy satisfying solution of the conservation law�

Examples of monotone schemes include the Engquist�Osher� Godunov and Lax�

Friedrichs schemes� Note again that this form of stability also requires the appro�

priate CFL condition to hold� We conclude that monotone schemes have some very

nice properties� Not only are they convergent to the unique entropy solution of the

conservation law� but since they must also be TVD they are non�oscillatory� The

one big drawback is that they can at most be �rst order accurat



�ux

�gj� �

�
� g



��� Implicit Schemes

The methods discussed so far in this chapter are all subject to the a CFL condition

of the type �
��
� in order that the scheme be stable� This condition restricts the

size of the time step that may be used� This may not be too much of a restriction

for transient computations where the time step must also be kept small to achieve

the required accuracy in time� However for steady state computations� where the

accuracy of the transient solution is of no importance� we wish to take as large a

time step as possible� The larger the time step we can take� the fewer times steps it

takes to reach the steady state and the more economical the method is on computer

CPU time�

To relax or even remove the time step restriction one can consider implicit meth�

ods� Consider the family of schemes

un��
j � un

j

�t
� 




�gn��j� �

�

� gn��
j� �

�

�x

�
A � ��� 
�



�gnj� �

�

� gn
j� �

�

�x

�
A � �� �
����

where � � 
 � �� This can be written in the conservative form �
�
� with the

numerical �ux

�gn
j� �

�

� 
gn��
j� �

�

� �� � 
�gn
j� �

�

�

We can re�write the scheme �
���� as

Lju
n�� � Rju

n�

where

Lju � uj � 

�t

�x

�
gj� �

�

� gj� �

�

�

Rju � uj � ��� 
�
�t

�x

�
gj� �

�
� gj� �

�

�
�

For the case 
 � �� the scheme reduces to �
�
�� In this case Lj is a linear operator�

in fact Lju � uj so that

un�� � Rju
n�

and the numerical solution at the next time level is given explicitly as a function

of the solution at the current time level� The scheme is hence called explicit� In

the case 
 �� �� Lj is now a nonlinear operator �except for a linear problem where

��





��� Inhomogeneous Conservation Laws

Man



This section has described all the source term discretisations used throughout the

rest of this thesis� We will see that the given upwind discretisation with the choice

�b ��TD
(ET
q
124.56f
.24 048 282.696 711.576 cm
/Im1 Do
QS1 g1 Tf
.24 0 0 3424 )-108 680(�TD
(b)4j
/T6 27TJ-33Tj
49.5 Px�TD
(�)2j
/T6 )a



where

�c� �

���������
��������

g

�
I�



��� For each j set �wj � wn
j �

��� Compute and store
	
�
�

j� �

�


n
for each cell interface�

�
� At each cell interface xj� �

�

carry out

�wj � �wj �
	
�
�

j� �

�


n

�wj�� � �wj�� �
	
�
�

j� �

�


n
�

��� For each j set wn��
j � �wj



Solving this equation yields

��



��n
i�� �

�

�i � �� ��� The simplest way to obtain values for these wave speeds is to

extrapolate from inside the domain� and in particular to take

��n
i�� �

�

� ��n
i� �
�

� i � �� ��

There are three possible situations depending on the signs of these wave speeds� For

the case ��n
i�� �

�

� � �i � �� ��� neither characteristic enters the domain and so no

boundary conditions may be speci�ed� The situation is very straightforward since

now from �
���� we have 	
�
�

�
�

�


n

� ��

If ��n
i�� �

�

� � �i � �� ��� then both characteristics enter the domain and so both �ow

variables must be speci�ed at the boundary� In this case we simply overwrite both

�ow variables at the boundary with the appropriate values� In the case where only

one wave speed� say ��n
i�� �

�

is positive� only one characteristic enters the domain so

that only one �ow variable must be speci�ed on the boundary� Equation �
���� gives

	
�
�

�
�

�


n

� ��t
�x

��n
i�� �

�

��n
i�� �

�

�rn
i�� �

�

�

If the boundary condition is A � A��t�� then this is satis�ed at time level n�� if we

choose ��n
i�� �

�

to satisfy

A��tn��� � ��� ��
	
�w� � �t

�x
��n
i�� �

�

��n
i�� �

�

�rn
i�� �

�



�

If the boundary condition is Q � Q��t�� then this is sat



Roe!s scheme can also be modi�ed to give second order accuracy� The increment

at each cell interface is then of the form

�wj � �wj �
	
�
�

j� �

�


n

�Bn
j� �

�



Chapter �

Theory for the Steady Flow Problem

using Vanishing Viscosity

In this chapter we present some theory for the steady state Saint�Venant problem�

The theory arises from a novel formulation of the problem and is applicable to a

large number of cases�

��� Vanishing Viscosity

The Saint�Venant equations are a hyperbolic system of conservation laws� These

su�er from two main di�culties� namely solutions may be discontinuous and secondly

not all of these so�called weak solutions are physically possible�

Hyperbolic systems of conservation laws often arise from models of physical pro�

cesses which ignore e�ects due to viscous or dispersive mechanisms� The next level

of accuracy for any such model is to include these e�ects� The di�erential equations

are modi�ed by the addition of higher order derivatives which are multiplied by

small coe�cients called viscosity coe�cients� For the original model to be consistent

with the more complete model which includes the viscous or di�usive e�ects� it is

required that the solutions of the two models are �close	 in some sense� In particular

any solution of the �rst order system must be the limit of the corresponding solution

of the higher order system as th



Unfortunately the two models are not generally consistent in the above sense� in that

not all weak solutions of the �rst order system will be vanishing viscosity solutions�

It is clearly only the vanishing viscosity solutions which have physical relevance�

In general the higher order system is parabolic and so always has smooth solu�

tions� The apparent discontinuities �which form actual discontinuities in the vanish�

ing viscosity limit
 are actually narrow regions where the solution changes extremely

rapidly� These regions are called shock layers�

The above concept is illustrated by the Euler model of gas dynamics� The Euler

equations arise from neglecting terms which model the e�ects of �uid viscosity from

the Navier�Stokes equations� the general model of �uid �ow� This is done when

the e�ects of viscosity are thought to be of only secondary importance relative to

the e�ects of inertia� Solutions of the Euler equations� which include discontinuous

solutions� are hoped to model the vanishing viscosity limit of solutions to the Navier�

Stokes equations� However neglecting the viscous terms introduces solutions which

are not vanishing viscosity solutions� Even though the e�ects of viscosity are small

throughout almost all of the �ow� they are sometimes still important� In particu�

lar their e�ects are always strong in shock layers� Viscosity prevents the solutions

from becoming discontinuous and is also the mechanism for discriminating against

unphysical discontinuities� There is a parallel here between the Euler equations and

the Saint�Venant equations� since both systems can be derived from the Navier�

Stokes equations and both models ignore viscous and di�usive e�ects� Extensions

of the Saint�Venant system which include some of the e�ects of �uid viscosity are

discussed in �
���

By considering the limit of solutions of �some	 system of parabolic equations as

the viscosity coe�cients vanish� we may obtain results concerning the existence and

uniqueness of physical solutions to a hyperbolic system� This approach is called the

vanishing viscosity method� The parabolic problem will have only smooth solutions

so that these may be easier to construct� The more di�cult step is to then obtain

estimates which are independent of the viscosity coe�cients and allow passage to the

limit�







Consider the scalar Cauchy problem

�u

�t
�

�

�x
f�u
 � �� ����


t � �� �� � x ��� u�x� �
 � U��x
�

Equation ����
 arises from the conservation of a quantity u transported with �ux

f�u
 and can be written in the integral form

Z





for all h between hl and hr� If we take m � �� then it is not di�cult to see that

this condition implies

E�x� hr
 � E�x�hl
� ���



because of the relationship �����
� Thus we conclude that at steady state� any entropy

satisfying solution of ����
 �with m � ��
 must also be a physical solution of the

Saint�Venant equations� The converse is not necessarily true� h



Shocks may occur along a particular reach of channel� � � x � L� and hence this

equation will not in general hold everywhere� Motivated by the previous section we

choose to study t



Consider the problem

�u��� � au�� � �� � � x � �� u���
 � �� u���
 � �� ����


where � � � and a �� � is a constant� The solution to this problem is given by

u��x
 � �� e�
ax
� � �

e�
a
� � �

�

First consider the case a � �� where for small � the solution decreases rapidly from

one to zero near x � �� In fact as � tends to zero we have

u��x
	
���
��

� x � �

� x �� ��

The nonuniform behaviour at x � � is known as a boundary layer and is characterised

by the property�

� � lim
���

lim
x��

u��x
 �� lim
x��

lim
���

u��x
 � ��

For the case a � � we have

u��x
	
���
��

� x �� �

� x � ��

as � tends to zero� This corresponds to a boundary layer at x � ��

Next consider the problem�

�u��� � xu�� � �� �� � x � �� u����
 � �� u���
 � �� �����


where � � �� The solution to this problem is given by

u��x
 � � �
erf� xp

��

 � erf� �p

��



�erf� �p
��



�

where

erf�x
 �
�p
�

Z x

�
e�s

�

ds�

As � tends to zero we have

u��x
	

�������
������

� x � �

�	� x � �

� x � ��

��



In this case the nonuniformity is in the interior of the domain and as � vanishes the

solution tends to a discontinuity at x � �� For this reason� this type of nonuniformity

is known as a shock layer� There are other types of nonuniformity that are possible�

for example corner layers where the limit is continuous but has a discontinuous �rst

derivative�

The examples given above are all linear problems and the theory for such prob�

lems is well understood �for example see �
��
� It is usually possible to predict in

advance from the di�erential equation� the type and the position of the nonuniformit�

ies� For nonlinear problems this is not the case and the situation is considerably more

complicated� Analysis of simple nonlinear problems can be found in ��
� and ��
��

These make use of asymptotic techniques and usually rely on being able to integrate

the reduced di�erential equation�

Integration of the reduced di�erential equation is not possible for problem ����


and so another approach is required� It happens that theory exists for a class of

problems which are very closely related to problem ����
� This theory comes from

a functional analysis approach �as opposed to an asymptotic approach
 and applies

to a general class of problems� The theory requires some adaptation before it can be

applied to ����
�

��� Functions of Bounded Variation

The theory in this chapter will make use of the class of functions which have bounded

total variation� The term bounded total variation was de�ned in section ���� and

we de�ne BV �c� d� to be the set of real functions on �c� d� which have bounded total

variation� A function u 
 BV �c� d� has the following properties�

��
 The function is bounded�

��
 All points of discontinuity are simple �u�x�
 and u�x�
 exist
 and the set of

discontinuities is countable� Also u�c�
 and u�d�
 exist�

We consider functions in BV ��� L� which satisfy the integral relationship �����
� A

more common method of de�ning weak solutions is through the use of test functions

��



�see ����� ����
� A function h is then a weak solution of the steady �ow problem if

Z L

�

��x
F �x� h�x

 � 
�x
D�x� h�x

dx � �� �����


for all 
 




��	 The Theory of Lorenz

In this section we adapt theory from the literature so that it can be applied to prob�

lem ����
� The argument is based on work by Lorenz in ���� and can be summarised

in the following theorem�

Theorem � ������ Consider the two point boundary value problem

�u��� � f�u�
� � b�x� u�
� � � x � ��

u���
 � ��� u���
 � ���
�����


where � � �� Suppose that f 
 C������
� b 
 C� ���� ��� �����

 and that for

some constant �

bu � � � �� �����


for all u and all x 
 ��� ��� then under these conditions the following hold�

��� The problem has a unique solution u� 
 C���� �� for all � � ��

�	� The solution is uniformly bounded in �� i�e� ku�k� � K� for all � � �� where

K� is independent of ��

�
� The solution has total variation bounded in �� i�e� ku��k� � K� for all � � ��

where K� is independent of ��

��� There is a unique function U 
 NBV ��� �� such that u� 	 U in L� as � � ��

��� u � U is the only function in NBV ��� �� which satis
es the following�

�i� If I is an interval where u is continuous� then f�u�x

 is dif�

ferentiable on I� one�sided at end points� and the di�erential

equation

�f�u
� � b�x� u
�

holds on I�

������������	
�����������


�����


�ii� If u is discontinuous at x 
 ��� �
� then

f�ul
 � f�ur
 � f�k
 if ul � ur�

f�ul
 � f�ur
 � f�k
 if ul � ur�

for all k between ul � u�x�
 and ur � u�x�
�

����������	
���������


����



��



�iii� For j � �� � and k between u�j
 and �j

���
j��sgn�u�j
� �j
�f�u�j

� f�k

 � ��

where sgn�x
 � ��� �� � for x � ��� �� � �� respectively�

��������	
�������


�����


The above theory relates to a problem closely resembling problem ����
� This is

made clearer by a transformation onto the unit interval given by

u��x
 � h��xL
�

f�x� u
 � �LF �xL� u
�

b�x� u
 � L�D�xL� u
�

�����


Theorem � will be adapted to apply to this problem under certain conditions� To do

this requires some understanding of Theorem � and how it is constructed�

Part � of the theorem gives the existence and uniqueness of the solution to the

singular perturbation problem for each positive �� The existence proof relies on

Nagumo�s Lemma ����������
� which uses the fact that the problem has both upper and

lower solutions� The functions u�x
� u�x
 are upper and lower solutions� respectively�

if the following hold for all x in the interval ��� ���

��
 u � u

��
 �u�� � f�u
� � b�x� u
 � �

��
 u��
 � ��� u��
 � ��

��
 �u�� � f�u
� � b�x� u�
 � �

�

 u��
 � ��� u��
 � ��

The condition bu � � �

h ot d i th



The uniform bound of part � of the theorem comes directly from the existence

proof� since the upper and lower solutions are independent of �� This bound and the

uniform bound on the total variation� from part � of the theorem� gives that the set

fu�g��� is precompact in L���� ��� Thus for any positive null sequence S � f�ng�
there is a subsequence S� � f�nkg and a function U 
 NBV ��� �� such that

u� 	 U in L� as � � �� � 
 S��

Part 
 of the theorem gives the properties of the limit function and states that there

is exactly one function in NBV ��� �� with these properties�

��
 The Modi�ed Theory

The main di�erence betw



��� Problem P� has a unique solution u� 
 C���� �� for all � � � and this satis
es

the bounds

� � u



��
 Problem P ���
� satis
es the conditions of Theorem ��

The function f��� is constructed to be continuous and have continuous �rst

and second derivatives at both u � � and u � 
� hence f��� 
 C������
�

Also

b���u �x� u
 �

�������
������

bu�x� 

 u � 


bu�x� u
 � � u � 


bu�x� �
 u � ��

and

b���x �x� u
 �

�������
������

bx�x� 

 � �u� 

bux�x� 

 u � 


bx�x� u
 � � u � 


bx�x� �
 � �u� �
bux�x� �
 u � ��

so since bx� bu� bux are are continuous on ��� �� � ����
� it follows that b��� 

C����� ��� �����

� Finally

b���u � � � ��

where

� � min
��x��

��u��

fbu�x� u
g�

��




Next suppose that u� � u



��
 There is a unique function U 
 NBV���� �� such that u� 	 U in L� as � � ��

The function U satis
es the bounds �����
�

Applying part � of Theorem � to P ���
� gives that there is a unique function

U 
 NBV ��� �� such that u� 	 U in L� as � � �� We show that U satis�es the

bounds �����
 and hence is in NBV���� ���

We can choose a positive sequence S � f�ng such that �n 	 � as n	� and

u� 	 U a�e� as � � �� � 
 S�

De�ne the set

X � fx 
 ��� �� � u��x
	 U�x
 as � � �� � 
 Sg� �����


The set ��� ��nX has zero measure and the bounds �����
 clearly hold for all

x 
 X� Now for arbitrary x in ��� �
 by de�nition of the set NBV we have

U�x
 � lim
s�x
s�X

U�s
�

U��
 � lim
s��
s�X

U�s
�

and thus the bounds �����
 hold at all points� giving part � of Theorem ��

��
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Firstly we have that

F �h
 �
Q�

A�h

� gI��h
�

so that

F ��h
 � �Q
�T �h


A�h
�
� gA th
 t

t

�h
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�h
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Hence hn is bounded and in particular bounded below above zero� Now taking m

and M as in �����
 and observing that D�x� hn�x

 � �� we have that

D�x�m
 � D�x� hn�x

 � �

and

D�x�M
 � D�x� hn�x

 � ��

for � � x � L� showing that �����
 holds� We have now shown that the functions

f and b given by �����
 satisfy all the conditions of Theorem �� Theorem � fol�

lows by simply writing Theorem � in terms of the functions F � D and using the

transformations

h��x
 � u��xL
� H�x
 � U�xL
�

Interpretation of Theorem � The above theorem is only an intermediate step�

however it is extremely important to this thesis� because it de�nes the conditions

under which we can make progress� The conditions of the theorem will be assumed

to hold in what follows�

Consider a function h 
 NBV���� L� which satis�es

�F �h�x

�x�x� �
Z x�

x�

D�x� h�x

dx� for all x�� x� 
 ��� L�� �����


First we observe that the integral is mathematically sensible since D�x� h�x

 is

in L���� L� and is bounded� For �xed x� the right hand side is continuous in x�

�see ��
� p����
� so it follows that F �h�x

 must be continuous on ��� L�� Thus if h is

discontinuous at x 
 ��� L
 then the jump condition

F �h�x�

 � F �h�x�

 �����


must hold� Following ��
��p����
 it can be shown that for x 
 ��� L


lim
s��

�
F �h�x� s

� F �h�x



s

�
� D�x� h�x�

�

and that for x 
 ��� L�

lim
s��

�
F �h�x� s

� F �h�x



s

�
� D�x� h�x�

�

��



Thus for an interval where h is continuous� at interior points the reduced di�erential

equation must hold since both of the one�sided derivatives equal D�x� h�x

� At any

end points the corresponding one�sided di�erential equation clearly holds� We can

now give the precise mathematical de�nitions of what we mean by a solution of the

steady �ow problem for a prismatic channel�

De	nition 
�� �Type�I Solution� A function h 
 NBV���� L� is a type�I solu�

tion of the steady �ow problem if �����
 holds and at any discontinuity x 
 ��� L


E�h�x�

 � E�h�x�

� �����


where E is given by �����
�

De	nition 
�� �Type�II Solution� A function h 
 NBV���� L� is a type�II

solution of the steady �ow problem if �����
 holds and at any discontinuity x 
 ��� L


F �k
� F �h�x�



k � h�x�

� �� for all k between h�x�
 and h�x�
� �����


The de�nition of type�I solutions corresponds to the de�nition of physical solutions

of the steady �ow problem as introduced in section ���� The de�nition of the type�

II solutions is stronger and arises naturally from our theory� Condition �����
 is

simply Oleinik�s condition for a steady shock for the problem ����
� We observed

in section ��� that any type�II solution is also type�I solution� since F �h�x�

 �

F �h�x�

 along with �����
 implies �����
 �by �����

� The converse of this is not

necessarily true� i�e� a type�I solution is not necessarily a type�II solution� In the

next section we introduce further assumptions in order that these two de�nitions are

equivalent�

We can now give the following theorem�

Theorem 
 For ��� �� � � and under the conditions of Theorem 
� the function

h � H is the only type�II solution which satis
es

��� For all k between �� and h��


sgn�h��
� ��
�F �h��

� F �k

 � ��

��	
�
 ����



�	� For all k between �� and h�L


sgn�h�L
� ��
�F �h�L

� F �k

 � ��

��	
�
 �����


��



Proof of Theorem 
 This theorem is proved in two parts� We start by demon�

strating that the function h � H is a type�II solution�

Firstly H 
 NBV���� L�� Using property � of Theorem � we have that �h�� 	 �

in L� as � � �� Hence thw



and therefore we must ha







Region Subregion H��� H�L�

�� � hc� �� � hc �� ��

��
� � �� � hc� �� � hc �� ��

�� � ��
�� �� � hc �� 
����


�� � hc� hc � �� � ��
� �� ��

�� � hc� �� � ��
� 
����
 ��

��
� � �� � hc� hc � �� � ��

� �� ��

�� � ��
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Flow supercritical at in�ow and subcritical at out�ow If �� and �� satisfy

one of the conditions below� then there is a solution which satis�es h��
 � �� and

h�L
 � ���

��
 � � �� � ��
� � hc and hc � 
����


� � �� � ��
�

��
 hc � ��
� � �� � 
����
� and �� � ��

� � hc

��
 � � �� � minf��
�� 
����


�g � hc and �� � maxf��
�� 
����


�g � hc�

From the above we observe that in order to specify the depth at in�ow with

any degree of freedom the depth speci�ed must at the very minimum correspond to

supercritical �ow �and even then there will only be solutions for certain ranges of

depth
� Similarly to specify the depth at out�ow with any degree of freedom requires

this depth to correspond to subcritical �ow� This observation agrees with the theory

of characteristics discussed in section ������

We end this section by demonstrating that practical problems exist which do

satisfy the conditions required by the theory� The major restrictions placed by theory

are as follows�

��
 The channel must be prismatic

��
 The bed slope must be positive�

��
 The conveyance must satisfy �����
�

��
 There must be only one critical depth�

The condition that the bed slope is positive appears to be the most restrictive�

However� as we demonstrate later� when this condition is violated the uniqueness

conclusions of the theory may not hold� This condition on the conveyance is only a

slightly stronger version of the condition �����
 which is used in section ������ If we

again take the form �����
 for the conveyance and and now require that

k� � �	� and � � k� � k� � �	�� �����


which includes both the Manning and Chezy forms� then conditions �����
 are sat�

is�ed for rectangular� trapezoidal and triangular channels� This can be seen by

��



using �����
 with k� replaced with k� � �	�� Such cross�sections also have a unique

critical depth �see section �����
� There is no obvious way of showing that these con�

ditions hold for a wider class of cross�sections and friction laws� other than testing

each individual case�

���� Extension of the Theory

The theory derived in this chapter has certain limitations on the situations it can be

applied to� In this section we discuss whether these limitations may be overcome�

Theorem � requires that the bed slope is positive and that �����
 holds� in order

that Dh � � for all h � � and all � � x � L� If this condition is violated� then are

the conclusions of the theorem still true We demonstrate that in general they are

not�

Consider a �well�behaved	 channel in the sense of section ������ The channel�

which need not be prismatic� has a single critical depth hc�x
 at each cross�section�

and a jump is allowable at x if and only if

h�x�
 � hc�x
 � h�x�
 � h�x�
��

Suppose that �� � hc��
� �� � hc�L
 and that the following two problems have

solutions�

F �x� h��x

� � D�x� h��x

� h��x
 � hc�x
� � � x � L�

h���
 � ���

��	
�
 �����


F �x� h��x

� � D�x� h��x

� h��x
 hat



which satis�es both h��
 � �� and h�L
 � ��� Thus if J has more than a single root�

then there is more than one physical solution satisfying the same boun



We conclude that when Dh � � is violated� the conclusions of the theory may no

longer be true� i�e� there may be more than one physical weak solutions satisfying

identical boundary values� In a case where this happens� which of the solutions is the

solution we require It may only be possible to answer this question by examining

the transien



Chapter �

A Class of Numerical Methods

In the previous chapter we demonstrated that under certain conditions there is at

most one physical solution to the steady Saint�Venant problem� for any given bound�

ary values� and that this solution is the vanishing viscosity solution of a second order

two�point boundary value problem� In this chapter we follow on from these ideas to

consider a family of �nite di�erence approximations to the steady �ow problem� As

before we consider only prismatic channels� although the schemes will be extended

to non�prismatic channels in Chapter �� The basis of the theory� as in the previous

chapter� is the work by Lorenz	
�� although other authors� notably Abrahamsson and

Osher	
� and Osher	���� have made signi�cant contributions� Other closely related

work by Lorenz can be found in 	
��� 	
�� and 	

��

The steady �ow equation ����
� for a prismatic channel can be written as

d

dx
f�h� � �D�x� h�� ���
�

where f�h� � �F �h� and the functions F and D are given by ����� and ����� re�

spectively� We consider approximations to this equation of the form

g�hj��� hj�� g�hj� hj���

�x
� �D�xj� hj�� �����

where xj � j�x� hj � h�xj� and �x is the uniform grid spacing� We require that

g�h� h� � f�h� ���
�

for all positive h� in order that the scheme be consistent with the di�erential equa�

tion� A motivation for considering such a scheme comes from the previous chapter

��



where we observed that under certain conditions the physical solutions of the steady

�ow problem are exactly the steady state entropy satisfying solutions of the scalar

conservation law ������ Applying a three�point conservative �nite di�erence scheme

to this scalar conservation law and using a pointwise discretisation of the source term

yields the scheme

hn��j � hnj
�t

�
g�hnj��� h

n
j �� g�hnj � h

n
j���

�x
� �D�xj � h

n
j �� �����

where hnj � h�j�x� n�t� and again ���
� is required for consistency� At steady

state this reduces to ������ In theory� almost any of the vast amount of numerical

methods for scalar conservation laws �some of which are described in Chapter 
�

could be applied to ����� and so be used to compute solutions of the steady �ow

problem� and in Chapter � we apply some specimen schemes from the literature�

From the viewpoint of theory we consider only simple schemes of the abo0 Tc
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The �rst condition placed on the numerical �ux function g is simply the consist�

ency condition� The second and third conditions on g ensure that that the scheme is

monotone� To be precise� when we say that the scheme is monotone� w



��� There exists a constant l such that for all u�� u�� v�� v� � 		� 
�

jg�u�� v��� g�u�� v��j 	 l�ju� � u�j� jv� � v�j��

Under these conditions the di�erence equations have a unique solution

u�x � �u�x
� � u�x

� � � � � � u�x
N �T

in 	���� for each N � IN � This solution satis�es the bounds�

� � u 	 u�x
j 	 u� j � �� 
� � � � � N� �����

If U�x � L�	�� 
� denotes the piecewise constant extension of this discrete solution

given by ������ then U�x � U in L� as �x � �� where U � NBV�	�� 
� is the

limiting solution of problem P� ���
�� as � � ��

Proof of Theorem 	 The proof of Theorem � shows that the problem P ���
� satis�es

Theorem 
 and that problems P� and P ���
� have identical solutions and hence identical

limiting solutions� We consider the following set of di�erence equations

T ���
j u � �� j � 
� �� � � � � N � 


u� � ��� uN � ���
���
��

where

T ���
j u �

g����uj��� uj�� g����uj� uj���

�x
� b����xj� uj��

The function g��� is constructed so as to match up with g on the region 	 	 u 	 
�

	 	 v 	 
 and also to satisfy the conditions of Theorem �� De�1 Tf
2	425
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and

���u� �
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 u � 


u u � 
�

We start by showing that conditions �
����� of Theorem � hold for g���� Firstly we

have that

g�����



is Lipschitz continuous� The �rst term is Lipschitz continuous since for j � 
� �� 


and for each u�� u� � IR we have

j�j�u��� �j�u��



equation for j � j� yields

�b����x



��� The Time Stepping Iteration

In this section we consider a method for solving the system of di�erence equations�

The theory relies on the following lemma which is simply an application of the con�
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This demonstrates that G maps onto its own domain� The contractivity of G then

gives the uniqueness and existence of the �xed point by the contraction mapping

theorem �for example see ref� 	��� section ��
�
�� The convergence of the sequence

given by ���

� arises from observing observing that

kun � uk� � kG�un����G�u�k� 	 kkun�� � uk��

and hence by induction

kun � uk� 	 knku� � uk� 	 ku� � uk�e
�n���k��

Here we have used the fact that k 	 e����k� for k � 	�� 
�� This completes the proof�

Under the conditions of Theorem � we apply the above lemma to the m h em



since 	 	 u � minf��� ���mg and hence b�xj� 	� 	 �� Also we have

G��� �

�
�������������������	

��


 ��tb�x�� 
�
���


 ��tb�xj� 
�
���


 ��tb�xN��� 
�

��



��������������������

	 ��

since 
 � u � maxf��� ���Mg and hence b�xj� 
� � ��

We next investigate the circumstances under which G satis�es condition ��� of

Lemma ��
� For u�� u�� v�� v� � 		� 
� we de�ne the functions

lu�u�� u�� v�� �

����
���

g�u�� v��� g�u�� v��

u� � u�
if u� 
� u�

� if u� � u��

���

�

and

lv�u�� u�� v�� �

����
���

g�v�� u��� g�v�� u��

u� � u�
if u� 
� u�

� if u� � u��

���
��

which from the properties of g are bounded and satisfy

lu�u�� u�� v�� 	 �� lv�u�� u�� v�� � ��

We can now write

g�u�� v��� g�u�� v�� � g�u�� v��� g�u�� v�� � g�u�� v��� g�u�� v��

lu�u�� u�� v���u� � u�� � lv�v�� v��u���v� � v���

Using this relationship and applying the mean value theorem to the di�erence in the

term involving b� we can for u�v � 	���� write

G�u��G�v� � M�u� v��

��



wh



since r� � �� For the jth column �
 	 j 	 N � �� the sum is given by

rj�� � qj�� � pj � 
��tbu�xj��� �uj��� 	 
��t��

The same argument shows that the remaining two column sums satisfy the same

bound� hence we conclude that

kMk� 	 
��t� � 
�

We can obtain a slightly less restrictive requirement on the parameter �t than

given by ���
�� if the function g�u� v� is assumed to be continuously di�erentiable

for all u� v � 		� 
�� In this case the function G is Frechet�di�erentiable and for

u�v � 	���� we can write

G�u��G�v� � M�u� v��

where

M �
Z �

�
G��u� s�v � u��ds�

�see 	���� sections 
���� and 
������ The Jacobian G��u� is again of the form ���
��

where now

pj �
�t

�x
gv�uj� uj����

qj � 
��t

�
gv�uj��� uj�� gu�uj� uj���

�x
� bu�xj� uj�

�

� 
��tbu�xj� uj�� pj�� � rj���

rj � �
�t

�x
gu�uj��� uj��

As before pj � rj � �� but in this case the condition

�t

�
gv�u�� u��� gu�u�� u��

�x
� bu�xj� u��

�
	 
�

for all u�� u�� u� � 		� 
� and � 	 j 	 N�

���
��

is su�cient to ensure qj � ��

We estimate the L� norm of the matrix G��u� by computing the sum of each

column� The sum of the �rst column is p�� and using condition ���
�� with the

correct values we obtain

p� 	 
 ��tbu�x�� u�� �
gu�u�� u��

�x
	 
��t��

��



since gu 	 �� The sum of the second column is given by

q� � p� � 
 ��tbu�x�� u��� r� 	 
��t��

since r� � �� For the jth column �
 	 j 	 N � �� the sum is given b



j � 
� � � � � � N � 
� where un� � �� and unN � ��� This is a �rst order time accurate

approximation to the partial di�erential equation


u


t
�





x
f�u� � �b�x� u�� � 	 x 	 
�

and the condition on the time step �t plays the role of the CFL condition�

��� Application to the Steady Flow Problem

In this section we apply the theory from the previous section to the steady �ow prob�

lem� Application of Theorem � under the conditions of Theorem 
 yields the following

theorem� Any discussion throughout the remainder of this chapter assumes that the

problem satis�es the conditions of Theorem 
 and also the additional assumptions of

Theorem ��

Theorem � Suppose the situation is as in Theorem 
 and consider the di�erence

equations

Tjh � �� j � 
� �� � � � � N � 


h� � ��� hN � ���
������

where

Tjh �
g�hj��� hj�� g�hj � hj���

�x
�D�xj � hj��

�x � L�N and xj � j�x� Suppose that for some � � 	 	 h� 
 � h the function g

has the properties�

��� g�u� u� � �F �u� for all u � 		� 
��

�	� u�� u�� v � 		� 
� wl
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in 	���� for each N � IN � This solution satis�es the bounds�

� � h 	 h�x
j 	 h� j � �� 
� � � � � N� ����
�

If H�x � L�	�� L� denotes the piecewise constant extension of this discrete solu


tion given by

H�x � h�x
j for j�x 	 x � �j � 
��x� j � �� 
� � � � � N ������

then H�x � H in L� as �x� �� where H � NBV�	�� L� is the limiting solution of

problem ����� as � � ��

Proof of Theorem � As in the proof of Theorem 
 we write

f�u� � �LF �u��

b�x� u� � L�D�xL� u��

to transform the continuous problem ����� onto the unit interval� This problem then

satis�es the conditions of Theorem �� Likewise transform the discret





Under these conditions the mapping ���
�� has exactly one �xed point h which is

the only solution in 	



and c � � is arbitrary� This choice of g is continuously di�erentiable and we have

gu�u� v� � f ���u� � minff ��u�� �g 	 ��

gv�u� v� � f ���v� � maxff ��v�� �g � ��

Also we have g�u� u� � f�u� for positive u� so that conditions 
�� of Theorem � are

satis�ed for any choice of 	 and 
� Hence under the conditions of Theorem 
 the

conclusions of Theorem � are true� Theorem � does not show the global uniqueness

of the discrete solution� however since the conditions on g hold for arbitrary 	 and


� the corollary to the theorem is valid� giving the global uniqueness�

Using the fact that g is continuously di�erentiable� the stronger form of the CFL

condition �condition ����� is su�cient to guarantee convergence of the time stepping

iteration� This condition reduces to th



and

� 	 lv�h�� h��h�� 	 jf �j� ���
��

where

jf �j � max
��h��

fjf ��h�jg�

Since the consistency condition also holds then g satis�es conditions 
�� of Theorem ��

hence under the conditions of Theorem 
 the conclusions of Theorem � are true�

Again the conditions on g hold for arbitrary 	 and 
� thus the corollary to the

Theorem gives the global uniqueness of the discrete solution�

Since in this case the numerical �ux function is not everywhere di�erentiable�

we must use the weaker form of the CFL condition �condition ���
� to ensure the

convergence of the time stepping iteration� Using the bounds ������ and ���
��� the

requirement that

�t

�
�jf ��h��j

�x
�Dh�xj� h��

�
	 
� ���

�

for all h�� h� � 		� 
� and � 	 j 	 N can be seen to be su�cient� The di�erence

between this condition and that for the Engquist�Osher form is the addition of the

factor two in the �rst term� Hence as �x becomes small the condition will only allow

a time step of half that allowed by the Engquist�Osher scheme� It is likely that more

thorough analysis� using t



values of u and v� The best we can achieve is to enforce these conditions to hold

over the �nite range 	 	 u� v 	 
� by taking � such that

� 	 jf ��h�j� for all 	 	 h 	 
� ���

�

Conditions 
�� of Theorem � are then satis�ed� and under the conditions of The�

orem 
 the conclusions of Theorem � are true� In this case� however� the corollary

to Theorem � is not valid and thus the discrete solution may not be globally unique�

The theory does not preclude the existence of other solutions which are not con�

tained in the set 	����� Th08.8 631.440
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��� Theory into Practice

In this section we describe how to carry out the necessary steps to utilise the theory

and obtain an e�cient� robust and practical algorithm for computing solutions to

the steady �ow problem� We consider the following �ve steps�

�
� Choose the values for �� and ���

��� Determine bounds on the normal depth for the problem and hence �nd bounds

on the exact solution�

�
� Choose the starting vector h� for the time stepping iteration and then appro�

priate values for 	 and 
�

��� Ensure the numerical �ux function satis�es conditions 
�� of Theorem ��

��� Find a value of �t which satis�es the CFL condition and hence guarantees the

convergence of the time stepping iteration�

For a given problem� the �rst step is to choose values for �� and �� in order

to give the required solution� In section ��� we observed th



the corresponding �j as the critical depth since this minimises the range over which

the CFL condition must hold�

The next step is to obtain bounds for the normal depth hn� The normal depth is

de�ned by

K�hn�x�� �
Q





The convergence rate estimate ������ indicates that a larger value of �t can yield a

faster rate of convergence� so it is of interest to �nd the greatest time step allowable

by the CFL condition� For all the three forms of g discussed in the previous section�

the CFL condition can be written as

�t!�xj � h�� h�� 	 
�

for j � �� 
� � � � � N and all h�� h� � 		� 
�� The greatest allowable time step is then

given by

�topt �



� max

��j�N
h��h�������

f!�xj� h�� h��g

�
A
��

�

We are therefore required to maximise th





Chapter �

Test Problems



makes this pro�le an actual solution of the steady equation is then found� The

method can be used to construct test problems with almost any desired features�

including hydraulic jumps� Hence these test problems can be used to compare the

numerical results� for any algorithm� with an exact solution� The method is also

useful for evaluating unsteady solvers� since� if an unsteady model is given steady

boundary conditions� the limiting steady solution can be compared with the analytic

steady solution� The method presented in this chapter �ts in well with the validation

documentation initiative of the European hydraulics laboratories 
see ������ since it

enables the creation of benchmark test problems which can be used as a standard

measure for the performance of commercial software packages�

��� Test Problems with Smooth Solutions

It is convenient to write equation 
����� as

S�
x� � f�
x� h
x��h
�
x� � f�
x� h
x��� 
����

where

f� � �� Q�T

gA�
� � � F �

r 
����

and

f� �
Q�

K�
� Q�

gA�

Z h

�
�xd�� 
����

The crux of the work in this chapter depends on the following argument� Suppose

that for some reach the function T representing channel width is arbitrarily de�ned�

For example for a rectangular channel we would de�ne T � B� where B
x� � �

gives the width� If the conveyance function K is completely speci�ed and a value for

the discharge Q is given� then the functions f� and f� given by 
���� and 
���� are

completely de�ned� The main part of the method is to choose a hypothetical depth

pro�le �h
x� for the reach� which at this stage we assume to be smooth� We then use

the following formula to determine the bed slope for the reach�

S�
x� � f�
x� �h
x���h
�
x� � f�
x� �h
x��� 
����

It is not di�cult to conclude that� for the above situation� the function h � �h satis�es

the di�erential equation 
���� for the entire reach�

���



We can now use the above argument to specify a benchmark test problem for

which the exact solution is known� The following information is required�

.9(i)a8D
0 T5�43 0 TD
T(h)Tj601 0 TD
[(e)-16000l(en)]TJ
040 0 TD
gtm h o f e th r e a - 1 5 0 0 0 n c t



get round this di�culty� Suppose that the hypothetical depth pro�le is now only

piecewise smooth� where all the discontinuities represent physical hydraulic jumps�

i�e� satisfy 
����� and 
������ Consider a discontinuity at x � x�� Using 
���� the

bed slope is not de�ned at x� and this corresponds to a discontinuity in the bed

slope� i�e�

S�
x
��� �� S�
x

����

This is not a great di�culty since this yields a perfectly realistic bed pro�le and one

may go ahead and use this as test problem� However we feel that it is worthwhile

taking further steps to improve the quality of the bed slope�

In general for a problem where a hydraulic jump is triggered by a bed slope

discontinuity� the position 0 TD
(w Tc
(h]TJ.c
(�t)Tj18 Tc
[)17000(s)17000.1(i)10 TD
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of the jump can be restricted to the locality of the jump� The exact functional form

still made it di�cult to control the solution away from the jump� The examples

in this thesis still use exponential functions� however the exact form allows more

systematic control over the solution� The form can be written as

�h
x� � exp 
�p
x� x���
MX
i��

ki

�
x� x�

x�� � x�

�i
� �
x�� 
����

The parameters k�� k�� � � � � kM are used satisfy the constraints at the jump� Calculat�

ing these values only involves solving a small linear system� The positive parameter

p in�uences the rate at which the high derivatives and curvat



Problem B�m Z L�m n Q�
m�s��� hin�m hout�m

� �� � ��� ���� �� ��������

� �� � ��� ���� �� ��������

� �� � ��� ���� �� ��������

� �� � ��� ���� ��

� � �� ��� ���� �� �������� ��������

� �� � ��� ���� �� ��������

� � � ��� ���� �� ��������

� � � ��� ���� �� ��������

Table ���� Information for test problems ���

where it only remains to specify the function �h� which is also the solution of the

problem�

Problem � �subcritical �ow� In this case we have

�h
x� � ��� � ���� exp

	
������

�
x

���
� �

�

��

�

Figure ���
a� shows �h� Figure ���
b� shows the corresponding bed slope and Fig�

ure ���
c� shows the bed level and the free surface elevation� The channel �attens as

we approach the mid�point of the reach� having the least gradient at this point� The

channel then steepens again� returning to the initial gradient� The solution of this

problem corresponds to entirely subcritical �ow� The depth rises to a maximum at

the center of the reach and approaches the critical depth at both ends�

Problem � �subcritical �ow� In this case we have

�h
x� � ���� � ���� sin�
�
�	x

���

�

and the problem is illustrated by Figure ���� The gradient of the channel �attens and

then steepens again three times� As in the previous case the solution corresponds to

entirely subcritical �ow� The depth has local maxim im
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Chapter �

Numerical Experiments

In Chapter � we presented theory for a family of numerical methods for computing

steady solut



wind scheme which is not a monotone scheme� but nevertheless is still well behaved�

We use the strategy described in section ��� to compute a�priori bounds for the

solution� and allowable time steps for the time stepping iteration�

Problem � Consider the test problem �� It is given that the �ow at in�ow is

subcritical and that the depth at out�ow is �h�L� �����m� Following the strategy

described in section ���� we take �� � hc �����m and �� to be the depth speci�ed at

out�ow� This yields the bounds on the solution

h � h�x� � h� � � x � L�

where h �����m and h �����m� Comparing the bounds and the actual solution

�shown in Figure ���� we �nd that the upper bound is not at all tight� The actual

solution does not rise above ����m� In general the bounds given by the theory cannot

be expected to be tight� for they depend solely on the extreme values of the bed�slope�

In the current example the upper bound must therefore take into account the worst

case scenario for which the bed slope is at its minimum value for a great enough

distance for the solution to asymptote to the corresponding normal depth� In reality

though� the bed slope �see Figure ����b�� is only close to it
s minimum value for a

small fraction of the reach�

Figure ��� shows results for the Engquist�Osher scheme for problem � with �x �

��m� The Godunov and the �rst�order upwind schemes give identical results because

the di�erence equations reduce to an identical form for purely subcritical or purely

supercritical solutions� The numerical solution gives a reasonable representation of

the solution� The numerical solution is slightly skew� whereas the exact solution is

symmetric about the middle of the reach� The numerical solution also fails to reach

the correct maximum depth by a few centimeters�

The initial guess for the time�stepping it



0.0 50.0 100.0 150.0
x/m

0.70

0.80

0.90

1.00

1.10

D
ep

th
/m



0.0 50.0 100.0 150.0
x/m

0.70

0.80

0.90

1.00

1.10

D
ep

th
/m



0.0 100.0 200.0 300.0
x/m

0.70

0.80

0.90

D
ep

th
/m

hc

hexact

E-O

Figure ���� Prob



0.0 50.0 100.0 150.0 200.0
x/m

0.40

0.60

0.80

D
ep

th
/m

hc

hexact

E-O
Upwind
Godunov

Figure ���� Comparison of E�O� Godunov and upwind schemes for problem �

��x ���m��

changes smoothly from subcritical to supercritical at the midpoint of the channel�

The methods give a good representation of the solution even with so few grid points�

The upwind scheme is found to be less accurate than for the Engquist�Osher or

Godunov schemes at the grid points on either side of the transition� The smooth

transition is a steady expansion wave for th h

h











��� Comparison with Roe�s Approximate Riemann

Solver

We now compare the accuracy of the schemes in the previous section against that of

Roe
s approximate Riemann solver
��� which is described in sections ��� and ���� The

latter scheme is a time accurate solver of the time dependent Saint�Venant system

and we model the transient �ow until steady state is attained� The scheme is a

natural generalisation of the �rst�order upwind scheme to systems of equations and

is designed speci�cally for the computation of discontinuous �ows� In section ��� we

discussed two di�erent methods of discretising a source term� Here we apply both

the pointwise discretisation and the upwin





where the function �h is the exact solution� In order to allow a fair comparison of

the two distinct approaches� the end points of the reach are not included in the error

measures� This is because the solution is not in general approximated at these points

for the scalar approach� since we �x h� � �� and hN � ��
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be written as

w
n��
j �wn

j

�t
�
�
�J�
j� �
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�n �wn
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�x
�
�
�J�
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�n �wn
j �wn

j���

�x
�Dn

j �

where Dn
j �D�xj�wj�� At steady state this reduces to

�J�
j� �

�

�wj�� �wj�

�x
� �J�

j� �

�

�wj �wj� x
� j
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The coe	cients of �Aj�� �Aj� and �Aj � Aj��� must be positive� so this precludes

the wetted area from having extrema in a subcritical region of �ow� This is clearly

nonsense� so we conclude that the di�erence equations are not in general consistent

at steady state with a constant discharge solution�



and

I �  
�
�Jj� �

�

�
�

�
����j� �

�

� ����j� �

�

�
B� ����j� �

�

��



accuracy observed for problem �� since the trapezium rule is a second order accurate

discretisation�

Figure ���� compares the L� accuracy of the three schem em�



at x



��� Higher Order Accuracy

This section generalises the �scalar approach� in order to obtain higher order approx�

imations to the steady state solutions� In the previous section we obtained second

order accuracy using Roe
s approximate Riemann solver combined with a particular

method of upwinding the source term� We apply the direct analogue of this scheme

to the scalar equation
�h

�t
�

�

�x
f�h� � �D� �����

where f�h� � �F �h�� This gives the �rst�order upwind schemewith upwinded source
term� Next a generalisation of the Engquist�Osher scheme is considered which again

comes down to upwinding the source term� These methods achiev



and sj� �

�

is given by ������� We can also write

T UPW	�
j h �

gFOU
j� �

�

� gFOU
j� �

�

�x

�  
�
sj� �

�

�
�
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channel as a function of p� for three di�erent grid spacings �N � ��� N � ��

and N � ����� The behaviour is very similar at each of the four points� For

a particular grid spacing there are two regions of constant error� separated b� 4



����� High Order TVD Sch



of schemes with numerical �ux function written as

gj� �

�

�
�

�

�
f�hj� � f�hj��� � �j� �

�

�
�

for di�erent functions �j� �

�

� In general the resulting scheme is a �ve point scheme

and this adds di	culties at the boundaries� In the case of the three point schemes�

the values of the boundary nodes hn� and h
n
N are �xed regardless of whether these rep�

resent physical boundary conditions� We treat the boundaries for �ve�point schemes

in the same unsophisticated manner� by now �xing the values of hn� � h
n
�� and hnN �

hnN��



where the minmod function is given by

minmod�x� y� � sgn�x�maxf��minfjxj� y � sgn�x�gg �

Other forms of the function � are given in 
����

Yee
Roe
Davis Symmetric Scheme This scheme is a generalisation by Yee

�
���� 
���� of the schemes of Roe
��� and Davis
���� and is given by

�j� �

�

� �
���sj� �

�

��� ��hj�� � hj�� �j� �

�

�
�

where sj� �

�

is given b





convergence at the in�o







Chapter �

Computational E�ciency

This chapter explores di�erent meth



Optimum Monotonicity

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����� �� ������ ���� ����� �� ������ ����

�� ����� �� ������ ���� ���		 ��
 ������ ����

�� ���	� �� ������ ���� ����� ��� ������ ����

�� ����� ��� ����� ����� ��� ��	��

��� ����
	 ��� ���	� ������ ��� ������ ���

	�� ����	� ��� ��	�
� ��� ����	 ���� ������ ���

��� ������ ���� ������ ��� ������ ���� ������ ���

���� ������ 	��� ���	�� ��� �����
� ���	 ��
��� ���

Table ���� Time st
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NX
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�
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Upwind�� E�O�� �p � ��

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����	 �
 ������ ���� ���
� �� ������ ����

�� ����
 �� ���
�� ���� ���
� �� ������ ����
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� ����� ��� ��	��

��� ����
� �
� ������ ��� ����
� ��� ���	�� ���

	�� ����	� �
� ������ ��� ����	� ��	� ���	�� ���

��� ������ ���� ���	�� ��� �����
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���� ������ 	
�� ������ ��� ������ 	
�� ��

�� ���

Table �������4G5m



Yee�Roe�Davis Optimum�Harten�Yee

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����� ��� ��	��� ���� ����	 
� ���
�� ����

�� ����� �
� ��
��� ���� ����� 	�
 ���
�

�� ����	 	�� ��			 �����	 ���� ���	�� ���

�� �����	 ��� ������ ��� Fails to converge for all �t

��� ����	� �	�
 ���
�� ��� Fails to converge for all �t

	�� ������ ���
 ������ ��� Fails to converge for all �t

��� �����
� ���� ����
� ��� Fails to converge for all �t

���� �����	� ���
 ����	� ��� Fails to converge for all �t

Table ���� Time stepping for the high order TVD schemes for problem 
 using optimal

time steps

��� Newton�s Method

The nonlinear system of di�erence equations can be written in vector notation as

T �h� � �� �����

where T �h� � �T�h�T�h� � � � �TN��h�T 	 h � �h�� h�� � � � � hN���T and h� � h�� � ��	

hN � hN�� � ��� The time stepping iteration is essentially a Picard iteration applied

to this system� Such methods only give a linear convergence rate	 i�e� the residual

is inversely proportional to number of iterations� Newton�s method however is well

known to give a quadratic convergence rate	 i�e� the residual is inversely proportional

to the number of iterations squared� The drawback of Newton�s method is that in

general	 global convergence is not obtained	 i�e� convergence will not occur for all

initial guesses of the solution� The theory of Newton�s method and other related

methods can be found in ��
��

Applying Newton�s method to the system of di�erence equations yields the fol�

lowing algorithm�

hn�� � hn � sndn� �����

�
�



where dn � �dn� � d
n
� � � � � � d

n
N���

T solves the linear system



where

pj � �
gv�hj� hj���

�x
�

qj �
gv�hj��� hj�� gu�hj� hj���

�x
�Dh�xj� hj��

rj �
gu�hj��� hj�

�x
�

The Jacobian does not strictly exist in the case of Godunov and the �rst�order

upwind schemes because of the switching	 however on the curves where the function

g is not di�erentiable	 either the partial derivatives from the left or right can be used�

The Jacobian exists at all points for the Engquist�Osher and Lax�Friedrichs schemes

since the numerical �ux functions are di�erentiable in these cases� For monotone

schemes �i�e� under the conditions of Theorem � with � � h � �� we have that

g



E�O E�O��

N No� iter CPU t





Hence we have

jqjj � jpj��j� jrj��j�Dh�xj� hj� � jpj��j� jrj��j�

Hence the transpose of the Jacobian is strictly diagonally dominant and the Jacobian

itself is non�singular	 and as for the �rst order monotone schemes the Jacobian is an

M�matrix�

Newton�s method applied to the second order Engquist�Osher scheme is in prac�

tice found to be well�behaved and Table ��
 shows the performance for problem �

with p � �� At best for this example the method converges in ro�ib TD
j
26 0c
(dT)Tj
78p3D
(p)Tj
/T14 ]TJ
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having a band�width of �ve	 as would be the case if one attempted to use the full

Jacobian� We expect the fact that only an approximate Jacobian is used to reduce

the performance of the Newton�s method� Applying the method to the Yee�Roe�

Davis scheme and the Harten�Yee scheme we �nd that convergence is obtained if the

number of grid�points is very small	 although the method is more expensive than

for the previous schemes such as the Engquist�Osher scheme� For even a moderate

number of grid points and even for solutions without transitions	 the method fails

to converge for the Yee�Roe�Davis scheme� The Harten�Yee scheme converges for a

higher number of grid�points	 however for problems with hydraulic jumps fails for

signi�cantly smallerN than for example the Engquist�Osher scheme� The robustness

of the method can in some cases be improved by use of a grid re�ning approach	 but

the method is not really suited to solving these schemes�

��� The Implicit Time Stepping Iteration

We now consider a generalisation of the time stepping algorithm� The particular

implementation of the algorithm relates it closely to the Newton algorithm described

in the previous section� The e�ciency of the time stepping meth





expect the implicit algorithm to have no restriction on the time step� This is found

to be the case in practice� A measure of the performance for this method is given by

the number of Jacobian inversions required for convergence to occur� The number of

inversions required decreases as the time step increases and approaches the number

of inversions required for the Newton algorithm as �t becomes very large� Even

for large time steps where the num



where dn � �dn� � d
n
� � � � � � d

n
N���

T solves the linear system

R
��hn�dn � �R�hn�� ������

and sn is taken as in Newton�s method� Again for 
 � � this method approaches the

Newton algorithm as �t grows large� The method is known as a linearised implicit

scheme �see section ��
� since it can also be derived using Taylor�s expansions to

linearise the implicit part of the operator� The linearised method is more e�cient to

implement than the method allowing a variable number of inner iterations	 and each

iteration requires a very similar expenditure to one iteration of the Newton algorithm�

Table ��� shows the performance of the linearised method for the Engquist�Osher

E�O E�O�� �p � ��

N �t No� iter� CPU time�s �t No� iter� CPU time�s

�� 	��	� � ������ ���� 	�� �	 ���
�� ����

��� �	�� �� ���
�� ���� ��� �� ������ ����

�� ��� 	� ������ ���� ��� 	� ��	��� ����

�� ��� �� ��
��� ���� ��� �� �����

��� �	�� �� ����� ��� �
 ��	��

	�� ���� �� ����� ��� ��� ������ ���

��� 	��� ��� ������ ��� ���� �	� ��		�� ���

���� ���� ��� ��
��� ��� 	��� ��� ������ ���

Table ���� Linearised implicit algorithm for the E�O and E�O�� �p � �� schemes for

problem 


scheme and its second order modi�cation �p � �� for problem 
� In each case

performance is given for a time step which gives close to the optimum convergence

rate� By comparing Tables ��� and ��
 it can be seen that the linearised method

and Newton�s method are indeed very similar in performance� Of course for the

linearised method the performance is dependent on the choice of time step and there

is no way to predict the optimal value in advance� However	 it is found that good

performance is obtained over a much wider range of time steps than for the explicit

time stepping method� There also appears to be no limit on the size of the time step

���



in many cases� In the case of the high order TVD schemes	 the linearised method

Yee�Roe�Davis Harten�Yee

N �t No� Steps CPU time�s �t No� iter� CPU time�s

�� ��� 	� ���	
� ���� ��	� �� ��
��� ����

�� ��� �
� ����� ���� 	
 ���	�� ����

�� ��� �� ������ ���� ���� �� ����
� ����

�� ���� �� ����� ���� �� �����

��� �����



��� Conclusions

In this chapter the e�ectiveness of four di�erent meth



Chapter �

Non�Prismatic Channels

��� Scalar Schemes



most natural� Other choices may be more appropriate for reasons of computational

e�ciency



where the �ow is subcritical� i�e� hj��� hj � hc�xj�q��� and hj � hj�� � hc�xj�q�� the

three schemes all reduce to

f�xj�q� hj���� f�xj�q��� hj�


x
�D�xj� hj� � ��

with truncation error

T�E� �

x

�

�
h��fh � �h���fhh � �qh�fhx � ��q � 	�fxx

�
�O�
x��

�

x

�

d

dx
��D � ��q � 	�fx� �O�
x��� �����

In a region of the solution where the �o
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� 	 � ��j�� � ��j���

��j � �

��pfh�xj��� hj���p

x

	
�

and the function � is given as before� For a prismatic channel the scheme gives

second order accuracy� To see whether this remains the case for a non�prismatic

channel we again consider t
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extremely problematic� since even the explicit time stepping iteration fails to converge

more often than not�

��� Roe�s Approximate Riemann Solver

We can use the same principle as in the previous section to extend Roe�s approximate

Riemann solver to the non�prismatic case� The generalised ne gen



we use the modi�ed formula

�
�cj� �

�

��
�

���������
��������

g

�
I��xj�q� Aj���� I��xj�q� Aj�

Aj�� �Aj

	
Aj �� Aj��

gAj

T �xj�q� Aj�
Aj � Aj���

where now the functions T and I� give there respective quantities as a function of

cross�section and wetted area�
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channel� because of the additional term ����� which has not been decomposed onto

the eigenvectors of the Roe matrix� The approach of Priestley����� which absorbs

the additional term into the source term and upwinds the modi�ed source term� does

howev
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Figure ��	�� L� errors for problem 		�

may therefore only be of any bene�t for solutions of predominantly one type of �ow�

The generalisation of the upwind�� scheme was found to be extremely problematic

due non�convergence of the time�stepping iteration� whereas the E�O and E�O��

schemes were� as for the prismatic case� very amenable to Newton�s method� Roe�s

scheme was also generalised to the non�prismatic case� The scheme has di�culties

capturing smooth transitions but this could be cured by addition of an entropy �x�

Roe�s method was in general found to less accurate than the scalar schemes� due to

the large amount of deviation from the expected constant discharge� This cannot

be remedied by upwinding the source term without a special treatment of the new

term arising from the variation of the cross�section of the channel� This last subject

requires further work�

	��







tions of a particular scalar conservation law� Scalar shock capturing schemes could

thus be used to compute discontinuous solutions of the steady �ow problem� A family

of such schemes� which are particularly rich in theoretical results� are the monotone

schemes� In Chapter � we demonstrated that this richness carries over to the com�

putation of solutions of the steady �ow problem� Under the same conditions as the

theory in Chapter � we demonstrated that the numerical schemes de
ne a solution

which converges to the unique physical solution of the steady �ow problem �as the

grid�spacing vanishes	�



However in general the discharge for Roe�s schemes was found to be far from constant

at steady state� This was remedied by using an upwind discretisation of the source

term� Moreover for a particular form of source term averaging it was found that

the scheme gave second order accuracy at steady state� This was explained by

showing that� at steady state� the scheme e�ectively reduces to the trapezium rule�

Upwinding of the source term was also used to obtain second order accurate three�

point scalar schemes� The resulting generalisations of the Engquist�Osher and 
rst�

order upwind schemes were found to give comparable accuracy to Roe�s scheme with

an upwinded source term� Another more traditional approach to obtaining second

order accuracy is through the use of nonlinear limiter functions� leading to 
ve�point

TVD schemes� Examples of such schemes were found to be signi
cantly less accurate

than the scheme0 0 TD
(t)T.8(ap)]TJ
106.9999 0 Trp



between grids�

The schemes discussed thus far are only applicable in the case of a prismatic

channel� In Chapter � we extended the scalar schemes to the non�prismatic case by

allowing the numerical �ux functions to depend on the distance along the channel� We

investigated di�erent ways of staggering the evaluation points� and for the Engquist�

Osher scheme we found that� in the majority of test cases� the most accurate solution

was obtained by evaluating the numerical �ux at the cell interfaces� The version of

the Engquist�Osher scheme with upwinded source term was no longer found to give

second order accuracy in all regions of the solution� A particular staggering of the

evaluation points may give second order accuracy in one �ow regime� but the scheme

remains only 
rst order accurate in regions of the opposite type of �ow� We concluded

that upwinding the source term was only bene
cial for solutions of predominantly

one type of �ow� Further work is required to develop a conservative scheme that is

second�order accurate in both �ow regimes for a non�prismatic channel�

The same idea as above w 1 3 9 7  c 
 ( e w 1 3 9 7 � s 1 6 9 9 9 . 9 ( i ) 1 7 p 1  T c 
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boundaries� however some applications may require an accurate approximation of the

solution at the boundaries� Further work is therefore necessary to investigate ways

of achieving this�

One approach is to solve the system of di�erence equations as usual and then� if

necessary� extrapolate the solution onto the boundaries� For an upwind scheme� the

appropriate one�sided form of the scheme may used to perform the extrapolation�

maintaining the accuracy of the scheme at the boundaries� A di�culty with this

technique is to decide when extrapolation is required� for example we must di�er�

entiate between a hydraulic jump close to the boundary �for which extrapolation is

not appropriate	 and a boundar.99992(b)1602]TJ
171 0 TD
(h)er�-2117000(i)-juorh



solution without referring to the transient �ow� Work is required to investigate how

common the existence of multiple solutions is and the behaviour of the scalar schemes

in such cases�

���
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The above result leads to the following theorem�
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Similarly for 	 � j � N we have
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As in section 
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The previous lemma shows that the pj and rj are non�negative� For j � 	� �� � � � � � N

we can write
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using the fact that j��
�r�� ��
r�j � � and condition 
A����
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We estimate the L� norm of the matrix G�
h� by computing the sum of each

column� The sum of the �rst column is p�� Consider the expression q� where for the

sake of argument take h�� � h�� We have shown that q� � 	� and we can write

p� � ���tDh
x�� h��� r�� � q� � ���t��

since r�� � 	 from Lemma A��� The sum of the second column is given by

q� � p� � � ��tDh
x�� h��� r� � ���t��

since r� � 	� For the jth column 
� � j � N � �� the sum is given by

rj�� � qj�� � pj � ���tDh
xj��� hj��� � ���t��

The same argument shows that the remaining two column sums satisfy the same

bound� hence we conclude that

kG�
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It follows that

kMk� �
����
Z

�

�

G�
h� s
v � h��ds
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�
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�
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kG�
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Thus Lemma 
�� holds with k � � ��t�� This completes the proof�

���



Appendix B

Test Problems for Non�Prismatic

Channels

In this appendix we give the details of six test problems with non�prismatic channels�

constructed using the method described in Chapter �� Table B�� gives the parameters

for these problems�

The channel for problems �� �	� �� an
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