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Chapter 1

Introduction

A stably strati�ed atmosphere has the important property of supporting the propagation of

waves with di�erent scales, from the large-scale planetary waves such as Rossby waves to the

small-scale sound waves. Some of these waves play a crucial role in meteorological phenonema

(e.g. Rossby waves), while others do not (e.g. sound waves). Nowadays, with the ever improving

technology, numerical weather prediction plays an increasingly important role in weather fore-

cast. However, no matter how advanced the modern meteorological models are, there are still

many phenomena that they cannot capture, for example small-scale but important processes

like convection, cloud microphysics, turbulence, etc. The subject of this study, terrain-generated

gravity waves, are also one of these processes. These small-scale processes can only be captured

by parametrization schemes, and therefore a deep understanding of them is necessary in order

to develop good parametrizations.

As their name tells, terrain-generated gravity waves are wave phenomena generated by orog-

raphy. One distinctive feature of terrain-generated gravity-waves is that they are stationary

to observers on the ground (Lin (2007); Nappo (2012)). From the foregoing discussion we

will learn that these waves are non-dispersive since all wave components have the same phase

speed, which is 0. Terrain-generated gravity waves are worth studying since their presence acts

to transport horizontal momentum of the mean ow vertically. As the waves propagate upward

to a certain high level, they may break and generate turbulence, which is known as clear-air

turbulence (CAT) (Nappo 2012). Studies have shown that such wave-breaking zones often co-

incide with critical levels (Grubi�sic and Smolarkiewicz (1997); Shutts and Gadian (1999)). The

detailed behavior of gravity waves in the vicinity of critical levels will be studied in chapter 2

and appendix A.

There are mainly two kinds of terrain-generated gravity waves, namely vertically-propagating

mountain waves and trapped lee waves (Nappo 2012). One signi�cant di�erence between them

is that trapped lee waves appear only on the downwind side of mountains. As will be discussed

in later chapters, the atmosphere may sometimes be unable to support wave propagation for

certain waves at some levels. As such waves propagate upward from the obstacle, wave reec-

tion will occur and cause the waves to be trapped in the lower atmosphere and extend only

horizontally (Nappo 2012). As a result, such waves usually have less impact on the high atmo-
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sphere.

Di�erent from trapped lee waves, vertically propagating mountain waves can extend both hor-

izontally and vertically, and hence have a much greater impact on the high atmosphere, since

transport of momentum and energy can reach much higher levels. In fact, mountain waves even

play an important role in modulating the atmospheric global circulation (McFarlane (1987);

Teixeira and Miranda (2004)).

1.1 Aims and Outline of this thesis

Orographically generated gravity waves inuence the atmosphere by exerting a drag force on

it, which acts to decelerate the mean ow. At the same time, horizontal momentum associated

with the mean ow is transported upward to the upper atmosphere. These processes are of

small scale and common in the atmosphere. In order to produce accurate numerical weather

predictions, such small-scale processes must be parametrized in large-scale meteorological mod-

els, due to the lack of su�cient resolution to capture their details. Parametrizations of these

processes have to be developed by �rst studying their detailed dynamics in idealized settings

and summarizing the variation of quantities that have an important impact on the atmosphere.

The main aim of this dissertation is to study the variations of important quantities associ-

ated with the mountain waves, such as the surface drag and momentum uxes for ow over

an idealized 3D isolated mountain, subject to di�erent wind pro�les, in both hydrostatic and

non-hydrostatic conditions. Non-hydrostatic e�ects associated with the wind pro�le will be

examined to see how they a�ect the variation of those relevant quantities. This is practically

important since the current parametrization schemes assume a hydrostatic atmosphere, which

is certainly not always valid. Moreover, these wind pro�les are designed speci�cally for investi-

gating the interactions between the gravity waves and critical levels, where the wave energy is

known to be signi�cantly absorbed and wave breaking may easily occur (Broad (1995); Shutts

(1995)).

In this chapter, most of the basic concepts, which are necessary for the discussion in the later

chapters, will be introduced. Those concepts include the group velocity and the dispersion

relation of the gravity waves, as well as the linear theory, which uses the important Boussi-

nesq approximation, and the derivation of the Taylor Goldstein equation. In fact, solving the

Taylor-Goldstein equation subject to di�erent types of ow is the main target of this study,

since all the information required can be obtained from the solution to this equation.

In chapter 2, an example using a 2D mountain ridge and a constant wind pro�le will be il-

lustrated, which allows us to classify the di�erent regimes of the solution space of the Taylor-

Goldstein equation. The discussion in the later chapters will be based on this classi�cation.

Next, two important quantities will be introduced, namely the surface drag and the vertical

momentum uxes. The discussion will �rst explain the physical meaning of these quantities by

looking at a 2D mountain ridge example, and then give their mathematical formulations.

Chapter 3 and 4 contain the main results of this study, which are divided into the hydrostatic
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and non-hydrostatic limits. Di�erent approaches have been used in each limit, such as deriving

exact analytic solutions, use of the WKB approximation, and di�erent numerical approaches.



can be calculated easily from the following relation
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where � x , � y and � z are the wave lengths of waves projected onto the three coordinate axes.

For simplicity, let us now consider a 2D case in the x-z plane. Fixing a particular position

(x0; z0) at time t = 0, the phase of the wave associated with this point is� 0 = kx0 + mz0.

The wave vector, lines of constant phase and total wave length are illustrated in �gure (1.1(a)).

As time t evolves, the lines with constant phase evolve continuously. The velocity of motion of

these lines de�nes the phase velocity, which is given by the total wave length divided by the

period of oscillation, and its direction is along the wave vector,
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(a)

Some Wave Mechanics 15

FIGURE 1.13 A ring wave on the surface of a calm pond moves with group velocityug, but

(b)

Figure 1.1: (a) A schematic diagram showing a wave with wave vector� . The red lines indicate lines

of constant phase. Note that� x and � z are both longer than � , and they satisfy the relation of equation

(1.4). (b) A schematic diagram showing a cross-section of a ring-wave on water.N small oscillations

are superposed on at the surface of the ring-wave, each with a di�erent phase speedc(kj ), j = 1, 2, 3, ...

, N. The velocity of the main ring-wave is given by ug, which is in fact the group velocity of the wave.

(Source: Nappo (2012))
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1.2.2 The group velocity and the dispersion relation

In fact, the phase of a wave simply represents a pattern of the oscillation. So, the phase velocity

refers to the movement of this pattern, but not to the movement of physical quantities. A more

interesting problem would be to understand how fast waves transport energy and momentum.

Indeed, wave energy and momentum must be carried with the group velocity of the wave, i.e.

the velocity of motion of the wave packets.

Usually, oscillations occur as a result of overlapping of waves with a band of wave numbers (or

wave vectors). In 1978, Lighthill observed that as a stone falls into a tank of water, a circular

ring-wave is generated in the water, which expands in the radial direction and spreads outward

(Nappo 2012). Moreover, as the circular ring-wave moves, small oscillatory phases are observed

on its surface, which appear to move at a di�erent velocity relative to the ring. The ring-wave,

indeed, consists of waves with a continuous band of wave numbers, which have di�erent phase

speeds on the water surface and hence cause the observed relative motion. However, those

small phases only appear on the surface of the ring-wave, but as they leave it, their amplitude

becomes zero. If the phase of a wave really carried energy, then the small phases should be sus-

tained without being destroyed. Therefore, the fact is that those small phases have no energy

content, while the energy is carried by the ring-wave. In fact, the appearance of the moving

ring-wave is due to the outward propagating energy, which allows the oscillations to appear and

take the shape of a water ring. Therefore, the velocity of the moving wave packet is de�ned to

be the group velocity.

The mathematical formulation of the group velocity will just be presented here without deriva-

tion. In general, for a 3D case, the oscillation frequency! can be expressed as a function of

wave numberski , i = 1 ; 2; 3. The group velocity vg = ( vgx; vgy; vgz) can be written as

vgx =
@!
@k



1.3 Linear Theory

The motions of the atmosphere under the assumption of inviscid adiabatic ow are governed

by the complicated primitive equations set (1.8), which contains 5 non-linear di�erential equa-

tions. Despite the fact that the primitive equations can capture many di�erent phenomena of

the atmosphere, they contain more formation than necessary, including unimportant wave phe-

nomena such as sound waves, which do not have any meteorological signi�cance. Such `noise'

embedded in the initial condition would cause numerical instability in meteorological models

(Lin 2007). Therefore, appropriate simpli�cations to the primitive equations are necessary for

studying the dynamics of the atmosphere. In this section, the result after those approximations

will be stated, but the derivation will not be presented. Interested readers may consult any

standard text books on atmospheric uid dynamics.

Du
Dt

� fv = �
1
�

@p
@x

(1.8a)

Dv
Dt

+ fu = �
1
�

Dv



p can be written as

� (x; y; z; t ) = � r (z) + � 0(x; y; z; t ); (1.9a)

p(x; y; z; t ) = pr (z) + p0(x; y; z; t ) (1.9b)

and that the magnitude of perturbations � 0 and p0 is much smaller than that of those reference

states � r and pr . Then, in the subsequent simpli�cations, we may neglect the e�ect of � 0 in

all equations, except the vertical momentum equation (Booker and Bretherton 1967). This

is because the atmosphere supports small-scale waves mainly via two mechanisms: one is the

compression force, and another is the buoyancy force (Lin (2007); Nappo (2012)). The com-

pression force arises from the compressibility of air, which produces acoustic waves with short

wave length, such as sound waves. Such short waves are regarded as `noise' in the investigation

of atmospheric dynamics. The buoyancy force is due to the contrast of density between an



is negligible, and then the �nal result is
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Chapter 2

Flow over a 2-D isolated mountain

In this chapter, we are going to investigate mathematically the formulation of terrain gen-

erated gravity waves and some relevant physical quantities, by illustrating an example of a

two-dimensional mountain ridge with a constant basic wind pro�le. Terrain generated gravity

waves a�ect the atmospheric circulation by transporting energy and momentum of the mean

ow from the lower atmosphere to the upper atmosphere and hence contribute to modify the

global circulation (McFarlane 1987). Several important quantities, such as the surface drag,

wave momentum ux, and the critical level will be formulated mathematically to facilitate the

discussion in later chapters, which will extend the investigation to 3-dimensional space.

As will be shown in the 2-D example, the ow may exhibit di�erent behaviors for di�erent

horizontal wave numbersk. In the case where the atmosphere is well strati�ed and the moun-

tain is broad and gentle, gravity waves can be supported by the buoyancy force and are capable

to propagate vertically in the atmosphere. However, if the atmosphere is weakly strati�ed, or

with strong basic wind, gravity waves may not be able to propagate vertically and have to be

decaying throughout the atmosphere (Nappo 2012). Such di�erent types of ow can be clas-

si�ed into di�erent regimes of the wave solution. The exploration of di�erent solution regimes

enable us to distinguish the criteria supporting the propagation of gravity waves.

2.1 Mountain pro�le

In this section, we consider a bell-shaped mountain (or the so calledWitch of Agnesi mountain

pro�le),

h(x) =
hm a2

x2 + a2 (2.1)

where hm is the mountain height and a is the horizontal scale of the mountain. This mountain

form had been widely used in many published books and papers (Lin (2007); Nappo (2012) and
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Teixeira and Miranda (2009)), because of the simple form of its Fourier transform,

ĥ(k) =
hm a

2
e�j kja; (2.2)

which will greatly facilitate the calculation of the wave solution. It turns out that the Fourier

transform of the orography pro�le plays an important role in the process of generating gravity

waves (Lin 2007). By Fourier analysis, we know that a periodic function on a real axis takes a

discrete wave spectrum, i.e. the constituent wave numbers are discrete. However, if the function

is not periodic, such as an isolated mountain pro�le in this case, the function is then composited

of a continuous band of wave numbersk (Nappo 2012). Hence, the steady state Taylor-Goldstein

equation has to be solved for each of these wave numbers in order to compute those relevant

quantities, such as the pressure perturbation, surface drag and vertical momentum uxes, etc.

Figure (2.1(a)(b)) shows the distribution of the bell-shaped mountain and the product of k and

ĥ(k). The importance of the function kĥ(k) will be discussed in the coming section.

(a) h(x) (b) kĥ(k)

Figure 2.1: (a) shows an isolated bell-shaped mountain located at the origin, with mountain

height hm equal 1 unit (or equivalently the scale is normalized by the height of the mountain),

while its scale width is a = 10 hm . (b) shows the distribution of kĥ(k), which has its maximum

at the wave number 1=a = 0 :1.

2.2 Di�erent regimes of solution

In chapter 1, by taking the Fourier transform of equation (1.12), we have derived the Taylor-

Goldstein equation. In this subsection, a detailed solving process of equation (1.14) for ^w(k),

which is the Fourier transform of the vertical velocity perturbation w0, will be presented. The

procedure follows the idea in the book by Lin (2007).

Consider now the 2D steady-state form of the Taylor-Goldstein equation (1.14):

ŵ00(z) + ( l(z)2 � k2)ŵ(z) = 0 (2.3)
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With the above equation, now it is an appropriate time to distinguish the di�erent regimes of

the solution w0(z). From equation (2.8), given a particular value of k, the contribution of the

corresponding wave componenteikx is weighted by the factor kĥ(k), which is equation (2.2)

multiplied by k. This implies that the total budget of a particular horizontal wave number k is

governed by the Fourier transform of the orography pro�le. Thus, if most of the k contributed

from the orography is bigger than l, then the second integral in equation (2.8) dominates. This

is referred to as the irrotational (potential) ow limit. Conversely, if the k contributed from

the orography is mostly smaller than l, then the �rst integral in equation (2.8) dominates: this

is the hydrostatic ow limit. Figure (2.1(b)) shows the distribution of kĥ(k) as a function of k,

which has a maximum value ofhm =(2e) at k = 1=a and decays exponentially afterwards. Thus,

the value of 1=a de�nes the scale of the horizontal wave number. Therefore, a condition for the

ow to be hydrostatic is

1
a

� l �
N
jUj

or equivalently,
Na
jUj

� 1 (2.9)

And we de�ne the non-dimensional constant â = Na=jUj. Therefore, the hydrostatic assump-

tion is generally valid if â � 1 (Teixeira et al. (2004); Teixeira and Miranda (2004)).

It turns out in these two limits the vertical streamline displacement of the ow � (x; z) can

be integrated exactly. First, we investigate the behavior of the ow when it is in the irrota-

tional ow regime by assuming l � k. In this limit, we can assume the �rst integral can be

neglected andl = 0.

w0(x; z) � 2Re
�
U

Z 1

0
ik ĥ(k)e� kzeikx dk

�

= ( hm a) Re
�
U

Z 1

0
ike� kzeikx e� kadk

�
(2.10)

The vertical streamline displacement � (x; z) is de�ned by the equation w0 = U @�
@x (Lin (2007);

Nappo (2012)). The corresponding Fourier transform gives

�̂ (k; z) =
ŵ(k; z)

ikU
(2.11)

By using the above relation, � (x; z) can be calculated as (Lin (2007); Nappo (2012))

� (x; z) = hm aRe
� Z 1

0
e� k(z+ a� ix )dk

�
=



equation (2.8) can be neglected. Thus,w0(x; z) and � (x; z) can be integrated as

w0(x; z) � 2Re
�
U

Z 1

0
ik

�
hm a

2

�
e� kaeilz eikx dk

�
(2.13)

� (x; z) � hm aRe
� Z 1

0
eilz e� k(a� ix )dk

�
=

hm a coslz � x sin lz
x2 + ( z + a)2 : (2.14)

Figure(2.2) shows the ow trajectories and pressure perturbation under di�erent regimes.

2.3 The surface drag and momentum uxes: conceptually

Figure 2.2 shows the streamlines� (x; z) and the pressure perturbation p0(x; z) in the di�er-

ent ow regimes described in the previous section. As shown in �gure (2.2(a)), a important

di�erence between the irrotational ow and the other two types of ow is that the pressure

distribution of irrotational ow is symmetric on both upstream and downstream sides of the

mountain, while the pressure distribution is mostly asymmetric in the hydrostatic limit. It

turns out that this asymmetric distribution of pressure plays a crucial role in the generation of

the surface drag force and wave momentum uxes.

The formation of the drag force can be understood by using some basic mechanics (Teixeira

et al. (2004); Teixeira and Miranda (2004); Nappo (2012)). The uneven distribution of pressure

on two sides of the mountain contributes to a pressure-gradient force exerted to the obstacle

by the ow (Lin (2007); Teixeira et al. (2004)). Then the famous Newton's third law of motion

states that,

For any force exerted by an object A on an object B, there is a reaction force

exerted by object B on object A at the same time, with the same magnitude

but opposite direction.

Therefore, the existence of a surface pressure gradient force on the mountain means that there

is a reaction drag force exerted on the ow by the mountain. This drag force creates ow

perturbation patterns which carry mean ow horizontal momentum and propagate upwards

(Nappo 2012). The stronger the drag force the ow experiences, the greater the upward propa-

gating momentum ux is. As a result, the drag force represents the total amount of horizontal

momentum being able to be transported vertically to the upper atmosphere in the form of

gravity waves (Teixeira and Miranda 2009). As we can see from �gure(2.2(a)), gravity waves

do not appear (the ow amplitude decays exponentially with height) in the case of irrotational

potential ow due to the absence of the pressure di�erence on the two sides of the mountain

(and hence the drag force). For the other two types of ow, wavy patterns of the streamlines

and pressure can be clearly observed in the vertical direction. Associated with them are strong

surface pressure gradients and surface drag forces, which are consistent with the above analysis.

These can be veri�ed easily in �gure 2.2(b) and 2.2(c).
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(a) Irrotational ow: a = hm = 1km, N = 0 :01, U = 100ms� 1

(b) Intermediate: a = hm = 1km, N = 0 :01, U = 10ms � 1

(c) Hydrostatic ow: a = 10km, hm = 1km, N = 0 :01, U = 10ms � 1

Figure 2.2: (a) shows a contour plot of the pressure perturbation (colored lines), and trajectories

of the ow (black lines) in the irrotational potential ow. The ow is evanescent above the

mountain. (b)(c) show �lled contour plots of the pressure perturbation and trajectories of the



Mathematically, since the quantity l is actually the total wave number, while k is the

horizontal wave number, the assumption that l � k implies immediately that the total wave

vector is almost vertically orientated. Moreover, the stationary nature of the mountain wave

can be explained by the fact that the existence of a drag force arises from the surface orography,

so the gravity wave patterns have to remain attached to the orography (which is their source).

2.4 The surface drag and momentum uxes: mathematically

With the conceptual discussion of the surface drag and momentum uxes in the previous section,

in this section the mathematical formulation of these quantities will be illustrated. The approach

follows books by Lin (2007) and Nappo (2012).

Recall that the surface dragD is created due to the net pressure gradient force resulting from

the asymmetric pressure distribution on the orographic pro�le. One equation directly related

with the pressure gradient force is the horizontal momentum equation, i.e. the 2D version of

equation (1.12a)

U
@u
@x

+ w0@U
@z

+
1
� r

@p0

@x



In the above equation (2.20), the R.H.S is the integral of the product of the pressure and the

elevation gradient, which is the net pressure gradient force experienced by the orography; while

the L.H.S is the integral of the product of the horizontal momentum and vertical velocity, which

is the stress force experienced by the mean ow. Therefore, we can see that equation(2.20) is

in fact a statement of Newton's third law, as explained in the previous section.

Thus, the formal surface drag force (atz = 0) is de�ned as

D = �
Z 1

�1
� r u0w0dx =

Z 1

�1
p0dh

dx
dx; (2.21)

which is actually equation (2.20).

Equation (2.20) de�nes the surface drag in terms of the pressure gradient force at the surface.

Despite the fact that the R.H.S loses its meaning above the surface, the quantity on the left

hand side the L.H.S does not. However, this limitation can be avoided by replacingh by � ,

i.e. the vertical streamline displacement of the ow. Moreover, the product of � r u0 and w0

has the physical meaning of vertical advection of horizontal momentum. Thus, integrating this

quantity over the entire real axis at any level describes the momentum ux at that level. Thus

the momentum ux can be formulated as

M = �
Z 1

�1
� r u0w0dx (2.22)

From this de�nition we can see immediately that the momentum ux at the surface gives exactly

the surface drag. In other words, this again demonstrates that the drag force gives the total

amount the horizontal momentum ux that can be produced by the ow over the orography

(Teixeira and Miranda 2009).

2.5 Height dependent Scorer Parameter

In the previous sections, we only focused on the situation when both the basic wind pro�leU(z)

and the Brunt-V•ais•al•a frequency N are constant with respect to height, i.e. a constant Scorer

parameter. However, reality is not always that simple. The basic wind pro�le can be easily

altered by a lot of factors, such as variations of the surface temperature, or orographic distri-

bution. In this situation, the Taylor-Goldstein equation (2.3) cannot be solved analytically in

general for arbitrary wind pro�les. Hence, numerical calculations are necessary for investigating

the behavior of the atmospheric motions (Grisogono (1994); Shutts (1995); Shutts and Gadian

(1999)).

Despite this di�culty, the behavior can still be analyzed using reasonable simpli�cations and

assumptions. A common approach is to assume that the variations of the Scorer parameter

(2:4) in the vertical direction are slow. Recall that when the Scorer parameterl is constant with
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height, equation (2.3) admits wave solutions (2.7), in which the wave number ism =
p

l



2-D and 3-D cases. In a 2-D situation, a critical level appears only when the basic windU(z)

is zero at some heightzc, while in the 3-D case, it refers to the levels where the vectorU is

perpendicular to the horizontal wave vector numberk. In fact, the de�nition of a critical level in

the 3-D case is more general, in the sense that the 2-D de�nition can be viewed as a restriction

by reduction of dimensions. Following this point of view, it should be noted that the critical

level in a 2-D situation is k-independent since the horizontal dimension contains only the x

direction, so the dot product U � k can be zero if and only ifU(z) = 0. But in a 3D situation,

the critical level zc is k-dependent, except whenU (z) = 0. Thus, Broad (1995) designates the

critical level zc at which U (z) = 0 as a `total critical levels' in the 3-D situation. Moreover,

with 3D orography, at any height z, there is always some wave vectork perpendicular to the

basic wind U(z). This means that every level in the atmosphere is the critical level for a certain

wave vectork. So this contributes to the so-called `critical layer', as opposed to discrete critical

levels. Moreover, the k-dependent property of the critical levels contributes to a directional

�ltering e�ect of critical layers (Broad (1995); Shutts (1995)). In chapter 3, a more detailed

discussion about the e�ect of critical levels in a 3-D situation will be presented.

Figure 2.3: shows the behavior of the real (blue) and imaginary (green) parts of ^w(z) around

a critical level zc for a particular wave vector k in a 3D situation. The wave becomes highly

oscillatory as it approacheszc (in fact its frequency approaches in�nity), and the amplitude of

the wave shows a shape drop (by a factor ofe� �� , with � = 1 :4234 and ~Ri = 2 :276 in this

�gure) once it passes throughzc. Both the units for the x and y-axis in this �gure are arbitrary.
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Chapter 3

Flow Over a 3-D Isolated Mountain

in the Hydrostatic Regime

In this chapter, we are going to investigate mountain waves generated by ow over a 3-D isolated

mountain in the hydrostatic limit. Two simple height-dependent wind pro�les will be examined:

a linear wind pro�le with directional shear and a turning wind pro�le. Reasons for choosing

these wind pro�les are that, �rst, they are simple and can be described easily by elementary

functions, and second, the directionality of the wind pro�le allows the existence of a critical

layer, i.e. a layer of the atmosphere in which any level is a critical level for a certain wave

vector k. Two methods, namely the WKB approximation and a numerical method developed

by Siversten (1972), will be adopted to solve the Taylor-Goldstein equation, and their results

will be presented and compared.

3.1 Setting of the problem

An inviscid, irrotational, steady ow can be captured by the steady-state version of the lin-

earized 3-D Boussinesq equations (1.12), which can be used to derive the steady-state Taylor-

Goldstein equation,

ŵ00(z) +
�

N 2k2
12

(Uk1 + V k2)2 �
U



If the static stability coe�cient N is real and varies gently with height as well asU , then the

consequence of this assumption is that any wave being considered can freely propagate vertically

in the atmosphere, i.e. the associated solution of ^w(z) must be in the form of a propagating

wave at any level of the atmosphere. Therefore, wave reection phenomenon does not occur.

With this observation, it is possible to include only waves with upward propagating energy.

The full atmospheric setting will be discussed next together with consideration of the critical

layer and the wind pro�le.

3.1.1 The critical layer

For ow over a 3-D isolated mountain, given a certain wave vector, the associated critical level is

de�ned as the altitude where the basic ow U is perpendicular to the horizontal wave vectork.

The e�ect of the critical level is that the wave energy and momentum is e�ectively attenuated

and absorbed by a factor ofe� �� into the mean wind without being reected (Grubi�sic and

Smolarkiewicz 1997), as discussed in chapter 2. Therefore, if the direction of the basic wind

pro�le turns with height, then it induces a continuous region in the atmosphere, in which each

level is a critical level for a certain horizontal wave vector k (Shutts 1998). This region is

the critical layer, as explained in chapter 2. Thus, the existence of a directional shear will

be a necessary condition for the occurrence of such a layer. The e�ect of such a layer is well

summarized in the paper by Broad (1995), where it is shown

U (z) �
d� (z)

dz
= 0 ; (3.4)

where � (z) = ( � x (z); � y(z); 0) is the wave stress vector, which is a generalized 3D version of the

wave stress de�ned inside the integral of equation (2.22).

Equation (3.4) states that the vertical gradient of the wave stress vector (and hence that of the

vertical momentum ux vector) must be perpendicular to the mean wind U (z). This means that

there is a �ltering e�ect of vertical momentum ux occurring along the direction perpendicular

to the mean wind, which is the so-called `directional �ltering e�ect' of the critical layer. Such a

�ltering e�ect throughout the critical layer is the interaction between the gravity waves and the

mean wind (i.e. the deposition of wave energy and momentum) (Miranda and James (1992);

Hines (1988); Shutts (1998)). For simplicity, we will only consider the situation where each

horizontal wave vector k can have at most one critical level in the atmosphere, which means

that the turning angle of the mean wind cannot exceed 180� .

3.1.2 The wind pro�les

As mentioned previously, two wind pro�les will be examined in this chapter. The �rst one is a

linear wind pro�le with directional shear, which can be formulated as

U linear (z) = ( U(z); V (z)) = ( U0 � �z; U 0); (3.5)

where � is the shear strength andU0 is the surface wind magnitude for each component. Since

U linear (0) at the surface has bothx and y components equal toU0, this basic wind makes an
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angle of �= 4 relative to the x-axis at the surface, and this angle approaches� at in�nity. But

due to computational limitations, the domain being considered must be �nite, and hence the

wind can only turn by a certain angle � max at the top of the domain zmax , as shown in �g-

ure (3.1(a)). Nevertheless, regardless of computational limitations, the atmosphere can still be

considered as an in�nitely extended troposphere with a height-independent stability constantN .

The second wind pro�le being considered is the turning wind pro�le,

U turning (z) = ( U(z); V (z)) = ( U0 cos (�z ); U0 sin(�z )) ; (3.6)

where � is the rate of turning of the basic wind with respect to height and U0 is the wind

magnitude. As required, the wind can at most turn by an angle of� from 0 at the surface to

� at the top of the computational domain zmax , as shown in �gure (3.1(b)).

(a) Linear wind pro�le (b) Turning wind pro�le

Figure 3.1: (a) shows a schematic diagram of the linear wind pro�le. (b) shows a schematic diagram

of the turning wind pro�le.

3.1.3 The mountain pro�le

Similar to the case of a 2-D isolated mountain, the mountain being considered in this chapter

is a 3-D circular bell-shaped mountain (i.e.Witch of Agnesi mountain pro�le),

h(x; y) =
hm

(1 + ( x=a)2 + ( y=a)2)3=2
(3.7)

where hm





The corresponding vertical wave numberm can be calculated as

m = � i
w0

w

= ( sgn)�
1

z � U0 (k1+ k2 )
�k 1

�
i
2

1

z � U0 (k1+ k2 )
�k 1

: (3.12)

In fact, given a horizontal wave vector k = ( k1; k2



The lower boundary condition is implicitly included in the solution form (3.14), so the boundary

condition for (3.15) must be consistent with the upper radiation boundary condition.

Boundary condition

In fact, the correct boundary condition for (3.15) depends on the existence of the critical level.

Fixing a particular wave number k, if a critical level does not exist, or it exists far away from the

calculation domain, then we may assume thatm reaches a constant at the top of the calculation

domain, and the curvature of U is basically 0, so that m0 = 0 and the curvature term of (3.15)

can be dropped. Thus,

m(zmax ) =
Nk12

U(zmax )k1 + V(zmax )k2
(3.16)

On the other hand, if a critical level appears within the domain or near the top of the domain,

then the asymptotic behavior of m must be used. From appendix A, we know thatŵ becomes

highly oscillatory as z approacheszc, which means that m ! 1 as z ! zc. However, in�nity
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Error analysis

Since this numerical method solves for the vertical wave numberm, instead of ŵ, the error

analysis will be based on the error associated withm. A wave vector k with its critical level zc

located near the surface is chosen. The integration ofm



Generally speaking, the WKB method is an asymptotic series expansion for solving linear di�er-

ential equations with spatially-dependent coe�cients, e.g. a height-dependent Scorer parameter

l(z). This method is widely used in many di�erent areas, such as wave mechanics, quantum



by de�ning Z = "z and sod=dz= "d=dZ (Teixeira et al. 2004), which then yields

"2 •̂w +

"
N 2k2

12

(Uk1 + V k2)2 � "2
•Uk1 + •V k2

Uk1 + V k2

#

ŵ = 0 ; (3.23)

where d=dZ is denoted by a dot over the variable. Assume the solution of ^w(z) takes the form

of equation (3.22)

ŵ(Z ) = ŵ(0) exp

0

@1
�

1X

j =0

i
Z Z

0
� j mj (� )d�

1

A ; (3.24)

where the point of reference is taken to be at the surfacez = 0, so that the lower boundary

condition can be naturally included. Substitute equation (3.24) into equation (3.23) and group

terms of di�erent powers of � and " . As both � , " ! 0, the dominant behavior is

�
"2

� 2 m2
0(z) +

N 2k2
12

(Uk1 + V k2)2 = 0 : (3.25)

We assume that the term N 2k2
12

(Uk1+ V k2 )2 is large compared with " and � within the calculation

domain. Then equation (3.25) is valid if and only if " and � are of the same order. Thus, we

may set � = " , which then yields

m�
0 = �

Nk12

Uk1 + V k2
: (3.26)



propagating energy. Therefore, the desired branchmi is chosen as

m0 =
Nk12

Uk1 + V k2
(3.29a)
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which is consistent with the result of papers by Teixeira et al. (2004), Teixeira and Miranda

(2009). Thus the WKB solution for ŵ(Z ) valid up to 2-nd order is

ŵ(Z ) = ŵ(0) exp
�

i
"

Z Z

0

�
m0(� ) + "m 1(� ) + "2m2







where � is assumed to be arbitrarily small, so the dominant behavior ofm0 has been used in

the second last equality (G(� ) � G0(zc)�e i� for � on C2). It turns out that this integral over C2

is independent of the radius� . Similarly, if G0(zc) < 0, the contour goes above the singularity

(i.e. the red curve must be used), and hence the integral value becomes� � Nk 12
G0(zc ) . Therefore,

we can conclude that asz goes acrosszc

Im( I 0) = �
Nk12

jG0(zc)j
= � ~Ri

0:5
; (3.39)

where ~Ri (de�ned in appendix A) has the same scale as the Richardson numberRi .

Besides, expanding the exact factor obtained in appendix A using the Binomial theorem yields

�� = �
p

~Ri � 0:25 = �
�

~Ri
0:5

�
1

8 ~Ri
0:5 + :::

�
(3.40)

Thus the contribution of m2 in the contour integral will give the factor � �
8 ~Ri

0:5 (see the paper by

Teixeira and Miranda (2009)), which is the same as the second term in (3.40). In fact, higher-

order corrections to the amplitude factor can be obtained by the even-order terms ofmi , i.e.

m0; m2; m4; :::. Moreover, (3.40) implies that a �nite truncation will be a good approximation

if ~Ri � 1=8 (see the paper by Whitten and Riegel (1973)). In general, we are only interested

in ~Ri > 1=4, since otherwise there would be dynamical instability and the mountain waves

would break down. Therefore, the above analysis shows that the WKB approximation is able

to capture the behavior of the magnitude modi�cation due to the �ltering e�ect of critical

levels. Hence, the validity of this method acrosszc is ensured.
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3.3 Results and comparison

With the two methods described in the last section, we are now ready to solve equation (3.3).

The numerical results are assumed to be more accurate than the WKB method, and will serve

as a reference for the comparison with the WKB approximation. In this section, calculation

results of the following quantities for di�erent wind pro�les will be discussed and compared,

namely the surface dragD = ( Dx ; Dy) and the wave momentum uxes M = ( M x ; M y). The

numerical integrations of these quantities are approximated by using the composite trapezoidal

rule over the polar coordinate, with � � = 2 �= 1007.

� Surface dragD

Similar to the de�nition of the surface drag in the 2-D case (2.21), the surface drag for

ow over a 3-D isolated mountain is also de�ned as the integral of the pressure gradient

force over the orography. However, it becomes a vector instead of a scalar.

D =
Z 1

�1



� Momentum uxes M

Using Parseval's theorem, the 3-D momentum uxes can be calculated as,

M x = � 4� 2� 0

Z 1

�1

Z 1

�1
û� ŵ dk1dk2 (3.46a)

M4� 4� 2 4.637 Td [(0)]TJ/F50 10.9091 Tf 6.55 16.47.78Td [(Z)]TJ/F25 7.9701 Tf 10.909 -3.154358 -1.637v 8.485 0 Td [(4)]TJTJ/7901



3.3.1 Linear wind pro�le



(a) x-momentum ux (Linear wind) : Ri = 1 (b) y-momentum ux (Linear wind): Ri = 1

(c) x-momentum ux (Linear wind): Ri = 0 :35 (d) y-momentum ux (Linear wind): Ri = 0 :35

Figure 3.6: shows the x (left column) and y (right column) components of the momentum ux for the

linear wind pro�le with Ri = 1 on the �rst row and Ri = 0 :35 on the second row. The blue solid lines

are WKB solutions, while the green dashed lines are numerical solutions. The WKB solution for ^w is

extended to 3rd-order in " to achieve 2nd-order accuracy in the momentum uxes.

As shown in the above �gures, the momentum uxes in the case of a linear wind pro�le show a

general decaying trend with z. This is de�nitely due to the e�ect of critical levels, at which a

large portion of the wave energy of a certain wave number is attenuated and absorbed, hence

causing a large drop of wave amplitude by a factor ofe� �� . As the wind direction turns with

height, a greater and greater fraction of the wave numbers have been directionally �ltered and

hence the total momentum uxes drop signi�cantly as z increases.

Both normalized ux components take values slightly lower than 1 at the surface. This is

also explained by the fact that the wind shear acts to reduce the surface drag in the case of a

linear wind pro�le. Thus, the smaller Ri is, the smaller the momentum uxes at the surface,

as shown clearly in �gure (3.6(a)) and (3.6(c)).

For the linear wind pro�le, the WKB method provides a accurate solution for the momentum

ux, even when Ri � 1 is not too small, e.g. Ri � 1 = 1 in the �rst row of �gure (3.6). When

Ri = 0 :35, the surface drag computed with the numerical solution becomes lower than that

computed with the WKB method. This is consistent with the di�erence in surface drag variation
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shown in �gure (3.5).



For the momentum uxes, the overall distribution of the x-component is similar to that of the



Chapter 4

Flow Over a 3-D Isolated Mountain

in the Non-hydrostatic Regime

In the last chapter, an investigation was carried out in the hydrostatic framework, in which the

magnitude of wave numbers forming the orography pro�le were much smaller than the Scorer

parameter l(z). This condition is formally valid when the non-dimensional parameter â satis�es

â = Na
jU0 j � 1, which means that the width of the mountain a is large and(or) the mean ow

velocity jU0j is slow. The consequence is that the term� k2
12 can be dropped in (3.1) and waves

can freely propagate in the atmosphere without being reected. In this chapter, this condition

will be relaxed by considering narrower mountains or faster mean winds. Hence the� k2
12 term

is not negligible in (3.1). This creates regions where vertical wave propagation is prohibited and

only evanescent waves exist, and at the same time wave reection e�ects have to be considered.

The associated di�culty is that both the WKB approximation and the numerical method

proposed by Siversten (1972) face technical problems in solving for ^w(z). The WKB method

fails in the vicinity of classical turning points, where propagating waves become evanescent, due

to the fact that l2(z) � k2
12 becomes zero and changes its sign, and hence its magnitude cannot

be regarded as slowly varying, which clearly conicts with the typical assumption of the WKB

approximation. Solution to this problem up to �rst-order is possible by using the so-called

connection formulas, which involve the use of Airy functions (related with the modi�ed Bessel

function of order 1/3). However, due to the fact that extension of this method to higher orders

must be required for the calculation of the momentum uxes with the required accuracy, this

approach is not investigated in this study.

Again, the same two wind pro�les will be studied, which are the linear and the turning wind

pro�le. In fact, an exact solution for the linear wind pro�le in the case of a 2D mountain ridge

had been studied by Wurtele et al. (1987), which can actually be easily extended to the situa-

tion of a linear wind pro�le in ow over a 3D orography with directional shear. The derivation

will be illustrated in detail in this chapter.

For the turning wind pro�le, due to the phenomenon of wave reection, the inclusion of a
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second layer of atmosphere (e.g. the stratosphere), where the wind shear and curvature are

assumed to be zero, will be important for the well-posedness of the problem. The detailed



Following the approach by Wurtele et al., �rst, we restrict our attention on one side of the

critical level. Without loss of generality, we consider z > z c. Then, we transform the point of

reference to the critical level by letting � = z � U0 (k1+ k2 )
�k 1

> 0. Hence, above thezc, equation

(4.1) can be rewritten as

d2ŵ
dz2 +

0

B
@

N 2k2
12

(�k 1 )2

�
U0 (k1+ k2 )

�k 1
� z

� 2 � k2
12

1

C
A ŵ = 0

d2ŵ
d� 2 +

 
~Ri
� 2 � k2

12

!

ŵ =0 ; (4.3)

where ~Ri = N 2k2
12

(�k 1 )2 follows the same de�nition as (A.5) in appendix A. Equation (4.3) in fact

takes the same form as equation (2) in the paper by Wurtele et al. (1987), which has a general

solution of the form

ŵ(� > 0) = C1
p

�L i� (k12� ) + C2
p

�K i� (k12� ); (4.4)

where C1, C2 are constants to be determined,� =
p

~Ri � 0:25, and



that we only consider z > z c. For







Re(m) =  0(z) = 0 for z > z c. In fact, Re(m) =  0(z) means that the vertical momentum

ux can be non-zero only when there is some phase variation of the complex argument of ^w(z)

with respect to z, as shown by the real and imaginary parts ofŵ in the region z < z c in �gure

(4.2(b)). Thus, �xing a particular wave number k, above the corresponding critical levelzc, its

contribution to the momentum ux is 0. This is, in fact, due to the reection of waves in the

upper atmospherez > z c, which kills o� the term including of L i� and balances out the upward

transport of horizontal momentum. In other words, this is the result of wave interference.

! !"# $ $"# % %"# &
!

!"#

$

$"#

(a) Square of the Scorer parameter l2

! !"# $ $"# % %"# &

(b) Real and imaginary parts of ŵ(z)

Figure 4.2: (a) shows the distribution of the square of the Scorer parameterl2(z). The vertical black

solid line indicates the critical level, the red horizontal line indicates the value ofk2
12. The two vertical

dashed lines are the levels where transitions from the wave propagating regime to the evanescent regime

occur (a broad wave propagating zone is located at the centre of the �gure, while two narrow evanescent

zones are located on the two sides of the �gure). (b) shows the real (blue) and imaginary (green) parts

of ŵ(z



ciated with this wave number is all reected by the upper atmosphere due to non-hydrostatic

e�ects. In fact, this e�ect has a large impact on the surface drag and the momentum uxes, as

will be discussed in a later section.

Figure 4.3: shows the plane of horizontal wave numbersk, which is divided into three di�erent regions

according to the height of the critical level. For the blue region, if a certain wave vector has its critical

level located in this region, then the associatedzc must be within the calculation domain, as shown by

the blue arrow (which indicates the wave number) and the blue dashed line (which indicates the wind

direction perpendicular to the wave number). For the green region, if a certain wave number has its

associatedzc in this region, then zc must be above the calculation domain. Similarly, if some wave

numbers have their perpendicular direction lying within the orange region, then their critical levels will

be below the surface, as shown by the orange arrow and dashed line.
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4.2.1 Results and discussion

Recall from chapter 3, that the surface drag and momentum ux had been expressed by (3.42)



enhancement in the x-component and a strong drag reduction in the y-component. Thirdly, both

x and y components show strong drag reduction as the system becomes more non-hydrostatic.

Fourthly, as the system becomes more non-hydrostatic, the surface drag varies withRi � 1



Momentum uxes

0 0.5 1 1.5 2 2.5 3

(a) M x =Mx 0 ; Ri = 1 with di�erent ^ a
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0.8

1

1.2

(b) M y =My 0 ; Ri = 1 with di�erent ^ a

(c) M x =M



dashed line, while the y-component shows a signi�cant reduction when ^a = 4 (which is actually

still true for even larger â), and the reduction is further enhanced whenâ gets smaller. This



that, in the example illustrated, one critical level appears near the surface, while another critical

level is about to appear at the top of the calculation domain. Therefore, to avoid the appearance

of multiple critical levels, it is necessary to include another layer of atmosphere, in which the

basic wind stops turning. The simplest choice is a pro�le with constant wind. To guarantee

continuity of the basic wind, the basic wind U(z > H ) in the second layer is set to be equal

to the wind at the top of the �rst layer ( z = H ), as shown in �gure(4.6(b)). Additionally, for

simplicity, it is assumed that the stability coe�cient N is the same in both layers.

(a) square of the Scorer parameter l2(z) (b) 3D schematic diagram of wind pro�le

Figure 4.6: (a) shows the periodic nature of the square of the Scorer parameterl2(z). The black vertical

line on the left denotes the bottom of the domain, while the one on the right denotes the top of the

domain. A critical level is located near the bottom of the domain (indicated by the vertical red dashed

line), while another critical level is about to appear at the top of the domain (indicated by the vertical

blue dashed line). (b) shows a 3D schematic diagram of the wind pro�le in the two-layer atmosphere. In

the second layer, the wind is constant and equals the wind at the top of the �rst layer, so that continuity

of the basic wind is guaranteed.

4.3.2 Numerical method

As mentioned above, in the non-hydrostatic limit, the vertical wave number of the wavesm suf-

fers from severe blow-up behaviors as the wave solution ^w changes from evanestent to vertically-

propagating or vice-versa. Such blow-up behaviors makes the numerical method proposed by

Siversten (1972) hard to implement. Therefore, an alternative numerical method must be used.

Here, a numerical method will be proposed to solve the 3D Taylor-Goldstein equation (3.1)

directly for ŵ(z).

This is facilitated by the fact that if the basic wind turns by an angle of � within the cal-

culation domain, then any horizontal wave number k will have exactly one critical level within

the domain. Then, with the aid of the asymptotic expressions forŵ and their derivatives near

the critical level, as derived in appendix A, we are able to solve the Taylor-Goldstein equation

as an initial-value problem, starting from the critical level.

Using the formula for the wind pro�le (3.6), the non-hydrostatic steady-state Taylor-Goldstein
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equation can be simpli�ed as,

ŵ00(z) +
�

N 2



where C is some constant to be determined andm is de�ned as

m



On solving, the three coe�cients are

A = i ĥU0khU



4.3.4 Results and discussion

Surface drag
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(a) Normalized x-component the surface drag
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(b) Normalized y-component the surface drag

Figure 4.7: shows the two components of the normalized surface drag as a function ofRi � 1. All

values are normalized by the surface drag in the hydrostatic limit, with Ri = 1 . Figure (a) shows the

distribution of the x-component for di�erent values of â



Momentum uxes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) M x =Mx 0 for Ri = 1 with di�erent ^ a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) M y =Mx 0 for Ri = 1 with di�erent ^ a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) M x =Mx 0 for Ri = 0 :5 with di�erent ^a (d) M y =Mx 0 for Ri = 0 :5 with di�erent ^a

Figure 4.8: show the two components of the normalized momentum ux as a function of�z=� . All

values are normalized by the surface drag in the hydrostatic limit, with Ri = 1 . The left column ((a),

(c)) shows the distribution of the x-component with for values of â, while the right column ((b), (d))

shows the y-component instead. The �rst row has a Richardson numberRi =1, while the second row

has Ri = 0 :5. Symbols are used to denote di�erent values of ^a, i.e. circles indicate â = 1 :25; triangles

indicate â = 2; while diamonds indicate â = 4. The red dashed curve in each �gure is the distribution

of the momentum ux in the hydrostatic limit for the same values of Ri , which serves as a reference to

assess non-hydrostatic e�ects.

For the turning wind pro�le, non-hydrostatic e�ects have a large impact on the two components

of the momentum ux pro�les, showing a signi�cant reduction of the surface drag as â increases.

For the x-component, the changes are mainly in the momentum ux values near the surface,

while the entire distribution retains its shape. The fractional decrease in magnitude is similar

for the two values of Ri , being in both cases around 55%. Compared to the case of a linear

wind pro�le with directional shear, the slight surface drag enhancements that were observed

when â = 4 are absent here for bothRi values.

56



However, for the y-component, besides the drop in the surface drag, non-hydrostatic e�ects

lead to a signi�cant modi�cation in the distribution of the momentum ux. When Ri = 1,

the y-component of the surface drag in the hydrostatic limit is about 0. So, the decrease

of the drag due to non-hydrostatic e�ects (when â becomes small, e.g 2 or 1.25) leads to a

negative y-component of the momentum ux near the surface. The y-momentum ux value

then increases withz and reaches a positive maximum at around the middle of the calculation

domain, as shown in �gure (4.8(b)). However, whenRi = 0 :5, since the y-component of the

surface drag increases to a larger positive value in the hydrostatic limit, then the decrease of

the drag value due to non-hydrostatic e�ects cannot bring its value down to below 0. So, the

overall y-component of the momentum ux remains positive throughout the atmosphere.

Moreover, compared to the corresponding result for the linear wind pro�le, the y-component

of the momentum ux does not show a signi�cant drop by a factor of about 1=
p

2. This is

because the turning wind pro�le turns by an angle of � within the �rst layer of the atmosphere,

so any wave numberk has one critical level within the domain, which protects the upward-

propagating waves from the interference due to downward propagating waves. Hence, if ^a is

large, e.g. â � 4, then the momentum ux pro�le tends to the hydrostatic limit, indicated by

the red dashed curves in �gures (4.8(b)) and (4.8(d)). This also corroborates that the signi�cant

reduction in the y-component of the momentum ux in the case of the linear wind pro�le is due

to the critical-level-free zone in the wave number plane, i.e. the orange region in �gure (4.3),

in which all of the y-component momentum ux is reected back to the surface by downward

propagating waves.
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Chapter 5

Concluding remarks and future work

This dissertation explored the behaviors of two important quantities, namely the momentum

ux and surface drag associated with mountain waves generated by an isolated mountain, in

both the hydrostatic and non-hydrostatic regimes. In this chapter, the main �ndings will be

summarized in separate sections, and then followed by a description of possible future works.

5.1 Analysis of methods

Various approaches have been investigated and successfully applied. Assuming non-rotating,

linearized ow with the Boussinesq approximation, the exact solution to the mountain wave

problem for a linear wind pro�le with directional shear in the non-hydrostatic limit has been

successfully derived, which in theory is also valid in the hydrostatic regime by assuming that

the magnitude of the horizontal wave vector k12 is small. The exact solution is based on the

fundamental work by McFarlane (1987). The WKB approximation, which is only valid in hy-

drostatic limit, has been examined following the approach by Teixeira and Miranda (2004), and

similar results were successfully reproduced. The numerical method developed by Siversten

(1972) was also successfully manipulated and the results showed excellent agreement with the

WKB approximation in the case of a linear wind pro�le. With the aid of the exact solution for

the linear wind pro�le, the accuracy of the numerical method has been demonstrated, and hence

this method could be safely applied to the turning wind pro�le case. In the non-hydrostatic



5.2 Calculation results

5.2.1 Hydrostatic regime

In the hydrostatic limit, variations of the surface drag as a function of Ri � 1 for the two wind

pro�les exhibit di�erent behaviors. For the linear wind pro�le, both components of the surface

drag keep decreasing throughout the range ofRi � 1 from 0 to 4; while for the turning wind

pro�le the surface drag shows an increasing trend asRi � 1 increases. This di�erence is in fact



For the turning wind pro�le, a second layer of atmosphere is added on top of the original

calculation domain, which has constant static stability, density and basic wind. The basic wind

velocity in this additional layer takes the same value as at the top of the �rst layer so that con-

tinuity of the wind pro�le is guaranteed. Due to the periodicity of occurrence of critical levels

with height in the turning wind pro�le, the second layer avoids the complications arising from

the e�ects of multiple critical levels and wave reections. In this atmospheric con�guration, the

increasing trend of the surface drag as a function ofRi � 1 which was observed in the hydrostatic

regime is suppressed whenRi � 1 gets close to 4. This is caused by the stronger wave reection

e�ect that occurs when Ri is small. This is also the reason why the variation of the surface

drag becomes more non-linear as the system becomes more non-hydrostatic. Concerning the

momentum uxes, both components of this quantity show a large drop in magnitude near the

surface when the system becomes more non-hydrostatic. Besides this change, whenRi is large,

the y-component of the momentum ux near the surface takes negative values but changes its

sign to positive asz increases.

5.3 Overall e�ect of non-hydrostaticity

From the changes found in the investigation of the non-hydrostatic mountain wave system, the

general e�ect of non-hydrostaticity is that of causing a signi�cant reduction to both the surface

drag and the momentum uxes near the surface. Such a reduction is crucial, since current drag

parametrization schemes are mainly based on the hydrostatic assumption, which may thus over-

estimate the momentum and energy transport by terrain-generated gravity waves.

All the derivations and calculations carried out here assumed a non-rotating, inviscid, adiabatic,

linearized ow with the Boussinesq approximation. Diabatic and non-linear e�ects have all been

neglected for simplicity, since these e�ects may cause unnecessary complications in the adopted

conceptual model.

5.4 Future work

In the investigation carried out in this dissertation, there are three main lines of further work

that can be pursued. Firstly, the atmospheric setting for the linear wind pro�le in non-

hydrostatic conditions is in fact unrealistic due to the fact that in reality the basic wind mag-

nitude cannot keep increasing with z inde�nitely. Typically, as the stratosphere is reached,

the atmosphere becomes much more stable and hence more favourable for wave propagation.

Hence, a two layer model for such a linear wind pro�le in non-hydrostatic conditions is worth



Secondly, the maximum turning angle of the turning wind pro�le may also play an impor-

tant role in modifying the variation of the surface drag and momentum uxes. When the basic

wind turns by an angle of � , all wave numbers have exactly one critical level within the domain.

However, this is clearly not always true for the real atmosphere. If the turning angle is less

than � , then some wave numbers will not have a critical level within the atmosphere, and hence

wave reection may strongly a�ect those wave numbers. Therefore, the dependence of the drag

and momentum uxes on the turning angle would be an interesting problem for investigation.

Thirdly, non-hydrostaticity can also be studied more thoroughly. Since a non-hydrostatic sys-

tem is â-dependent, quantities like the surface drag become dependent on bothRi and â. Hence,

accurate parametrization schemes for surface drag must capture that dependence as well, which

justi�es investigating it in more detail.
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Appendix A

Behavior of gravity waves near a

critical level

In this section, we will examine the behavior of gravity waves near a critical level by using the

approach of Frobenius expansion. This analysis follows the treatment presented in the book by

Nappo (2012) and we extend the idea a bit further to the case of a three-dimensional isolated

mountain.

In the Taylor-Goldstein equation (A.1), the critical level is de�ned to be the height zc at which

the denominator, U � k = U(z)k1 + V(z)k2, is zero. This means that at the critical level,

the unperturbed wind U (z) is perpendicular to the horizontal wave vector k. This produces

a singularity (a second-order pole) in the Scorer parameter in equation (A.1), and hence the

�rst-order derivative of ŵ(z) is not continuous at the height zc. Moreover, note that the square

of the Scorer parameterl2 is proportional to the square of the vertical wave numberm of the

gravity waves. As z approacheszc, the Scorer parameter blows up to in�nity. This implies that

the gravity waves becomes highly oscillatory, as will be shown in the following discussion.

d2ŵ
dz2 +

�
l(z)2 � k2

12

�
ŵ = 0 (A.1)

where l(z)2 is the square of the Scorer parameter, de�ned to be

l(z)2 =
N 2

(U � k)2 +
U 00� k
U � k

(A.2)

Assume that we approach the critical level from above: then near the critical level, we write

z = zc + � , where � is assumed to be a small positive distance from the critical levelzc. For

convenience, de�neG(z) := U (z) � k . We expand the function G(z) near zc by Taylor expansion

G(zc + � ) = 0 + G0(zc)� +
1
2

G00(zc)� 2 + O(� 3) (A.3)
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Then, the square-root of the denominator in equation(A.2) can be approximated as

1
G(zc + � )

�
1

G0(zc)� + 1
2G00(zc)� 2

=
1

G0(zc)� (1 + G00(zc )
2G0(zc ) � )

�
1 � G00(zc )

2G0(zc ) �

G0(zc)�
(A.4)

Since we only consider simple linear and turning wind pro�les, and the curvature term� G00(z)=G(z)

is constant in both cases, we use� 2 to denote this term. Thus, the square of the vertical

wavenumber (or l2 � k2
12) of the waves becomes

N 2k2
12

�
1 � G00(zc )

2G0(zc ) �
� 2

� 2(G0(zc))2 + � 2 � k2
12

=
N 2k2

12

(G0(zc))2

 
1
� 2 +

�
G00(zc)
2G0(zc)

� 2

�
G00(zc)
G0(zc)

1
�

!

+ � 2 � k2
12

=
~Ri
� 2 �

�
�

+  (A.5)

where ~Ri = N 2k2
12

(G0(zc )) 2 actually has the same scale as the Richardson numberRi , � = ~Ri
�

G00(zc )
G0(zc )

�

and  = ~Ri
�

G00(zc )2

4G0(zc )2

�
+ � 2 � k2

12.

Rewriting equation(A.1), we have

d2ŵ
dz2 +

"
~Ri
� 2 �

�
�

+ 

#

ŵ = 0 : (A.6)

The asymptotic behavior of ŵ(z) near the critical level zc can be solved using a Frobenius

expansion, by assuming ^w(zc + �



Thus, we require all the coe�cients to be zero, and this yields the following relations

C1 =
�

�

� (� + 1) + ~Ri

�
C0; (A.9)

C2 =
�

� 2[� (� + 1)] � 1 � 

(� + 1)( � + 2) + ~Ri

�
C0 (A.10)

and importantly

� 2 � � + ~Ri = 0 (A.11)

Actually, for both the two considered wind pro�les, � is 0, since the linear wind pro�le has no

curvature, and the simple turning wind pro�le has ŵ00(zc) = � � 2ŵ(zc) = 0, so some further

simpli�cations can be achieved, but this will not be presented here.

Equation (A.11) gives,

� � =
1
2

� i� (A.12)

where� =
p

~Ri � 0:25. These two branches of� correspond to the two members of the solution

basis, and the general solution nearzc



and rewrite equation (A.13), just by replacing � with � � , that is

ŵ(zc � � ) = C+
0 (� � ) � + A(� � ) + C �

0 (� � ) � � A � (� � ) (A.14)

However, a tricky point comes from the terms (� � ) � � . This is because Re(� � ) = 1



Thus, for G0(zc) > 0

(� � ) � � = e� i�� � � � �

= e� i �
2 e� �� � � �

= � ie� �� � � � (A.18)

Similarly, for G0(zc) < 0, we have (� � � i ci
G0(zc ) ) ! ei� as ci ! 0

(� � ) � � = ei�� � � � �

= ei �
2 e� �� � � �

= ie� �� � � � (A.19)

In general, by letting sgn = sign( G0(zc



coe�cient A if sgn > 0, thus it is associated with upward propagating energy. Similarly, it can

be proved that if sgn < 0, the term with coe�cient B is associated with upward propagating

energy. Therefore, we see that the terms withe�� multiplied for z < z c always have upward

propagating energy. The proof follows the same reasoning for waves with downward propagat-

ing energy.

This is a signi�cant result, since it means that the critical level always �lters the wave by

multiplying it with a factor of e� ��



Appendix B

De�nition of Fourier integrals and

the Parseval Theorem

The following de�nition of Fourier transform of an integrable function f (x) in ( �1 ; 1 ) is

adopted in the discussions of all the chapters,

f̂ (k) =
1

2�

Z 1

�1
f (x)e� ikx dx and (B.1a)

f (x) =
Z 1

�1
f̂ (k)eikx dk; (B.1b)

wheref̂ (k) is the Fourier transform of f (x) and k is the wave number. With the above de�nition
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where the last equality uses the de�nition of the Dirac delta function. Then,

1
2�

Z 1

�1
f (x)g� (x)dx =

Z 1

�1
f̂ (k1)

� Z 1

�1
ĝ� (k2)� (k1 � k2)dk2

�
dk1111


