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Abstract

One of the advantages of moving mesh methods for the numerica l solution of partial dif-

ferential equations is their ability to track moving bounda ries. In this thesis we propose

a velocity-based moving mesh method in which we primarily foc us on moving the nodes
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Chapter One

and general classes of time-dependent problems [4, 48, 72].

There are three main types of grid adaptation, the most common type being h-

re�nement, which uses a static mesh and adds or removes nodesto or from the existing

mesh, resulting in local re�nement or coarsening of the mesh. Another is p-re�nement,

where a �nite element discretisation of the PDE is used with local polynomials, in which

the order of the polynomials is increased or decreased to adapt the method according to

the smoothness of the solutions, often as measured by error estimates. It is common to

combine these two methods to give hp-methods. However, hp-methods can be complex,
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conservation, speci�cally upon conserving the local proportion of the total integral (mass)

of the dependent variable across the domain. We concentrate
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not satisfy the set boundary conditions. As with Richards' equation, this demonstrates the

need for a numerical solution.

The Crank-Gupta problem has a negative source term, resulting in a solution that

decreases in mass. The �nal problem is covered in Chapter 7 where we consider a model

for avascular tumour growth which has an increasing mass. This is the most complicated

of the four problems. We begin this chapter with a brief introduction to tumours, and the

role that mathematics has played on tumour growth research.We note that the modelling

of tumour growth is an area of much interest to mathematical b



2
Background on Moving Mesh

Methods

Moving mesh methods belong to the class of adaptive mesh methods. They are often

referred to as r-adaptivity (relocation) methods.

Such methods have a natural application to problems with close coupling between
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of interest can often be identi�ed by a rapid variation of eit her the solution, or one of its

derivatives. The error from an r-adaptive method will dependnot only on the solution itself,

but also the number and position of the mesh nodes. Moving mesh methods often utilise two
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Baines, Hubbard and Jimack [5, 9], since the methods we will use are essentially �nite

di�erence variations on their work. However, we begin with location-based methods.

2.1 Location-based methods
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tion principle.

Huang et al. [55] recommend that a moving mesh method should not only move nodes

to areas of interest, but require a simple algorithm that is easy to program, and be reason-

ably insensitive to the choice of user-de�ned parameters. Intheir work this is achieved by

constructing moving mesh equations directly from the numerical equidistribution principle.

Furthermore, they recommend that in order to allow ease of comparison and theoretical

analysis of this moving mesh method, the moving mesh equations should have a continu-

ous form, and in [55] these equations are devised and referred to as moving mesh partial

di�erential equations (MMPDEs). MMPDE-based atio
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mesh points to follow the ow itself, [28]. This intuitive mo vement of mesh points makes

a velocity-based moving mesh approach particularly suited for uid ow, but the approach

is more general.

In this section a number of velocity-based methods are described. We begin inx2.2.1

with schemes related to uid dynamics which use a purely Lagrangian approach. This leads

on to methods which rely on the so-called ALE (Arbitrary Lagrangian-Eulerian) formula-
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This equation is widely used in the numerical solution of uid-structure interaction prob-

lems, for example in [54, 60, 71, 86]. The speci�c mechanism for constructing the mesh

velocities varies signi�cantly, from treating the mesh as though it is a physical material

with its own constitutive law [60] through to de�ning the mes h motion purely with the goal

of optimizing geometric qualities of the mesh [86].

Other ALE forms, such as the di�erential form,

Du
Dt

=
@u
@t

+ v � r u; (2.6)

have also been used for free-surface problems, based upon maintaining mesh equality [78,

79], Laplacian smoothing [89] or pseudo-solid deformation [32, 101]. Other applications
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singular and signi�cant regularisation is needed.

2.2.4 The Geometric Conservation Law (GCL)

The GCL is a tool which has been used for many years in the engineering community to de-

velop cell-volume-preserving �nite-volume schemes. An earlyexample, formulated in [97],

is the Space Conservation Law (SCL) which was approximated i
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2.3 The Finite Element Conservation Method





Chapter Two



Chapter Two 2.3. The Finite Element Conservation Method

The �nite element formulation and the full algorithm

In [5], a �nite element mesh is set up and the initial condition is projected on to the mesh.

Piecewise linear basis function are used, replacingwi with � i , where � i are linear �nite

element basis functions on the mesh of nodesx i (t), i = 0 ; 1; : : : ; N , within a polygonal

approximation �
( t) of 
( t).

The equations which determiner  , v(x ; t) and u(x ; t) (from equations (2.19), (2.20)

and (2.21) respectively), are used withx , � , v , � and u replaced with piecewise linear ap-
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Chapter Three 3.1. Mass conserving problems

Our moving mesh method moves the nodes such that the partial masses of the solution are

conserved, i.e. we determine ~x j (t) ( j = 0 ; : : : ; N ) from

cj =
Z ~x j (t )

a(t )
u(x; t ) dx; (3.6)

where the cj (j = 0 ; : : : ; N ) remain constant in time. Equation (3.6) is consistent with

equation (3.4). The cj are positive sinceu > 0, and cN = c.

For a given mesh ~x j (t) and solution ~uj (t) = u(~x j (t); t
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3.1.2 Advancing the mesh in time

We choose a time step �t > 0 and de�ne time-levels tm = m� t, m = 0 ; 1; : : :, denoting

~x j (tm ) by xm
j . We also use the approximationsum

j � ~uj (tm ) and vm
j � ~vj (tm ). The updated

xm+1
j are calculated using the mesh velocityvm

j with a time-stepping scheme.

3.1.3 Recovering the solution

To recover the solution on the new mesh we use an incremental form of (3.6),

cj +1 � cj � 1 =
Z xm +1

j +1

xm +1
j � 1

u(x; t ) dx =
Z x t 0

j +1

x t 0
j � 1

u(x; t 0) dx; j = 1 ; : : : ; N � 1; (3.9)

(where eachcj is a constant known from initial conditions). We approximat e the integrals

of (3.9) using a simple quadrature rule, which allows us to recover um+1
j , j = 1 ; : : : ; N � 1

on the new mesh. We examine two di�erent quadrature rules, a mid-point approximation

and an interpolating approximation on a non-uniform mesh.
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1 in the intervals adjacent to x j as

cj � = cj � cj � 1;

cj + = cj +1 � cj ;

where each of these are determined from the initial conditions. We note that cj + + cj � =

cj , from (3.9). We then use (3.11) to derive two equations for the sum (cj + + cj � ) and

di�erence (cj + � cj � ). These equations are evaluated att = tm+1 , and the unknown slope

gm+1
j � g(~x j ; tm+1 ) is eliminated, so that we achieve an expression forum+1

j
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mass (which is required for determining the updated solution) we �rst compute _� (t). Then

the mesh velocity ~vj (t) is computed. The mesh and total mass are updated simultaneously

using a time-stepping scheme. This enables us to recover the updated solution on the new

mesh. Details are given in the following subsections.
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um+1
j (which is exact for a linear solution on a non-uniform mesh) isthe same as (3.16),

but with the addition of the ratio of total masses � m +1

� 0 , i.e.

um+1
j =

� m+1

� 0

cj � =� xm +1
j �

� xm +1
j �

+
cj + =� xm +1

j +

� xm +1
j +

1
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Substituting (3.30) into (3.29), we have

_� j (t) =
Z ~x j (t )

a(t )
S(x; t ) dx: (3.31)

For a speci�c IBVP, the integral in (3.31) can then be approximated using quadrature to

determine a discrete form of (3.31).

3.3.2 Determining the mesh velocity

To obtain an expression for the mesh velocity ~vj (t) we di�erentiate (3.30) with respect to

time using the Leibnitz integral rule again, to give

_� j (t) =
d
dt

Z ~x j (t )

a(t )
u(x; t ) dx =

Z ~x j (t )

a(t )

@u
@t

dx + ~uj (t)~vj (t) � ~u0(t)~v0(t):

Substituting @u
@t from (3.27), and using the boundary conditions (3.28),

_� j (t) =
Z ~x j (t )

a(t )
fH u + S(x; t )g dx + ~uj (t)~vj (t): (3.32)

Equating (3.32) and (3.31),

Z ~x j (t )

a(t )
Hu dx + ~uj (t)~vj (t) = 0 :

Thus, for ~uj (t) 6= 0, the nodes move such that

~vj (t) = �
1

~uj (t)

Z ~x j (t )

a(t )
Hu dx: (3.33)

Recalling Remark 3.3.1, equation (3.33) holds for interiorpoints j = 1 ; : : : ; N � 1. Again,

the mesh velocities at the boundaries, ~v0(t); ~vN (t), can be extrapolated from the interior

mesh velocities. We observe that if there were no source term, equation (3.33) would be

equivalent to (3.8) for j = 1 ; 2; :::; N � 1.

Once more, as inx3.2.1, for a speci�c IBVP the integral in (3.33) is approxima
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meshxm
j , and solution um

j , j = 0 ; : : : ; N
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� Compute the mesh velocityvm
j from a discrete form of (3.33). Determine the velocity

at the boundaries from an appropriate extrapolation scheme;

� Compute the updated partial masses �m+1
j and meshxm+1

j ;

� Compute the updated solution um+1
j from (3.34) or (3.35). The solution at the bound-

aries, um+1
0 ; um+1

N , are given by the boundary conditions.

Examples are discuses in Chapters 6 and 7.

We have shown how we can solve a problem that does not conserves mass using

a moving mesh approach that balances the partial mass fractions with a source term. We

now look at some of the time-stepping schemes that we use with our moving mesh method.
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Fig. 3.1: Diagrams to illustrate the relation between ~x j (t) and j for a mesh that

is tangled compared to one that is not tangled. The graph on the left shows a

mesh that is tangled (not monotonic) at time t1.

Both solvers invoke explicit Runge-Kutta methods to integrate the system of N � 1 ordi-

nary di�erential equations. The solver ODE23 uses second an
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Then, assuming that the mesh ~x j (t) changes smoothly in time, we alter the Euler scheme

(3.36) to be semi-implicit, in the manner

xm+1
j � xm

j

� t
=

1
� xm

j

 

� m
j +

� xm+1
j �

� xm
j �

� � m
j �

� xm+1
j �

� xm
j �

!

; j = 1 ; : : : ; N � 1; (3.39)

where � xm
j +

= ( xm
j +1 � xm

j ) and � xm
j �

= ( xm
j � xm

j � 1). We choose � xm+1
j �

to be either � xm+1
j +

or � xm+1
j �

, that is

xm+1
j � xm

j

� t
=

8
>>>>>>>>>><

>>>>>>>>>>:

1
� xm

j

�
� m

j +

� xm +1
j +

� xm
j +

� � m
j �

� xm +1
j �

� xm
j �

�
for � m

j +
; � m

j �
> 0;

1
� xm

j

�
� m

j +

� xm +1
j +

� xm
j +

� � m
j �

� xm +1
j +

� xm
j +

�
for � m

j +
> 0; � m

j �
< 0;

1
� xm

j

�
� m

j +

� xm +1
j �

� xm
j �

� � m
j �

� xm +1
j �

� xm
j �

�
for � m

j +
; � m

j �
< 0;

1
� xm

j

�
� m

j +

� xm +1
j �

� xm
j �

� � m
j �

� xm +1
j +

� xm
j +

�
for � m

j +
< 0; � m

j �
> 0;

(3.40)

for reasons that will be explained below. The boundary values, ~x0(t); ~xN (t), are updated

explicitly by a �rst order scheme. These are calculated before the internal nodes so that

� xm+1
1�

and � xm+1
N � 1+

can be determined. The whole scheme is then �rst order in time.

Theorem 3.4.1 The semi-implicit scheme (3.39) ensures that the mesh does not tangle,

i.e.

xm
j � 1 < x m

j < x m
j +1 ; (3.41)

for all j = 0 ; 1; : : : ; N and all time tm , m = 1 ; 2; : : :, provided the � xm+1
j �

are chosen to be

either � xm+1
j +

or � xm+1
j �

according to the four parts of (3.40).

Proof Given that the mesh is not tangled at time-level tm we show that (3.41) holds for

all subsequent time-levels by proving that the maximum and minimum of the set f xm+1
j g

occur at the boundaries, for all j = 1 ; : : : ; N � 1.

We �rst prove the maximum principle, by contradiction. Supp ose that an isolated

maximum of x occurs at the interior point xm+1
j . We consider the sign of each term in

(3.39), and subsequently determine that the sign of right-hand side contradicts that of the tm
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Now, if the interior point xm+1
j is a maximum then

xm+1
j � xm

j > 0; (3.42)

� xm+1
j �

= xm+1
j � xm+1

j � 1 > 0; (3.43)

� xm+1
j +

= xm+1
j +1 � xm+1

j < 0: (3.44)

The inequality (3.42) implies that the left-hand side of (3.39) is positive. To complete the

proof by contradiction, we note that � xm+1
j �

gives a negative right-hand side if � xm+1
j �

is

not carefully considered. For example, suppose� m
j +

; � m
j �

< 0 and the � xm+1
j �

of (3.39) are

determined such that

xm+1
j � xm

j

� t
=

1
� xm

j

 

� m
j +

� xm+1
j �

� xm
j �

� � m
j �

� xm+1
j +

� xm
j +

!

;

This gives a negative right-hand side, contradicting the left-hand side. We have therefore

shown that an isolated maximum cannot occur. Using the same reasoning given here, it can

be shown that a set of equal maximum values cannot occur. Hence the maximum occurs

at the boundary.

A minimum principle can be proved with the same reasoning to show that an isolated

minimum can not occur at any interior point when � xm+1
j �

is speci�ed according to (3.40).

The proof shows that xm
j , j = 0 ; 1; :::; N , is bounded by its neighbours. It also extends to

non-isolated interior points and hence, equation (3.39) with appropriate � xm+1
j �

(determined
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The Porous Medium Equation

4.1 Introduction

The Porous Medium Equation (PME)

@u
@t

= r (u(x; t )n r u) ; (4.1)

where n � 1 is one of the simplest nonlinear evolution equations of parabolic type. It can

be used to describe physical situations such as uid ow, heat transfer or di�usion. Most

notably, it is used to describe the ow of a perfect gas in a homogeneous porous medium.

The main aim of this chapter is to solve the PME numerically using the moving

mesh method described inx3.1.

We begin this chapter by deriving the PME from a general form of Darcy's Law

in x4.2, as shown in [99]. Then, before solving the PME numerically, we discuss some of

the properties of the PME which our numerical scheme aims to preserve, inx4.3. One of

these properties is self-similarity, so inx4.4 we derive a self-similar solution, as originally

presented in [12]. This self-similar solution is used to provide the initial conditions when we

solve the PME numerically, and also to compare the numericalsolution to an exact solution

in the results section,x4.7. Finally, in x4.8 we present results using the moving mesh �nite

35



Chapter Four 4.2. Deriving the PME from Darcy's Law

element method discussed inx2.3.

4.2 Deriving the PME from Darcy's Law

We �rst derive the PME by considering three model equations which relate variables asso-

ciated with gas ow through a porous medium.

(i) Mass balance

We assume that the ow of gas obeys the equation of continuity

�
@�
@t

+ r � (� V ) = 0; (4.2)

where � 2 (0; 1) is the porosity of the medium, � is the density, and V is the velocity. Here

r� represents the divergence operator.

(ii) Darcy's Law

Darcy's Law was formulated by the French engineer H. Darcy in1856 [99]. It models the

ow of a uid (or gas) through a porous medium. Maintaining th e notation in (4.2),

� V = � � r p; (4.3)

where r p is the pressure gradient vector,� is the permeability tensor (assumed to be a

strictly positive constant in most applications), and � > 0 is the viscosity of the uid (or

gas).

(iii) Equation of state

The equation of state for a perfect gas is

p = p0�  ; (4.4)

where p is the pressure,p0 is the reference pressure and � 1 is the ratio of speci�c heats

for the gas.

Substituting Darcy's Law (4.3) and the equation of state (4.4) into the mass con-

36
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servation equation (4.2) gives

@�
@t

=
�p 0

��
r :(� r �  ): (4.5)

Now

� r �  = ��  � 1r � = �  r �;

so we may write (4.5) as

@�
@t

=
�p 0

��
r :(�  r � ):

The constant �p 0
�� can be scaled out (de�ne for instance a new time,t0 = �p 0

�� t), thus

leaving us with the PME. We adapt this result to meet standard notation by writing  = n,

and � = u, giving

@u
@t

= r � (un r u);

where n �
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4.3 Properties of the PME in one dimension

We are interested in several properties of the PME for the one-dimensional Cartesian

case (4.6) with its boundary de�ned by the edge of the support, i.e.

u = 0 at x = a(t); b(t); t > 0: (4.8)

In [99] many properties of the PME are given, and proved. We prove two well-established

properties which our numerical approach relies upon: conservation of mass, and stationary

centre of mass.

Lemma 4.3.1 The one-dimensional PME conserves mass in time.

Proof To prove that the total mass does not change over time we show that the derivative

of the total mass (in time) is zero. Using the Leibnitz integral rule,

d
dt

Z b(t )

a(t )
u(x; t ) dx =

Z b(t )

a(t )

@u
@t

dx + u(b; t)
db
dt

� u(a; t)
da
dt

;

Substituting @u
@t from (4.6), and setting the last two terms to zero due to the boundary

conditions (4.8),

d
dt

Z b(t )

a(t )
u(x; t ) dx =

Z b(t )

a(t )

@
@x

�
u(x; t )n @u

@x

�
dx;

= u(b; t)n @b
@x

� u(a; t)n @a
@x

:

The right-hand side is zero, due to boundary conditions (4.8)again, hence

d
dt

Z b(t )

a(t )
u(x; t ) dx = 0 ;

as required. The result is easily extended to the radially symmetric case

d
dt

Z R(t)

0
u(r; t )r � � 1 dr = 0 ;

where R(t) is the radius and � = 2 ; 3 is the number of dimensions. �

Lemma 4.3.2 The one-dimensional PME has a stationary centre of mass.
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Proof The centre of mass �x(t) in one dimension is de�ned by the ratio

�x(t) =

Rb(t )
a(t ) u(x; t )x dx
Rb(t )

a(t ) u(x; t ) dx
: (4.9)

To demonstrate that the centre of mass �x(t) does not move, it is su�cient to show that

d
dt

Z b(t )

a(t )
u(x; t )x dx = 0 ;

since the denominator of (4.9) is constant in time. By the Leibnitz integral rule,

d
dt

Z b(t )

a(t )
u(x; t )x dx =

Z b(t )

a(t )
x

@u
@t

dx + u(b; t)b(t)
db
dt

� u(a; t)a(t)
da
dt

:

Substituting @u
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that the centre of mass remains stationary allows us to set the mesh velocity to zero at that

point. Before numerically solving the PME, we recall the self-similar solution to the PME

in the next section.

4.4 A self-similar solution

In this section we recall a class of exact solutions to the radially symmetric PME (4.7) that

are invariant under a scaling group in the variables (t; r; u ), and therefore take the so-called

self-similar form.

A time dependent phenomenon is called self-similar if the spatial distributions of its

variables at di�erent times can be obtained from one anotherby a similarity transform [11],

which is a transformation that maintains certain features of a function or curve. A partic-

ular similarity transformation is a scale-invariant transf ormation, where the variables are

scaled by powers of a common factor� .

A prerequisite to deriving a self-similar scaling solution is determining a scale-invariant

transformation of the PME [11].

4.4.1 Scale invariance

Scale invariance, de�ned as the invariance of the PDE under scaling, originated from the

analysis of the consequences of the change of units of measur
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The �rst of these (4.12) is the left-hand side of the PME. Using (4.13) we transform the

right-hand side to get

1
r � �
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To summarise, the variablesu, r and t can be rescaled as in (4.18) whilst still satisfying
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A further substitution of rt � � = � , from (4.20), in the �rst term on the right-hand side

gives

@u
@t

= � �t  � 1�
d�
d�

+ � (� )t  � 1: (4.21)

We have expressed the left-hand side of (4.7) in terms of� and � , and we wish to transform

the right-hand side in the same way. Thus

1
r � � 1

@
@r

�
r � � 1u(r; t )n @u

@r

�
= t � (1� � ) 1

� � � 1

@�
@r

d
d�

�
� � � 1t � (� � 1) � (� )n t n @�

@r
@u
@�

d�
d�

�
:

Substituting @�
@r = t � � from (4.20), and @u

@� = t  from (4.19) into the right-hand side, gives

1
r � � 1

@
@r

�
r � � 1u(r; t )n @u

@r

�
=

1
� � � 1 t � �� d

d�

�
� � � 1t � (� � 2)+  (n+1) � (� )n d�

d�

�
;

= t  (n+1) � 2� 1
� � � 1

d
d�

�
� � � 1� (� )n d�

d�

�
: (4.22)

Putting together (4.21) and (4.22) gives the PME (4.7) in terms of � and � ,

� �t � 1�
d�
d�

+ � (� )t � 1 = tn � 2� 1
� � � 1

d
d�

�
� � � 1� (� )n d�

d�

�
:

Note that t disappears from the equation sincen � 2� + 1 = 0 (from (4.14)). Substituting

for � and  from (4.17), gives the ODE

�
1

n� + 2
�

d�
d�

� � (� )
�

�
n� + 2

�
=

1
� � � 1

d
d�

�
� � � 1� (� )n d�

d�

�
:

By moving all the terms to one side we have,

1
� � � 1

d
d�

�
� � � 1� (� )n d�

d�

�
+

�
n� + 2

d�
d�

+
� (� )�
n� + 2

= 0 : (4.23)

From the zero Dirichlet boundary conditions imposed on the PME we have corresponding

zero Dirichlet boundary conditions on � in (4.23). The solution of the two point boundary

problem (4.23), along with the previous de�nitions u = �t  and r = �t � provides the self-

similar solution.

Using an integrating factor
n

exp
� R �

� d�
�

= � �
o

enables us to group the last two

terms of (4.23), giving

1
� � � 1

d

dd�

�

r�



Chapter Four 4.4. A self-similar solution

We multiply through by � � � 1 and integrate to get

� � � 1� (� )n d�
d�

+
� � � (� )

(n� + 2)
= C;

whereC is an integration constant. Taking C = 0, which it is at the boundary where � = 0,

� � 1� (� )n� 1 d�
d�

+
1

n� + 2
= 0 :

Separating the variables,

Z
� (� )n� 1 d� = �

1
n� + 2

Z
� d�;

which gives
� (� )n

n
= �

1
n� + 2

�
� 2

2
� E

�
;

whereE
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as initial conditions. We also discuss the e�ect of not usinga self-similar solution as the

initial conditions, where we �nd that the PME boundaries do n ot move until the solution

at the boundary resembles a self-similar solution. This behaviour is nicely captured by our

moving mesh scheme.

Fig. 4.1:
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tial solution for our numerical work, as well as an exact solution to compare with our

numerical results. In the next section we apply our moving mesh method to the Cartesian

one-dimensional PME.

4.5 Moving meshes

The integral of a solution of the PME (the mass) is conserved in time, so we use the moving

mesh method described inx3.1, with the same notation, i.e. ~x j (tm ) � xm
j denotes thej th

node of the mesh with N + 1 nodes, at time m� t, m = 0 ; 1: : :, and um
j � ~uj (tm ) and

vm
j � ~vj (tm ) denote the solution and mesh velocity at these nodes.

We model the PDE (3.1) with

Lu �
@

@x

�
u(x; t )n @u

@x

�
; (4.29)

from (4.6). The moving mesh method in x3.1 can be applied to any geometrically non-

symmetric problem. However, for convenience we assume thatthe one-dimensional solution

u(x; t ) is symmetrical about its centre of mass (seex4.3). Then by symmetry we need only

model half the regionx(t) 2 [0; b(t
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for interior points j = 1 ; : : : ; N � 1. Since @u
@x = 0 at x = 0, the interior points move in time

such that

~vj (t) = � ~uj (t)n� 1 @u
@x

�
�
�
�
~x j (t )

; (4.32)

which can also be written as

~vj (t) = �
1
n

@(un )
@x

�
�
�
�
~x j (t )

: (4.33)

Remark 4.5.1 We refer to x4.2 and observe that the mesh velocity (4.33) resembles the

velocity V obtained from substituting the equation of state (4.4) intoDarcy's Law (4.3),

V = �
�p 0

�
r �  ;

where � = u and  = n.

We use a discretised form of (4.33), at timet = tm

vm
j = �

1
n

(un )m
j +1 � (un )m

j � 1

(xm
j +1 � xm

j � 1)
; j = 1 ; 2; :::; N � 1; (4.34)

which is a second order discretisation on a uniform mesh, butonly a �rst order discretisation

on a non-uniform mesh. By de�nition, at the inner boundary vm
0 = 0. The outer boundary

velocity vm
N is extrapolated by a polynomial approximation using (vm

N � 3; vm
N � 2; vm

N � 1).

We note that when approximating (un )x
�
�
~x j (t ) = @(un )

@x

�
�
�
�
~x j (t )
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Expanding both of these using a Taylor series about ~x j (t) gives

(un )m
j +1 � ~uj (t)n + � xm

j +

@(un )
@x

�
�
�
�
~x j (t )

+
1
2

(� xm
j +

)2 @2(un )
@x2

�
�
�
�
~x j (t )

+ O(� xm
j +

)3; (4.35)

(un )m
j � 1 � ~uj (t)n � � xm

j �

@(un )
@x

�
�
�
�
~x j (t )

+
1
2

(� xm
j �

)2 @2(un )
@x2

�
�
�
�
~x j (t )

+ O(� xm
j �

)3: (4.36)

We subtract (4.36) multiplied by (� xm
j +

)2 from (4.35) multiplied by (� xm
j �

)2 to give a higher

order approximation to ( un )x
�
�
~x j (t ) at time tm as,

(un )x
�
�
~x j (t ) =

@(un )
@x

�
�
�
�
~x j (t )

�
(� xm

j �
)2

h
(un )m

j +1 � (un )m
j

i
+ (� xm

j +
)2

h
(un )m

j � (un )m
j � 1

i

� xm
j �

� xm
j +

h
� xm

j +
+ � xm

j �

i ;

=

1
� xm

j +

�
�( un )m

j +
� xm

j +

�
+ 1

� xm
j �

�
�( un )m

j �
� xm

j �

�

1
� xm

j +
+ 1

� xm
j �

; (4.37)

for j = 1 ; : : : ; N � 1, where �( un )m
j +

= ( un )m
j +1 � (un )m

j and �( un )m
j �

= ( un )m
j � (un )m

j � 1

(corresponding to our earlier de�nitions for � xm
j �

). The second order approximation (4.37)

is an inversely weighted sum, or interpolation, of slopes and is frequently used in numerical

work throughout this thesis.

Substituting (4.37) in (4.33) gives the second-order approximation to the mesh veloc-

ity,

vm
j = �

1
n

1
� xm

j +

�
�( un )m

j +
� xm

j +

�
+ 1

� xm
j �

�
�( un )m

j �
� xm

j �

�

1
� xm

j +
+ 1

� xm
j �

; (4.38)

for j = 1 ; : : : ; N � 1 where the time-levelm notation has been re-instated. As with (4.34),

the velocity at the inner boundary is given by vm
0 = 0, and at the outer boundary the

velocity vm
N is extrapolated by a polynomial approximation using (vm

N � 3; vm
N �
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from (3.10) and the boundary condition (4.30). At the outer boundary, um+1
N +1 = 0 from (4.31).

4.5.3 The full algorithm

Given a meshxm
j , solution um

j , j = 0 ; : : : ; N , m � 0:

� Compute the mesh velocityvm
j from (4.34) or (4.38);

� Using a time-stepping scheme, compute the updated meshxm+1
j by a time-stepping

scheme;

� Compute the updated solution um+1
j from (3.10) or (3.16).

4.5.4 Waiting times

The velocity of the boundary is given by (4.32). The boundarybehaviour of the PME has

been investigated in [62, 90]. We now present some of their �ndings.

At the boundary u = 0, which infers that the boundary velocity is zero unlessux is

in�nite for n > 1. We examine the e�ect of the initial conditions on the boundary velocity

by considering initial conditions at t = 1, of the form given in [18, 62],

u(x; 1) =

"

1 �
�

~x(1)
b(1)

� 2
#�

=
�

1 �
~x(1)
b(1)

� � �
1 +

~x(1)
b(1)

� �

; (4.39)

where � = 1
n (the self-similar initial condition). We use (4.39) to determine ux in (4.32),

to give

d~x
dt

=
2�x
b(1)2

�
1 �

~x(1)
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The boundary behaviour for these three cases is shown in Figure 4.2.

Fig. 4.2: The three di�erent types of boundary behaviour for the PME.
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A semi-implicit scheme

To determine a semi-implicit time-stepping scheme for solving the PME we consider the

general semi-implicit time-stepping scheme (3.39) (for the internal nodes,j = 1 ; 2; :::; N � 1)

with

� m
j +

= �
1
n

(un )m
j + 1

2
; � m

j �
= �

1
n

(un )m
j � 1

2
;

from (4.33). To ensure that the mesh does not tangle using (3.40), we determine the � xm+1
j �

terms in (3.39) such that

xm+1
j � xm

j

� t
= �

1
n� xm

j

 

(un )m
j + 1

2

� xm+1
j �

� xm
j �

� (un )m
j � 1

2

� xm+1
j +

� xm
j +

!

; (4.43)

where � xm
j = xm

j + 1
2

� xm
j � 1

2
, � xm

j �
= xm

j � xm
j � 1 and � xm

j +
= xm

j +1 � xm
j . Before calculating

the internal nodes semi-implicitly by (4.43), the boundary node xm+1
N is calculated by the

explicit scheme (4.42), enabling � xm+1
N � 1+

= xm+1
N � xm+1

N � 1 to be determined.

Rearranging (4.43) and expanding the � xm+1
j �

terms,

xm+1
j � xm

j

� t
= �

(un )m
j + 1

2
� xm

j +
(xm+1

j � xm+1
j � 1 ) � (un )m

j � 1
2
� xm

j �
(xm+1

j +1 � xm+1
j )

n� xm
j � xm

j +
� xm

j �

: (4.44)

Our moving mesh method moves the nodes such that partial masses of the solution are

conserved, see equation (3.6) inx3.1. Bearing this in mind we de�ne approximations to the

mass in the subintervals which remain unchanged in time, as

Cj + = ( un )0
j + 1

2
� x0

j +
= ( un )m

j + 1
2
� xm

j +
;

Cj � = ( un )0
j � 1

2
� x0

j �
= ( un )m

j � 1
2
� xm

j �
;

thus simplifying equation (4.44) to

xm+1
j � xm

j

� t
= �

Cj + (xm+1
j � xm+1

j � 1 ) � Cj � (xm+1
j +1 � xm+1

j )

n� xm
j � xm

j +
� xm

j �

: (4.45)

To determine the new mesh by the semi-implicit scheme we solvethe system

Axm+1 = xm ; (4.46)

51
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wherexm+1 = ( xm+1
1 ; � � � xm+1

N � 1)T , xm = ( xm
1 ; � � � xm

N � 1)T , and A is a tridiagonal matrix with

lower, main and upper diagonalsAl j , Adj and Au j given by

Al j = �
Cj + �
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and hence means that the updated solution is recovered on thenew mesh by

um+1
j =

(r � � 1)0
j

(r � � 1)m+1
j

 
r 0

j +1 � r 0
j � 1

r m+1
j +1 � r m+1

j � 1

u0
j

!

(4.55)

for j = 1 ; � � � ; N � 1.

However, as the mesh is not necessarily uniform, it is more accurate to use a quadra-

ture rule for a non-uniform mesh. We note that the term in the brackets on the right-hand

side of (4.55) is the same as the right-hand side of (3.10), where x = r . Subsequently,

we can replace this term in (4.55) with the right-hand side of (3.16) (substituting x = r ),

which simpli�es to (4.55) for a uniform mesh. Hence, a betterapproximation to update the

solution is

um+1
j =

(r � � 1)0
j

(r � � 1)m+1
j

0

B
B
@

cj � =� r m +1
j �

� r m +1
j �

+
cj + =� r m +1

j +

� r m +1
j +

1
� r m +1

j �

+ 1
� r m +1

j +

1

C
C
A ; (4.56)

for j = 1 ; : : : ; N � 1, where

cj � =
Z ~r j (t0 )

~r j � 1 (t0 )
u(r; t 0)r � � 1 dr =

Z ~r j (t )

~r j � 1 (t )
u(r; t )r � � 1 dr;

cj +rm
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Since ~r � 1(t) = � ~r1(t) by symmetry,

~r1(t) �

�
~u0(t) +

~r1(t) � +2

� + 2
k =

~r1(0) �

�
~u0(0) +

~r1(0) � +2

� + 2
k:

We assume that ~r1(t)k << 1. Then

~u0(t) �
~r1(0) �

~r1(t) � ~u0(0);

which gives

um+1
0 =

(r � )0
1
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xN ,

EN (u) =

vu
u
t

P 10
i =0 (�u2N̂ � 1 i; N̂ � u2N̂ � 1 i; N̂ )2

P 10
i =0 (�u2N̂ � 1 i; N̂ )2

; EN (xN ) =
(�xN; N̂ � xN; N̂ )

(�xN; N̂ )
; (4.58)

for N̂ = 1 ; : : : ; 6 (i.e. N = 10; 20; 40; 80; 160; 320). We investigate the hypothesis that

EN (u) �
1

N p and
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conditions given by (4.57) and then = 2 ; 3 cases are given by

n = 2 : ~uj (1) =
�

1 �
~x j (1)2

4

� 1
2

; ~x20(1) = 2 ; (4.60)

n = 3 : ~uj (1) =
�

1 �
3~x j (1)2

10

� 1
3

; ~x20(1) =

r
10
3

: (4.61)
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has an in�nite gradient at the boundaries. This is portrayed in Figures 4.4(a) and 4.5(a)

which show the gradient of the solution near the moving boundary is very large for n = 2 ; 3,

resulting in a less accurate approximation near the moving boundary than for the n = 1

case, shown in Figure 4.3. Hence, from Figure 4.8, it is reasonable to deduce that a good

graphical indication of the accuracy of our method is to compare the exact and numerical

outer boundary movement, as shown in the second plot of Figures 4.3{4.5. These plots show

that the exact boundary position is slightly larger than the
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cases are given by

n = 2 : ~uj (1) =
�

1 �
~r j (1)2

6

� 1
2

; ~x20(1) =
p

6; (4.67)

n = 3 : ~uj (1) =
�

1 �
3~r j (1)2

16

� 1
3

; ~x20(1) =
4

p
3

: (4.68)

The Figure 4.12 con�rm the �ndings from the one-dimensional case, that asn increases,

the boundary slope is closer to in�nity. Note that for n = 3 a smaller � t was required.

Although it appears that the mesh is coarser in the radial direction at the boundary, we

observe from Figure 4.13 that this is not actually the case.

We have completed our application of our �nite di�erence moving mesh method

applied to the PME. In the next section we present our results from applying the �nite

element moving mesh method of Baines, Hubbard and Jimack [5]to the PME.

4.8 Finite elements

As mentioned in x2.3, the moving mesh method we use is a one-dimensional �nite di�erence

version of the multi-dimensional Conservation Method givenin [5], which uses linear �nite

elements. For completeness we also solved the PME on a circleusing the Conservation
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5
Richards' Equation

5.1 Introduction

Richards' equation is a non-linear PDE which models the movement of moisture in an

unsaturated porous medium. It was formulated in 1931 by Richards' [83] in the form
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as given in [10]. This is the mixed form of Richards' equation. In our work we focus on the

� -based form

@�
@t

=
@
@z

�
D(� )

@�
@z

�
+

@K
@z

;

where the di�usion coe�cient

D (� ) = � K (� )
d 
d�

and  /
1
�

:
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similar properties.

In the next section we show how Richards' [83] originally derived (5.1) from Darcy's

Law to model the capillary conduction of liquids in a porous medium. We specialise the

derivation presented in [83] to the one-dimensional case since we focus our work on the case

where uid is owing in one direction only.

The second half of this chapter applies a moving mesh method.In x5.5 we use

the mass conservation �nite di�erence method, and update the mesh using both an explicit

and semi-implicit time-stepping scheme. However, for Richards' equation, the mesh velocity

from our mass conservation method cannot be arranged so that(3.39) holds, so the proof of

monotonicity under semi-implicit time-stepping does not hold in this case. An alternative

approach to de�ne the mesh velocity (similar to that in x3.3) is explored so that (3.39)

does hold. Numerical results from the �nite di�erence methods are given inx5.7. In x5.8

the �nite element method is applied to the one-dimensional case, corresponding to that

presented in [90]. We give the results from the one-dimensional �nite element method

in x5.8.

5.2 Deriving Richards' equation

We describe the one-dimensional derivation of Richards' equation, derived from [83], where

the equation of continuity and Darcy's Law are applied to the ow of liquid through a

porous medium.

(i) Equation of continuity
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Lemma 5.3.1 Richards' equation (5.3) conserves mass in time.

Proof To prove that the total mass does not change over time we show that the derivative

of the total mass (in time) is zero. Using the Leibnitz integral rule,

d
dt

Z b(t )

a(t )
u(x; t ) dx =

Z b(t )

a(t )

@u
@t

dx + u(b; t)
db
dt

� u(a; t)
da
dt

:

Substituting @u
@t
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The u(a; t) and u(b; t) terms vanish due to the boundary conditions (5.4). This leaves only

the integral on the right-hand side, which can be rearranged such that

d
dt

Z b(t )

a(t )
x u(x; t ) dx = �

1
n � 1

Z b(t )

a(t )

@
@x

u(x; t )n� 1 dx �
Z b(t )

a(t )
u(x; t )n dx;

= �
1

n � 1

h
u(b; t)n� 1 � u(a; t)n� 1

i
�

Z b(t )

a(t )
u(x; t )n dx:

Once more, theu(a; t) and u(b; t) terms vanish due to the boundary conditions (5.4), leaving

d
dt

Z b(t )

a(t )
x u(x; t ) dx = �

Z b(t )

a(t )
u(x; t )n dx < 0;

which is strictly negative for u > 0, indicating that the centre of mass moves in the direction

of the negative x-axis. �

By showing that the mass is conserved, we know that updating the total mass at each time-

level is not required when applying our moving mesh method. In addition, knowing that

the centre of mass moves in one direction allows us to check that our numerical solution

is exhibiting expected behaviour. Before numerically solving Richards' equation, we seek a

self-similar solution to Richards' equation in the next section.

5.4 A self-similar solution

In this section we describe a class of exact solutions to Richards' equation (5.3) that are

invariant under a scaling group in the variables (t; x; u ), and therefore take the so-called

self-similar form. A de�nition of self-similarity, from [11] , is given in x4.4 where we derived a

self-similar solution for the PME. We use the same procedure from x
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Putting together (5.18) and (5.19) gives an equation for� in terms of � ,�
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When discretising (5.28) we consider two ways to approximate the derivative. The �rst

gives

vm
j = �

1
n � 2

 
(un� 2)m

j +1 � (un� 2)m
j � 1

xm
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5.5.4 Time-stepping schemes

Explicit schemes

The simplest method to time-step the mesh is the �rst order explicit Euler time-stepping

scheme,

xm+1
j � xm

j

� t
= vm

j :

We substitute for vm
j
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Our moving mesh method moves the nodes such that partial masses of the solution are

conserved, see equation (3.6) inx3.1. Bearing this in mind we de�ne initial masses, which

remain unchanged in time, as

D j + = ( un� 2)0
j + 1

2
� x0

j +
= ( un� 2)m

j + 1
2
� xm

j +
; (5.33)

D j � = ( un� 2)0
j � 1

2
� x0

j �
= ( un� 2)m

j � 1
2
� xm

j �
; (5.34)

thus simplifying equation (5.32) to

xm+1
j � xm

j

� t
= �

D j + (xm+1
j � xm+1

j � 1 ) � D j � (xm+1
j +1 � xm+1

j )

(n � 2)� xm
j � xm

j +
� x xj
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From (5.41) we can determine � j (tm+1
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scheme enabling �xm+1
1�

= xm+1
1 � xm+1

0 and � xm+1
N � 1+

= xm+1
N � xm+1

N � 1 to be determined.

Rearranging (5.46), and expanding the � xm+1
j �

terms gives

xm+1
j � xm

j

� t
= �

1
(n � 2)(� x)m

j � xm
j +

� xm
j �

�
(un� 2)m

j + 1
2
� xm

j +
(xm+1

j � xm+1
j � 1 )

� (un� 2)m
j � 1

2
� xm

j �
(xm+1

j +1 � xm+1
j )

�
: (5.47)

Equation (5.47) is nearly identical to our earlier semi-implicit scheme for Richards' equa-

tion (5.32), the di�erence being that (5.47) does not have the last term present in (5.32).

Subsequently, the updated meshxm+1
j is derived by solving the matrix system

Axm+1 = xm ;

where xm+1 = ( xm+1
1 ; � � � xm+1

N � 1)T , xm = ( xm
1 ; � � � xm

N � 1)T
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� the moving mesh method given inx5.6 with semi-implicit time-stepping;

as the number of nodesN increases and �t decreases. We solve fort 2 [0; 0:5] and compute

results for N = 10 � 2N̂ � 1, N̂ = 1 ; : : : ; 5. We use the same notation given inx4.7 for the

PME to compute both x2N̂ � 1 i; N̂ and u2N̂ � 1 i; N̂
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x5.5, explicit x5.5, semi-implicit x5.6, semi-implicit
N EN (u) pN EN (u) pN EN (u) pN

10 4:47� 10� 2 - 9:78� 10� 2 - 8:70� 10� 2 -
20 7:97� 10� 3 2.5 1:54� 10� 2 2.7 4:33� 10� 2 1.0
40 1:90� 10� 3 2.1 3:69� 10� 3 2.1 2:21� 10� 2 1.0
80 4:75� 10� 4 2.0 9:25� 10� 4 2.0 1:14� 10� 2 1.0
160 3:45� 10� 4 0.5 3:63� 10� 4 1.4 5:60� 10� 2 1.0

Table 5.1: Relative errors for u with rates of convergence.

Convergence results are shown in Table 5.1. We discovered that the moving mesh

value x2N̂ � 1 i;
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5.8.1 Numerically solving Richards' equation using �nite e lements

We solve the equations for the �nite element velocity potential (5.50), the �nite element

velocity (5.51), and the �nite element solution (5.52) as systems of equations using piecewise

linear expansions, 	 =
P

	 j � j , U =
P

Uj � j , V =
P

Vj � j , which we substitute into each

equation in turn, with wi = � i .

The equation for the �nite element velocity potential (5.50 ) becomes

Z b(t )

a(t )
U

2

4
NX

j =0

	 j
@�j
@x

3

5 @�i
@x

dx = �
Z b(t )

a(t )

@�i
@x

2

4Un� 2
NX

j =0

Uj
@�j
@x

+ Un

3

5 dx; (5.53)

where U, 	 and � are piecewise linear forms ofu,  and w respectively. In (5.53) it is

convenient to substitute the summation for Ux , but not U. Interchanging the summation

and integral gives

NX

j =0

	 j

" Z b(t )

a(t )

@�j
@x

@�i
@x

U dx

#

= �
NX

j =0

Uj

" Z b(t )

a(t )

@�j
@x

@�i
@x

Un� 2 dx

#

�
Z b(t )

a(t )

@�i
@x

Un dx; (5.54)

for i = 0 ; 1; : : : ; N . In [5]

K ij (U) =
Z b(t )

a(t )
U

@�i
@x

@�j
@x

dx; Si (U) =
Z b(t )

a(t )

@�i
@x

Un dx;

are de�ned. Using these de�nitions (5.54) can be written

NX

j =0

K ij (U)	 j = �
NX

j =0

K ij (Un� 2)Uj � Si (U): (5.55)

Hence, to determine the mesh velocity potential at timet = tm we solve the matrix system

K (U)	 = � K (Un� 2)U � S(U); (5.56)

where K (Un ) = K (Un )m is the sti�ness matrix de�ned by (5.55), S(U) = S(U)m is the

vector of Si (U) values, 	 = 	 m is the vector (	 m
1 ; : : : ; 	 m

N ))T , and U = U m is the vector

(Um
1 ; : : : ; Um

N ))T . We solve (5.56) to �nd the velocity potential vector 	 .



Richards' equation 5.8. Using �nite elements

where M = M m
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5.8.2 Numerical details

We provide speci�cs to the general algorithm given in the thelast section to solve Richards'

equation. We use nodesxm
j , j = 0 ; 1; : : : ; N , and time-step � t.

Preliminaries

To begin we determine the constant vectorg from (5.60) using the initial mesh and initial

conditions. Using an initial equispaced mesh we calculate the initial mass matrix M 0
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The velocity potential 	 m is substituted into (5.57) to give the mesh velocity V m

V m = ( M m ) � 1H m 	 m ; (5.65)

where the vector H m 	 m
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conserves mass). Although, this is not the case when the meshis moved by balancing the

partial masses with the ux term.

We showed that the mass of the solution remains constant, andthat the centre of

mass moves in one direction. Knowing that the centre of mass moves in one direction allows

us to check that our numerical solution is exhibiting the expected behaviour.



6
The Crank-Gupta Problem

6.1 Introduction

In [38] Crank and Gupta introduced the so-called oxygen-consumption problem for the

evolution of oxygen concentration in a tissue, in which oxygen is absorbed at a prescribed
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Fig. 6.1: Diagrammatic representation of the Crank-Gupta solution.
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PDE (6.1) into the variables � and � to obtain an ODE. The left-hand side of (6.1) is the
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where � 2 [0; 1].

To �nd a solution to (6.13) we consider a series solution of the form

s =
1X

k=0

ck � k ; (6.14)

where ck are constants to be determined. By substituting (6.14), and its derivatives,

into (6.13) we achieve the equation

2c2 � c0 +
1X

k=1

�
(k + 2)( k + 1) ck+2 +

k
2

ck � ck

�
� k = 0 : (6.15)

For (6.15) to hold, each coe�cient of � k , k = 0 ; 1; : : : must be zero, hence

for k = 0 ; 2c2 � c0 = 0 ;

for k = 1 ; 2; 3: : : ; (k + 2)( k + 1) ck+2 + ck

�
k
2

� 1
�

= 0 :

Thus,

c2 =
c0

2
; (6.16)

ck+2 =
ck

�
1 � k

2

�

(k + 2)( k + 1)
: (6.17)

Substituting k = 2 into (6.17) gives

c4 =
c2

�
1 � 2

2

�

3 � 4
= 0 :

Thus, by induction, ck = 0 for even k � 4. Substituting for odd values of k gives

k = 1 : c3 =
c1

2 � 22 � 2 �c
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Let k = 2m + 1, m = 1 ; 2; 3; : : :, such that for m = 1 ; 3; 4; 5; 6 (k = 3 ; 5; 7; 9; 11) we observe

that

c2m+1 =
(� 1)m+1

22m� 1 �
(2m � 2)!

(2m + 1)!( m � 1)!
� c1; (6.18)

and we write (6.17) as

c2m+3 =
(1 � 2m)
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then am converges.

To prove (1) we take bm ,

bm =
(2m � 2)!

22m� 1(2m + 1)!( m � 1)!
;

=
1

22m� 1(2m + 1)(2 m)(2m � 1)(m � 1)!
:

We immediately observe that asm ! 1 , bm ! 0.

To prove (2) we note that

bm+1

bm
=

22m� 1(2m + 1)!(2 m)!(m � 1)!
22m+1 (2m + 3)!(2 m � 2)!m!

=
2m(2m � 1)

4m(2m + 3)(2 m + 2)
:

Since 4m(2m + 3)(2 m + 2) > 2m(2m � 1),

bm+1

b
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6.3.2 Determining the mesh velocity

The total mass � is updated with the mesh, where the mesh velocity is given by substitut-

ing (6.23){(6.25) into (3.23), and evaluating the integral, so that

~vj (t) =
1

~uj (t)

 

_� (t)cj �
Z ~x j (t )

0

�
@2u
@x2

� 1
�

dx

!

;

for interior points j = 1 ; : : : ; N � 1. Substituting for _� (t) from (6.28) gives

~vj (t) = �
1

~uj (t)

 

cj b(t) +
@u
@x

�
�
�
�
~x j (t )

� ~x j (t)

!

: (6.30)

We use a discretised form of (6.30),

vm
j = �

1
um

j

"

cj xm
N +

 
um

j +1 � um
j � 1

xm
j +1 � xm

j � 1

!

� xm
j

#

; j = 1 ; 2; :::; N � 1: (6.31)

We note that the term in the curved brackets can be replaced by(4.37) (where n = 1), to

give a discretisation of (6.30) which is more accurate on a non-uniform mesh, namely

vm
j = �

1
um

j

2

6
6
4cj xm

N +

0

B
B
@

1
� xm

j +

�
� um

j +
� xm

j +

�
+ 1

� xm
j �

�
� um

j �
� xm

j �

�

1
� xm

j +
+ 1

� xm
j �

1

C
C
A � xm

j

3

7
7
5 ; (6.32)

for interior nodes j = 1 ; 2; : : : ; N � 1, where �( �)m
j �

= ( �)m
j � (�)m

j � 1 and �( �)m
j +

= ( �)m
j +1 � (�)m

j .

The new meshxm+1
j , j = 1 ; : : : ; N � 1, is obtained from vm

j by a time-stepping scheme.

At the outer boundary u(b; t) = 0 from (6.25), so we seek an alternative method

to determine xm
N . One approach is to extrapolate the boundary velocity vm

N from the

internal velocities, and then update the position of the outer node along with the internal

nodes. However, extrapolation sometimes produces a numerical solution with a boundary

that moves out (the boundary should move in [38]). As an alternative, we consider the

asymptotic behaviour of the solution near the outer boundary. At the outer boundary

u = 0 so ut = 0, reducing (6.1) to

@2u
@x2

�
�
�
�
x= b

= 1 :

The Taylor expansion for u(x) about x = b is

u(x) = u(b) + ( b� x)
@u
@x

�
�
�
�
x= b

+
(b� x)2

2
@2u
@x2

�
�
�
�
x= b

+ : : : ;
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hence,

u(x; t ) �
1
2

(~x j � b(t))2; (6.33)

close tob(t). Therefore, for the discrete case wherej = N � 1 and t = tm+1 , we make the

approximation

um+1
N � 1 �

1
2

(xm+1
N � 1 � xm+1

N )2;

which gives the following formula for the outer node,

xm+1
N = xm+1

N � 1 +
q

2um+1
N � 1; (6.34)

taking the positive square root.

6.3.3 Recovering the solution

Once the updated meshxm+1
j has been determined, the updated solutionum+1

j , j =

1; : : : ; N � 1, is given by either (3.25) for a uniform mesh, or (3.26) for anon-uniform

mesh. The solution at the inner boundary um+1
0 is calculated using

um+1
0 =

� m+1

� 0

x0
1u0

0

xm+1
1

;



The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

6.3.5 Time-stepping schemes

Explicit schemes

The simplest method to time-step the mesh is the �rst order explicit Euler time-stepping

scheme,

xm+1
j � xm

j

� t
= vm

j ;

for j = 1 ; : : : ; N � 1. We substitute for vm
j from (6.31) or (6.32). At the inner boundary

vm
0 = 0, and at the outer boundary we use (6.34). The explicit Euler time-stepping scheme

requires small � t so that the xm
j remain stable, and to avoid mesh tangling. We also

implemented the adaptive predictor-correcter Runge-Kutta methods in Matlab. We used

the solver, ODE15s, which is designed to solve a sti� system.Implementing this solver

produced results similar to results from ODE23 and ODE45 (which are not designed for

sti� systems), inferring that the method does not lead to a sti� system.

A semi-implicit scheme

The semi-implicit scheme described inx3.4.2 updates the meshxm
j only. Thus, for a method

that requires the total mass � to be updated as well, we cannot use it in the same way, since

�
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to polar coordinates usingr 2 = x2 + y2 giving

@u
@t

=
1
r

@
@r

�
r

@u
@r

�
� 1; (6.35)

with boundary conditions

@u
@r

= 0 at r = 0 ; t > 0; (6.36)

u = 0 ;
@u
@r

= 0 at R(t); t > 0; (6.37)

and initial conditions

u =
1
2

(1 � r )2; r 2 [0; 1]; t = 0 : (6.38)

As with the one-dimensional case, we introduce the dependentvariable ~r j (t), j = 0 ; :::; N ,

to represent theN +1 nodes on the radius of the mesh, which are dependent ont. The mesh

is initially equally-spaced. We de�ne the velocity of the j -th node s(~r j ; t) on the radius to

be

s(~r j ; t) = ~sj (t) =
d~r
dt

:

We assume conservation of relative mass (as with the one-dimensional case) such that

dj =
1

 (t)

Z ~r j (t )

0
u(r; t )r dr; (6.39)

where dj is a constant in time,  (t) is the total mass

 (t) =
Z R(t)

0
u(r; t )r dr; (6.40)

and R(t) is the outer boundary. Speci�cally, for initial condition s (6.38),

 (0) =
Z 1

0
(1 � r )2r dr =

7
12

;

and

dj =
12
7

Z ~r j (0)

0
(1 � r )2r dr =

12
7

r j (0)2 �
8
7

r j (0)3 +
3
7

r j (0)4:

Given a mesh ~x j (t) and solution ~uj (t) = u(~x j (t); t), we can evaluate the total mass

 (t) directly from (6.40). To evaluate an updated value of the total mass (which is required

for determining the updated solution) we compute _ (t), and then approximate the total
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Substituting for @u
@t from (6.35), and cancelling the last term due to the boundarycondi-

tion (6.36),

_ (t)dj =
Z ~r j (t )

0

�
@
@r

�
r

@u
@t

�
� r

�
dr + ~uj (t)~r j (t)~sj (t):

Evaluating the integral and using the boundary condition (6.36),

_ (t)dj = ~r j (t)
@u
@r

�
�
�
�
~r j (t )

�
~r j (t)2

2
+ ~uj (t)~r j (t)~sj (t):

Hence, the radially symmetric Crank-Gupta mesh velocity is given by

s(~r j ; t) =
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via the Taylor series. This is the same as the Cartesian case (6.33), therefore we can de�ne

the outer node by

r m+1
N = r m+1

N � 1 +
q

2um+1
N � 1; (6.44)

taking the positive square root.

6.4.3 Recovering the solution

To approximate the updated solution um+1
j , we equate (6.39) at timest = tm+1 and t = 0

between the points ~r j +1 and ~r j � 1,

1
 (tm+1 )

Z r m +1
j +1

r m +1
j � 1

u(r; t m+1 )r dr =
1

 (0)

Z r 0
j +1

r 0
j � 1

u(r; 0)r dr:

Approximating the integrals by the mid-point rule,

um+1
j =

 m+1

 0

�
r 0

j +1 � r 0
j � 1
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6.5.1 Determining the rate of change of total mass

The total mass � is updated using an explicit time-stepping scheme, where_� is given

by (6.1), (6.3) and (6.48) substituted into (3.21),

_� (t) =
Z b(t )

0

�
@2u
@x2

� 1
�

dx = 1 � et � 1 � b(t):

Comparing this to (6.28) from the original problem, we observe that 1 � e
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of (6.52)

vm
j =

1
um

j

0

B
B
@cj _� m �

0

B
B
@

1
� xm

j +

�
� um

j +
� xm

j +

�
+ 1

� xm
j �

�
� um

j �
� xm

j �

�

1
� xm

j +
+ 1

� xm
j �

1

C
C
A + xm

j + etm � 1 � 1

1

C
C
A ; (6.54)

where �( �)m
j �

= ( �)m
j � (�)m

j � 1 and �( �)m
j +

= ( �)m
j +1 � (�)m

j , and vm
0 = 0 at the inner boundary.

At the right boundary, u(b; t) = 0, as for the original Crank-Gupta problem, so we seek an

alternative method to determine xm
N . Again, either vm

N is extrapolated from the internal

velocities using a polynomial, or equation (6.34) is employed since the outer boundary is

the same as with the original problem.

The new meshxm+1
j is obtained from vm

j by a time-stepping scheme.

6.5.3 Recovering the solution

The solution is recovered in the same manner as with the original Crank-Gupta problem in

Chapter 6.3, i.e. by either (3.25), for a uniform mesh, or (3.26), for a non-uniform mesh.

The solution at the inner boundary um+1
0 is calculated using a one-sided approximation

of (3.25)

um+1
0 =

� m+1

� 0

(x0
1 � x0

0)u0
0

xm+1
1 � xm+1

0

:

At the outer boundary, um+1
N +1 = 0 from the zero boundary condition (6.25).

6.5.4 The full algorithm

Given a total mass � m , meshr m
j , and solution um

j , j = 0 ; : : : ; N , at tm , m � 0:

� Compute the rate of change of mass_� m from (6.51);

� Compute the mesh velocityvm
j from (6.53) or(6.54);

� Compute the updated meshxm+1
j by a time-stepping scheme;

� Compute the updated solution um+1
j from (3.25) or (3.26).

The last case we consider is the original Crank-Gupta problemwhere we move the nodes

to preserve partial mass balances, as inx3.3.
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6.6 A partial mass balance moving mesh method

The Crank-Gupta PDE has a source term so we can use the moving mesh method described

in x3.3, with the same notation, i.e. ~x j (tm ) � xm
j denotes thej th node of the mesh with

N + 1 nodes, at time m� t, m = 0 ; 1: : :, and um
j � ~uj (tm ) and vm

j � ~vj (tm ) denote the

solution and mesh velocity at these nodes. The partial masses of the solution at m� t are

� m
j � � j (tm ).

We model the Crank-Gupta problem by the PDE (3.27) with

Hu �
@2u
@x2

and S(x; t ) � � 1; a(t) = 0 � x � b(t); (6.55)

from (6.1). Hence, the mass balance relation (3.29) is

d
dt

Z ~x j (t )

0
u(x; t ) dx = �

Z ~x j (t )

0
1 dx:

This relation implies that given a mesh ~x j (tm ), with corresponding solution ~uj (tm ) and par-

tial masses � j (tm ), we can calculate the updated partial masses �j (tm+1 ), mesh ~x j (tm+1 )

and solution ~uj (tm+1 ) by computing the rate of change of partial masses_� j (tm ) and mesh

velocity ~vj (tm ).
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6.6.3 Recovering the solution

The solution is updated using the approach given inx3.3, namely, by either (3.34) or (3.35),

the latter being more accurate for a non-uniform mesh. At the outer boundary, um+1
N +1 = 0

from (6.2). At the inner boundary we use the trapezoidal approximation

� m+1
0 =

1
2

(um+1
1 + um+1

0 )xm+1
1 ;

thus

um+1
0 =

2� m+1
0

xm+1
1

� um+1
1 :

6.6.4 The full algorithm

Given the partial masses � m , meshxm
j , and solution um

j , j = 0 ; : : : ; N , at tm , m � 0:

� Compute the rate of change of partial masses_� m
j from (6.58);

� Compute the mesh velocityvm
j from (6.60) or (6.61);

� Compute the updated meshxm+1
j by a time-stepping scheme;

� Compute the updated solution um+1
j from (3.34) or (3.35).

In the last four sections we have given the details for applying the moving mesh method to

the Crank-Gupta problem. In the next section we present the numerical results.

6.7 Numerical results

We have looked at solving the Crank-Gupta problem

� in the one-dimensional case, using the moving mesh method which preserves partial

mass fractions (seex6.3);

� in the radially symmetric case, using the moving mesh methodwhich preserves partial

mass fractions (seex6.4);

� in the one-dimensional case, using alternative boundary conditions and the moving

mesh method which preserves partial mass fractions (seex6.5);

� in the one-dimensional case, using the moving mesh method which preserves partial

mass balance (seex6.6).
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an exact solution. Both comparisons indicated convergenceand accuracy of our moving

mesh method that conserves partial masses. It appears that the mesh and solution have

second-order convergence. There was no analysis of the method that balances the partial

masses with the source term since we found that the boundary moves out very rapidly,

which is highly inaccurate, so we conclude that it is not a suitable method to solve the
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A Tumour Growth Problem 7.4. A mathematical model of tumour g rowth

Indeed, it has been noted that a conceptual framework withinwhich all these new

(and old) data can be �tted is lacking [49]. In [47] it states t hat `clinical oncologists and

tumour biologists posses virtually no comprehensive theoretical model to serve as a frame-

work for understanding, organising and applying these data'. By being educated as to

which mechanisms are critical to the essence of tumour growth, these could possibly be

manipulated to our advantage. As Byrne [30] remarks, `In order to gain such insight, it is

usually necessary to perform large numbers of time-consuming and intricate experiments

- but not always. Through the development and solution of mathematical models that
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growth.

Whilst di�erences between such models exist, many exhibit the following features:

� Equations describing the di�usion of nutrients or growth fa ctors in and around the

tumour region (generally parabolic in type);

� Mass transfer equations describing the dynamic variation in tumour tissue (generally

hyperbolic);

� Mass balance equations describing the growth of the tumour (generally elliptic).

All of these equations are generally coupled via nonlinear interactions. For instance, the
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as to compare results with our moving mesh strategies, of which there are three. The details

of these strategies are given inx7.6, where we solve the tumour growth model numerically

using each one in turn. The results from the �xed mesh method and the three moving mesh

methods are discussed inx7.7. Finally, in x7.8 we conclude that a moving mesh method can

prove to be an elegant and accurate numerical approach that updates the mesh smoothly

with the solution of the orginal model, whilst preserving chosen features of the model such

as local mass balance, or relative partial masses. However,since the mesh depends upon

the model, care must be taken when choosing a feature of the model to preserve.

Model formulation

The model assumes the tumour consists of two phases, water and live cells, which are

treated as incompressible uids whose densities are equal,to leading order. The model is

derived by applying mass balance to the cell and water phases. Further assumptions made

are that inertial e�ects are negligible, no external forces act on the system, and, on the

timescale of interest, the cell and water phases can be treated as viscous and inviscid uids

respectively. The model is applied to a tumour whose growth is parallel to the x-axis, and is

symmetric about its midpoint. We have altered the notation t o be consistent with previous

chapters.

From [22] the non-dimensional model, in Cartesian form, for the volume fraction

of cells u(x; t ) 2 (0; 1), with t > 0 and x 2 [0; b(t)], where b(t) is the tumour radius, is

comprised of

@u
@t

+
@

@x
(wu) =

(1 + s1)u(1 � u)C
1 + s1C

�
s2 + s3C
1 + s4C

u =: S(u; C); (7.1)

@
@x

�
�u

@w
@x

� u
u � u�
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The normalised model has initial and boundary conditions

b = 1 ; u = u0(x) at t = 0 ; (7.5)

w =
@C
@x

= 0 at x = 0 ; t > 0; (7.6)

�
@w
@x

�
u � u�

(1 � u)2 H(u � umin ) = 0 ; C = 1 ;
@b
@t

= w at x = b; t > 0: (7.7)

Remark 7.4.1 We observe that for the case of zero viscosity� = 0 , equations (7.1)

and (7.2) reduce to

@u
@t

=
@

@x

�
1 � u

k
@

@x
� (u)

�
+ S(u; C);

where � (u) = u u� u
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To determine um
N , we discretise the boundary condition (7.13) by taking values (�)m

N � 1
2

and (�)m
N + 1

2
(the average about (�)m

N ) to obtain

1
2

2

4�
wm

N +1 � um
N

� �
� bm

um
N + 1

2
� u�

(1 � um
N + 1

2
)2 H(um

N + 1
2

� umin )

3

5

�
1
2

2

4�
wm

N � wm
N � 1

� �
� bm

um
N � 1

2
� u�

(1 � um
N � 1

2
)2 H(um

N � 1
2

� umin )

3

5 = 0 : (7.16)
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Step 3: Calculate the mesh velocityvm
j . This step will di�er for each of Methods A, B and

C, and is detailed below.

Step 4: Update the mesh points by the explicit Euler scheme applied to (7.17)

xm+1
j = xm

j + � tvm
j ; j = 0 ; 1; : : : ; N;

with vm
j obtained from Step 3.

Step 5: Calculateum+1
j . The details of this step will again di�er for each method used, and

are given in x7.6.1, 7.6.2 and 7.6.3 respectively.

When comparing this scheme to the �xed numerical mesh algorithm in x
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of x7.5 in the sense that the transformation is e�ected exactly by the boundary velocity.

However, whenu is calculated in x7.5 using a velocity derived from the transformation, a

quasi-Lagrangian form of the mass balance equation is used in which the velocity is incorpo-

rated using a chain rule. The result is an extra term which cannot be written in divergence

form. By contrast, in Method A we have preferred to use an integral approach which already

incorporates local conservation.

7.6.2 Method B

Under this strategy, in Step 3 the velocity of each node is determined by the cell velocity
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and a(t) = 0, b(t) = b(t). Let the total mass be

� (t) =
Z b(t )

0
u(x; t ) dx;

as given by (3.19). We de�necj to be the mass fraction given by (3.19), so that

cj =
1

� (t)

Z ~x j (t )

0
u(x; t ) dx; (7.26)

and calculate ~x j (t) such that cj remains constant with respect to time.

The total mass � will be required in order to approximate u, so we �rst determine _�

by substituting (7.25) into (3.22) giving,

_� (t) =
Z b(t )

0
S(u; C) �

@
@x

(wu) dx + ubvb
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for ~uj (t) = u(~x j ; t) 6= 0. We use the composite trapezoidal rule on the integral to obtain a

discrete form of (7.29) at time t = tm ,

vm
j =

cj _� m

um
j

�
1

um
j

j � 1X

i =0

1
2

(xm
i +1 � xm

i )(Sm
i +1 + Sm

i ) + wm
j : (7.30)

Using (7.30), the new meshxm+1
j is computed as in Step 4. To approximate the updated

solution um+1
j in Step 5, we use (3.25),

um+1
j =

� m+1

� 0

�
x0

j +1 � x0
j � 1

�

�
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the numerical method. The processes of Method A and Method B are very similar, and

because Method A behaves as in Figure 7.5, it is reasonable to
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8
Summary and Further Work

Work on moving meshes has evolved considerably over recent years, becoming a versatile

tool to accurately simulate a wide range of problems. The keyadvantage of a moving

mesh is its ability to adjust its distribution to focus on are as of interest, such as a moving

boundary or blow-up. In this thesis we have discussed one suchmethod, a �nite di�erence



Summary

considered balancing the partial masses (8.1) with a sourceterm, where appropriate.

We applied these methods to a number of moving boundary problems to investigate

the e�ectiveness of this moving mesh approach. The problemswe numerically solved to

demonstrate how our moving mesh approach increased in complexity, initially looking at

problems which conserve mass: the PME and Richards' equation, both of which are uid

ow problems. Then we looked at a problem with a variable mass: the Crank-Gupta

problem, which is used to model oxygen-di�usion through tissue. Lastly, we considered

an avascular tumour growth model, which is a system for whichthe mass increases over

time. This has three PDEs (two quasi-steady) which need to be updated at each time-level.

The quasi-steady PDEs were solved using �nite di�erence on anirregular mesh, but this

process did not compromise the moving mesh method. We summarise the application of

each moving mesh approach in turn, and then discuss the time-stepping schemes used.

Preserving mass fractions

Preserving mass fractions was applied in all the problems. We examined the accuracy in all

cases and found that the numerical solution converged with r



Summary

them to a constant. We saw that balancing the partial masses to the ux term of Richards'

equation provided results that initially appear satisfactory, but when compared to the mass

conserving approach we notice that the alternative method is less accurate. For the Crank-



Summary

Conclusions and further work

We conclude that the mass-conserving approach, with an expli
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