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Abstract

A generalised prime system P is a sequence of positive reals p1; p2; p3; ::: satisfying

1 < p1 � p2 � ::: � pn � ::: and for which pn �! 1 as n �!1. The fpng

called generalised primes (or Beurling primes) with the products pa1
1 :p

a2
2 ::::p

ak
k

(where k 2 N and a1; a1; :::; ak 2 N [ f0g) forming the generalised integers (or

Beurling integers).

In this thesis we study the generalised (or Beurling) prime systems and we

examine the behaviour of the generalised prime and integer counting functions

�P(x) and NP(x) and their relation to each other, including the Beurling zeta

function �P(s):

Speci�cally, we study a problem discussed by Diamond (see [7]) which is to

determine the best possible � in NP(x) = �x + O(xe�c(log x)�); for some � > 0;

given that �P(x) = li(x) + O(xe�(log x)�); � 2 (0; 1): We obtain the result that

� � �:

We study the connection between the asymptotic behaviour (as x ! 1) of

the g-integer counting function NP(x) (or rather of NP(x)� ax ) and the size of

Beurling zeta function �P(�+ it) with � near 1 (as t!1). We show in the �rst

section how assumptions on the growth of �P(s) imply estimates on the error term

of NP(x), while in the second half we �nd the region where �P(� + it) = O(tc);

for some c > 0, if we assume that we have a bound for the error term of NP(x).

Finally we apply these results to �nd O and 
 results for a speci�c example.
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Chapter 1

Introduction

In the late nineteenth century, Weber (see [30]) de�ned N(x) to be a number of



function of g-primes less than or equal to x and NP(x) to be the counting func-

tion of g-integers less than or equal to x (counting multiplicities). Beurling was

interested to see under which conditions on N and the multiplicative structure,

a Prime Number Theorem holds.

In 1937, Beurling proved (see [6]) that if NP(x) = ax + O
�

x



The problem is to determine the best possible (i.e. largest possible) �; given �:

Furthermore, we investigate the connection between the size of the Beurling

zeta function �P(� + it) with � near 1 (as t!1) and the error term of NP(x).

As part of this investigation, if we assume that �P(s) has polynomial growth in



In the �rst section of this chapter, we generalise Balanzario’s result by adapt-

ing his method to show that for any 0 < � < 1 there is a continuous g-prime

system for which (1) and (3) hold with � = �. Thus we cannot (in general) make

� > �:

In the second half of this Chapter we use the method developed by Diamond,

Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the theory of)

probability measures that there is a discrete system of Beurling primes satisfying



Chapter 2

Preliminary concepts

In this chapter we will give details of some relevant concepts and known results

which we shall need in Chapters 3-6. In particular, for the de�nitions of gener-

alised prime systems (especially the continuous version) we need the Riemann-

Stieltjes integral and Riemann-Stieltjes convolution.

In the second half of this chapter we summarize some (relevant) results about

the Riemann-Zeta function. In particular, we will give a brief survey of some

of the known lower bounds for the Riemann-Zeta function in the critical strip

0 < � < 1. We consider also the upper bounds for the Riemann-Zeta function

which are unconditional bounds in that strip and those which are conditional on

the unproved Riemann Hypothesis.

We begin with the Riemann-Stieltjes integral.

2.1 Riemann-Stieltjes integral

Let f and � be bounded (real or complex) functions on [a; b]: Let P = fx0; x1; x2; ��

�; xng be a partition of [a; b] and let tk 2 [xk�1; xk] for k = 1; 2; � � �; n: We de�ne

a Riemann-Stieltjes sum of f with respect to � as

S(P; f; �) =
nX
k=1

f(tk)
�
�(xk)� �(xk�1)

�
:

De�nition 1. A function f is Riemann Integrable with respect to � on [a; b], if

there exists r 2 R having the following property: For every � > 0; there exists a

5



partition P� of [a; b] such that for every partition P �ner than P� and for every

choice of the points tk in [xk�1; xk]; we have



bounded variation with f(x) = 0; 8x 2 (�1; 1): Let S+ � S such that for any

f 2 S+; f is an increasing function. For a 2 R; let Sa = ff 2 S : f(1) = ag and

S+
a = Sa \ S+.

De�nition 3. For any f; g 2 S; we de�ne the convolution (or Riemann-Stieltjes

convolution) by

(f � g)(x) =

Z x

1�
f

�
x

t

�
dg(t):

We note that (S; �) is a commutative semigroup and the identity (with respect

to �) is i(x) = 1 for x � 1 and zero otherwise.



2.2 The Riemann zeta function

We will move our attention to the Riemann zeta function which we need for

later chapters. In particular, we shall give a brief survey of some of the known

results for the order of the Riemann Zeta function in the critical strip 0 < � < 1:

We consider both unconditional results and those results conditional upon the

Riemann hypothesis.

De�nition 4. The Riemann zeta function is de�ned for <s > 1

�(s) =
1X
n=1

1

ns
:

The above series converges absolutely and locally uniformly in the half-plane

<s > 1 and de�nes a holomorphic function here. Moreover, �(s) has an analytic

continuation to the whole complex plane except for a simple pole at 1 with residue

1 and is of �nite order (i.e. �(� + it) = O(tA); for some A > 0 dependent on

�). The Riemann zeta function �(s) had been studied by Euler (1707-1783) as a

function of real variable s. The notion of �(s



the Euler product) nor for <s < 0 (by the Functional Equation) except for so

called ‘trivial zeros’ at �2n (n 2 N). Furthermore, it is well known that no zeros

of �(s) lie on either of the lines <s = 1 and <s = 0 (see [29]). Note that �(s) is

the Mellin transform of [x] (see [2]).

Notation

We de�ne the big oh notation O (or�), little oh notation o, asymptotic equality

of functions � and 
 notation as follows:

De�nition 5. If g(x) > 0 for all x � a; we write

f(x) = O(g(x)) or f(x)� g(x);

to mean that the quotient
���f(x)
g(x)

��� is bounded for x � a; that is there exists a constant

M > 0 such that

jf(x)j �Mg(x); for all x � a:

An equation of the form f(x) = h(x)+O(g(x)) means that f(x)�h(x) = O(g(x)):

De�nition 6. Let g(x) > 0 for all x � a; then the notation

f(x) = o(g(x)) as x!1;

means that

lim
x!1

f(x)

g(x)
= 0:

An equation of the form f(x) = h(x)+o(g(x)) as x!1 means that f(x)�h(x) =

o(g(x)) as x!1:

De�nition 7. Let g(x) > 0 for all x � a: If

lim
x!1

f(x)

g(x)
= 1;

we say that f(x) is asymptotic to g(x) as x ! 1; and write f(x) � g(x) as

x!1:

We de�ne 
 notation as follows:

9



De�nition 8. Let F;G be functions de�ned on some interval (a;1) with G � 0.

We write

F (t) = 
(G(t));

to mean the negation of the F (t) = o(G(t)). That is, there exist a constant c > 0

such that jF (t)j � cG(t) for some arbitrarily large values of t:

Further, we write F (t) = 
+(G(t)) and F (t) = 
�(G(t)) if there exist a

constant c > 0 such that F (t) � cG(t) and F (t) � �cG(t) hold respectively for

some arbitrarily large values of t:

We write F (t



This will be used to facilitate the proof of a result in Chapter 6 as part of our

purpose in that chapter.

Proposition 2.4. For 3
4
� � � 1� log log logN

2 log logN
; we have

max
1<t<N

j�(� + it)j � exp

�
(1 + o(1))

(logN)1��

16(1� �) log logN

�
;

for N � N0 independent of �:

Proof. Take 3
4
� � �



Thus,

log ��;2(2 � 3 � � � P ) �
X
p�P

log(1 +
1

p�
) �

X
p�P

1

p�
� 1

2

X
p�P

1

p2�
�
X
p�P

1

p�
� �;

for some absolute constant � > 0, since x � log(1 + x) � x� x2

2
; for 0 � x � 1:

We end the proof of the Proposition by showing that for every � > 0; and

3
4
� � � 1� log log logN

2 log logN
; we haveX

p�P

1

p�
� (1� �) (logN)1��

8(1� �) log logN
; for N � N0(�):

Now, we have X
p�P

1

p�
=

Z P

2�
t��d�(t) =

�(P )

P �
+ �

Z P

2�

�(t)

t�+1
dt:

By the Prime Number Theorem �(x) � (1 � �) x
log x

for x � x0(�). This tells us

that, X
p�P

1

p�
� (1� �)P

1��

logP
+ �(1� �)

Z P

2

t��

log t
dt� 
:

for some absolute constant 
 > 0: Here

�(1� �)
Z P

2

t��

log t
dt � �(1� �)

logP

Z P

2

t��dt =
�(1� �)

(1� �) logP

�
P 1�� � 21���

Thus, for any � > 0, and P � P0(�), we haveX
p�P

1

p�
� (1� �)P

1�� � 2

logP
+ �(1� �) P 1�� � 2

(1� �) logP
� 
 = (1� �) P 1�� � 2

(1� �) logP
� 
:

Now, we have P � 1
8

logN: So,

P 1�� � 2

(1� �) logP
� (logN)1��

8(1� �) log logN
;

when 1� � � log log logN
2 log logN

(actually, for (1� �) log logN � 1). Therefore, from the

above for 1� � � log log logN
2 log logN

; we have

max
1<t<N

j�(� + it)j � ��(N
1
8 )� 1 � max

n�N
1
8

p
��(n)� 1

� exp

(
1

2

X
p�P

1

p�
� �

)
� 1 � exp

�
(1 + o(1))(logN)1��

16(1� �) log logN

�
;

for N � N0 independent of �: The proof of Proposition 2.4 is completed.
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O�results for �(s) in the critical strip



with B = 100 (see [27] page 98). More research on this subject has been done to

improve (2.1). In 1975, Elson proved (2.1) with B = 86 and A = 2100; see [12].

Ching in his paper (1999) improved this obtaining (2.1) with B = 46 and A = 175:

Moreover, Heath Brown (in unpublished work (see page 135 in [29])) proved (2.1)

with B = 18:8 and some A > 0:

O�results for �(s) on the Riemann Hypothesis

If we assume the truth of the unproved Riemann Hypothesis the bounds can be

improved signi�cantly. This will give us the strongest conditional upper bound

for the Riemann Zeta function available at present in the critical strip 1
2
� � � 1:

For the cases in which � = 1



Chapter 3

Beurling prime systems

In this chapter we give the necessary background to Beurling (or generalised)

prime systems and the associated Beurling zeta function. It is bene�cial to give

historical context to this subject.

In the late nineteenth century, Weber (see [30]) de�ned N(x) to be the number

of the integral ideals in a �xed algebraic number �eld F with the norm not

exceeding x and proved that N(x) = ax + O(x�); as x ! 1 for some a > 0

and � < 1: Early in the twentieth century, Landau (see [22]) used Weber’s result

and the multiplicative structure to prove the Prime Ideal Theorem, which asserts

that the number of the distinct prime ideals of the ring of integers in an algebraic

number �eld F with the norm not exceeding x is a asymptotic to x
log x

; as x tends

to in�nity. His result showed that the only ‘additive’ result needed was Weber’s.

3.1 Discrete g-prime systems

In 1937, Beurling (see [6]) considered number systems with only multiplicative

structure, and was interested in �nding conditions over the counting function of

integers N(x) which ensure the validity of the Prime Number Theorem. Beurling

introduced generalised prime systems as follows:

De�nition 9. A generalised prime system P is a sequence of positive reals

p1; p2; p3; ::: satisfying 1 < p1 � p2 � ::: � pn � ::: and for which pn �! 1

15



as n �!1.

The numbers fpngn�1 are called generalised primes (or Beurling primes). The

associated system of generalised integers (or Beurling integers) N = fnigi�1 can

be formed from these. That is, the numbers of the form

pa1
1 :p

a2
2 ::::p

ak
k (�)

where k 2:p 1:p1



This in�nite product may be formally multiplied out to give the Dirichlet series

�P(s) =
P

n2N
1
ns
: This is also the Mellin transform of NP :

The important question in this work is: how do the distributions of P and N

relate to each other?

Much of the research on this subject has been about connecting the asymptotic

behaviour of the g-prime and g-integer counting functions de�ned in (3.1) as

x �! 1. Speci�cally, given the asymptotic behaviour of �P(x), what can be

said about the behaviour of NP(x)? On the other hand, given the asymptotic

behaviour of NP(x), what can be said about the behaviour of �P(x)? Therefore,

this research concentrates on �nding

Nn



2. For P = f2; 2; 3; 3; 5; 5; 7; 7; :::g (each prime occurs twice), with (�) forming

N to be the set of integers such that each integer occurs d(n) times, where

d(n) is the number of divisors of n. That is,

N = f1; 2; 2; 3; 3; 4; 4; 4; 5; 5; 6; 6; 6; 6; 7; 7; :::g;

therefore �P(x) = 2�(x) = 2
P

p�x 1 and

NP(x) =
X
n�x;
n2N

d(n):

Then the behaviour of these counting functions for large x is NP(x) �

x log x (see [2]) and �P(x) � 2x
log x

;(by the Prime Number Theorem).

3.2 Continuous g-prime systems

The notion of g-primes as de�ned earlier can be generalised in such a way that

we consider �P(x) and NP(x) as general increasing functions not necessarily step

functions. Such an extension is often referred to loosely as a ‘continuous’ g-prime

system. Indeed Beurling’s Prime Number Theorem is actually proven in this

general setting. In the most general form, the ‘continuous’ g-prime systems are

based on the analogue of �P(x) (=
P1

k=1
1
k
�P(x1=k)) and are de�ned as follows:

De�nition 10. Let �P ;NP be functions such that �P 2 S+
0 and NP 2 S+

1 with

NP = exp��P : Then (�P ;NP) is called an outer g-prime system.

Note that, if �P 2 S+
0 ; then automatically exp��P 2 S+

1 : Hence any �P 2 S+
0

de�nes an outer g-prime system. On the other hand, if NP 2 S+
1 , then NP =

exp��P for some �P 2 S0, but �P need not be increasing (see section 1.3 in [15]).

Here we do not (yet) have the analogue of g-primes (i.e. �P(x)). We introduce

�P(x) as follows:

De�nition 11. A g-prime system is an outer g-prime system for which there

exist �P 2 S+
0 such that

�P(x) =
1X
k=1

1

k
�P(x1=k):

18



We say NP determines a g-prime system if there exists such an increasing

�P 2 S0. As such by M�obius inversion, �P(x) is given by

�P(x) =
1X
k=1

�(k)

k
�P(x1=k); (3.2)

provided this series converges absolutely. To show that this sum always converges

for �P 2 S+, we let ak = �(k)
k

and let bk = �P(x1=k): The partial sums of the

ak are bounded in magnitude by q (some q > 0) since
P1

k=1
�(k)
k

= 0. The sumP1
k=1 jbk � bk+1j converges since bk decreases to zero. By Abel’s summation we

have
NX
k=1

akbk =
N�1X
k=1

Ak(bk � bk+1) + ANbN ;

where An =
Pn

k=1 ak: Therefore,�����
NX

k=M

akbk

����� =

�����
N�1X
k=M

Ak(bk � bk+1) + ANbN

����� � q
N�1X
k=M

jbk � bk+1j+ q jbN j :

This shows that (3.2) always converges whenever �P is increasing.

In general though, �P(x) (as given by (3.2)) need not be increasing (see ex-

ample 2 in this section). We make the following de�nitions (see [4] and [15]):

De�nition 12. For an outer g-prime system (�P ;NP), let  P = �PL: That is,

 P(x) =

Z x

1�
log t d�P(t);

denote the generalizedx



We can write this as

 P(x) =
1X
n=1

X



By (3.2), we �nd

�P(x) =
1X
k=1

�(k)

k
�P(x1=k) =

1X
k=1

�(k)

k

Z x
1
k

1

t� 1
t

log t
dt

=
1X
k=1

�(k)

k

Z x

1

u
1
k � u� 1

k

log u

�
u

1
k
�1
�
du =

Z x

1

1

u log u

1X
k=1

�(k)

k
(u

2
k � 1) du

=

Z x

1

1

u log u

1X
m=1

2m(log u)m

m!

� 1X
k=1

�(k)

k1+m

�
du

=

Z x

1

1

u

1X
m=1

2m(log u)m�1

m! �(1 +m)
du; for x � 1:

This shows that �P 2 S+
0 and therefore we have a g-prime system. More-

over, in this case we have NP(x) = x2; since by (3.3) we haveZ x

1

log t dNP(t) =

Z x

1

NP
�
x

t

�
d P(t) =

Z x

1

NP
�
x

t

��
t� 1

t

�
dt

= x

Z x

1

NP(u)

�
x

u
� u

x

�
du

u2
:

That is,

NP(x) log x�
Z x

1

NP(t)

t
dt = x2

Z x

1

NP(u)

u3
du�

Z x

1

NP(u)

u
du:

By di�erentiating and simplifying, we get d
dx

�NP (x) log x
x2

�
= NP (x)

x3 : Therefore,

logNP(x) = 2 log x+ c; but NP(1) = 1; which means c = 0:

2. Let �P(x) =
R x

1
1�t�c
log t

dt; x � 1; and c > 0: This means that �P and  P



Working with  P(x) is often more convenient than working with �P(x). One

reason is due to the following direct link between �P and  P

��
0
P
�P

(s) =

Z 1
1�

x�sd P(x):

From De�nition 12 above, the following statements

�P(x) = li(x) +O(x�+�); 8� > 0 (3.4)

and

 P(x) = x+O(x�+�); 8� > 0; (3.5)

are equivalent for � 2 [0; 1): Furthermore, we see that �P(x) � �P(x) and

�P(x)� �P(
p
x) =

1X
k=1

�P(x
1
k )

k
� 2

1X
k=1

�P(x
1
2k )

2k

=
X
k�1

�P(x
1
k )

k
� 2

X
k even

�P(x
1
k )

k

=
X
k�1

(�1)k�1�P(x
1
k )

k
� �P(x);

since �P is increasing. This tells us that

0 � �P(x)� �P(x) � �P(
p
x):

Thus, �P(x) = �P(x) +O(�P(
p
x)): Then the following statements

�P(x) = li(x) +O(x�+�); 8� > 0 and  P(x) = x+



1. In 1937, Beurling (see [6]) proved that

NP(x) = ax+O

�
x

(log x)


�
for some 
 >

3

2
) �P(x) � x

log x
;

(generalises Prime Number Theorem), and he showed by example that the

result can fail for 
 = 3
2
:

2. In 1977, Diamond (see [10], Theorem 2) as a type of converse of Beurling’s

PNT, showed the following: suppose that
R1

2
t�2
����P(t)� t

log t

��� dt < 1:

Then there exists a positive constant c such that NP(x) � cx as x ! 1:

Diamond in his work was seeking weakest possible conditions on �P(x)

which are su�cient to deduce that NP(x) � cx as x!1: So, for example

it follows from Diamond’s work that

�P(x) =
x

log x
+O

�
x

(log x)1+�

�
for some � > 0 ) NP(x) � cx:

3. In 1903, Landau (see [22]) proved that

NP(x) = ax+O(x�); (� < 1); (3.6)

implies �P(x) � x
log x

: Furthermore, he proved that (3.6) implies

�P(x) = li(x) +O(xe�k
p

log x)

for some k > 0:

4. In 2006, Diamond, Montgomery and Vorhauer (see [11]) showed Landau’s

result is best possible.That is, they proved that there is a discrete g-prime

system for which (3.6) holds but

�P(x) = li(x) + 
(xe�q
p

log x) for some q > 0:

5. In 1969, Malliavin (see [24]) showed that for � 2 (0; 1) and a; c > 0

NP(x) = ax+O(xe�c(log x)



6. In his paper 1970, Diamond (see [7]) improved Malliavin’s result and con-

versely he showed that if

�P(x) = li(x) +O(xe�c(log x)�);

holds for � 2 (0



then by Diamond’s result we see �(�) � �
1+�

: Further, from Balanzario’s result

we see that �(1
2
) � 1

2
: Diamond and Bateman [5] raised the interesting problem

to determine �(�) for 0 < � < 1:

In our work we study Balanzario’s method in his paper and modify it to show

(by adapting the method) that there is a (continuous) g-prime system for which

(3.7) and (3.8) hold with � = � (any 0 < � < 1), this showing �(�) � �: Further-

more, we prove that there is a discrete g-prime system with the same property

�(�) � �: This is more challenging since we need �P(x) de�ned as a step function.

For this we use the method developed by Diamond, Montgomery, Vorhauer [11]

and Zhang [31] to prove by using (the theory of) probability measures that there

is a discrete system of Beurling primes satisfying this same property. We illustrate

this in Chapter 4.

From the known results (listed above), we see that for 0 � �; � < 1 the

statement

 P(x) = x+O(x�); (3.9)

does not necessarily imply

NP(x) = �x+O(x�); � > 0: (3.10)

Actually, the example given in chapter 6 shows that (3.9)=)(3.10) is false for

g-prime systems. For general g-prime systems that (3.10) does not imply (3.9) for

discrete g-prime systems follows from a result of Diamond, Montgomery, Vorhauer

paper [11] shows by using the probabilistic construction that there is a discrete

system for which (3.10) does not imply (3.9).

Discrete g-prime systems where the functions NP(x) and  P(x) are simulta-

neously ‘well-behaved’, that is (3.9) and (3.10) hold have been investigated by

Hilberdink (see [17]). In particular, if (3.9) and (3.10) hold then one of � or � is

at least 1
2

(see Theorem 1: in [16]). We shall require the following two results in

our subsequent work.
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Lemma 3.2. Suppose that for some � 2 [0; 1); we have (3.9) holds. Then �P(s)

has analytic continuation to the half-plane H� = fs 2 C : <s > �g except for a

simple (non removable) pole at s = 1 and �P(s) 6= 0 in this region.

Proof. See �rst part of Theorem 2.1 in [17].

Lemma 3.3. Suppose for 0 � �; � < 1 both (3.9) and (3.10) hold. Then for

� > � = maxf�; �g; and uniformly for � � � + 
 (any 
 > 0), �P(s) is of zero

order for � > �. Furthermore,

��
0
P
�P

(s) = O
�
(log t)

1��
1��

+�
�
;

and

�P(s) = O
�

expf(log t)
1��
1��

+�g
�
;

for all � > 0:

Proof. The proof of this lemma is given for discrete g-prime systems [17, Theorem

2.3], but holds more generally for outer g-prime systems as well (since no use is

made of �P(x)).

Assume that we have a discrete g-prime system such that (3.10) holds with

� < 1
2
: It was shown in [16] that this implies �P(s) has non-zero order for � < � <

1
2
:



Chapter 4

Examples of continuous and

discrete g-prime systems

In this chapter we introduce a problem discussed by Diamond [7](as mentioned

brie
y in section 3.3), which is the following:

Assume �P(x)� li(x)� xe�(log x)� ; for some � 2 (0; 1); so that

NP(x) = �x+O(xe�c(log x)�); (4.1)

for some �; c > 0 and � > 0: The problem is to determine the best possible �;

given �: So, let �(�) be the supremum of such � over all systems satisfying (3.7)

for given � 2 (0; 1): It follows from Malliavin’s result that �(�) � 10�: Diamond

in 1970 (see [8]) proved that �(�) � �
1+�

: In 1998, Balanzario [3] proved (by giving

a concrete continuous example) that there exists a continuous g-prime system for

which � = � = 1
2

in (3.7) and (3.8). Thus, �(1
2
) � 1

2
:

In the �rst section of this chapter, we generalise Balanzario’s result by adapt-

ing his method to show that for any 0 < � < 1 there is a continuous g-prime

system for which (3.7) and (3.8) hold with � = �: Thus, �(�) � �.

In the second section we do more challenging work using the theory developed

by Diamond, Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the

theory of) probability measures that there is a discrete g-prime system for which

(3.7) and (3.8) hold with � = �: Thus, �(�) � � for discrete g-prime systems.
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4.1 Continuous g-prime System

Theorem 4.1. Let 0 < � < 1. Then there exists an outer g-prime system P for

which

�P(x) = li(x) +O(xe�(log x)�); (4.2)

and

NP(x) = �x+ 
�(xe�c(log x)�); (4.3)

for some positive constants � and c. Thus, �(�) � �:

We de�ne �P(x) (of g-primes) as in Balanzario’s paper by

�P(x) =

Z x

1

1� t�k

log t

(t)dt; (4.4)

where


(t) = 1�
X
n>n0

�n
cos(bn log t)

tan
; t � 1:

Here k and n0 are positive constants and �n; an and bn are sequences to be chosen.

In fact, we shall take k = 4; n0 = 3; �n = 2
n2 ; but it is notationally more convenient

to use k; n0 and �n. The sequences bn and an are de�ned (in terms of another

sequence xn) as follows:

bn = expf(log xn)�g and an =
1

(log xn)1��

�
=

1

(log bn)�
�
;

where � = 1
�
� 1. Here xn = expfea!ng; for some a > 0 and ! > 1 which we

shall choose later. Note that, an ! 0 while bn ! 1 as n ! 1: So, xn+1 =

expf(log xn)!g; with x1 = expfea!g: We choose ! so that �! � 1:

The function �P(x) is increasing since for t � 1;�����X
n>n0

�n
cos(bn log t)

tan

����� � X
n>n0

2

n2
� 1:

First, we show that (4.2) holds.

Proposition 4.2. If �P(x) is given by (4.4), then

�P(x) = li(x) +O(xe�(log x)�):
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Proof. We have

�P(x) =

Z e

1

1� t�k

log t

(t)dt+

Z x

e

1� t�k

log t

(t)dt;

the �rst integral is just O(1), therefore we get

�P(x) =

Z x

e

1� t�k

log t
dt�

X
n>n0

�n

Z x

e

1� t�k

log t
� cos(bn log t)

tan
dt+O(1)

=

Z x

e

dt

log t
�
X
n>n0

�n

Z x

e

cos(bn log t)

tan log t
dt+O(1);

because k > 1. Now we show that the second term is O(xe�(log x)�): Notice that����Z x

e

cos(bn log t)

tan log t
dt

���� =

����Z log x

1

cos(bnt)

t
et(1�an)dt

����
=

�����
�

sin(bnt)

tbn
et(1�an)

�log x

1

� 1

bn

Z log x

1

sin(bnt)

t
et(1�an)(1� an �

1

t
)dt

�����
� 2

x1�an

bn log x



at all points of continuity of NP(x): The main di�culty will be to show (4.3),

that is to �nd the 
�result for NP . The proof forms the rest of this section.

Now, let MP(x) =
R x

1
NP(t)dt. Then for x > 1

MP(x) =
1

2�i

Z b+i1

b�i1
�P(s)

xs+1

s(s+ 1)
ds; b > 1:

We already know that (4.1) holds for some � � �
1+�

(see result 5 in 3.3). So,

to prove that equation (4.3) is true it su�ces to show that for some positive

constants c; �

MP(x) =
�

2
x2 + 
�

�
x2e�c(log x)�

�
: (4.5)

Actually, if (4.3) does not hold then

NP(x) = �x+ o(xe�c(log x)�);

so that,

MP(x) =

Z x

1

f�t+ o(te�c(log t)�)gdt =
�

2
x2 + o

�
x2e�c(log x)�

�
;

which contradicts (4.5). So, (4.3) must hold if (4.5) holds. Our aim is therefore

to prove that (4.5) is true for some c; � > 0. For this purpose we estimate the

integral ofMP(x) and the simplest way to do so is by calculating the contribution

of the singularities of the integrand g(s) = �P(s) xs+1

s(s+1)
. We rewrite �P(s) as an

in�nite product to enable us to read o� the singularities of g(s). The sequences

fang and fbng are de�ned earlier will give us the position of the singularities of

�P(s) in the complex plane, and from this we can deduce the statement (4.5).

Extend the sequences an; bn and �n by de�ning for n > n0, a�n = an, b�n = �bn
and ��n = �n: Then we use the following proposition to rewrite the zeta function

as required.

Proposition 4.3. For <(s) > 1;

�P(s) =
s+ k � 1

s� 1

Y
jnj>n0

�
1� k

s� 1 + an � ibn + k

��n
2

: (4.6)
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Remark: Recall the de�nition of 
(t) and let


N(t) = 1�
X

n0<n�N

�n
cos(bn log t)

tan
; t � 1:

Then 
N(t) converges uniformly to 
(t) for t � 1 since j
(t)� 
N(t)j �
P

n>N
2
n2 �

2
N

.

Proof of Proposition 4.3. We have

cos(b log t)

ta
� 1� t�k

log t
=

1

2
(t�a+ib + t�a�ib)

1� t�k

log t
:

So, for <(s) > 1; we have

� d

ds

Z 1
1

t�s
cos(b log t)

ta
� 1� t�k

log t
dt

=
1

2

Z 1
1

(t�s�a�ib + t�s�a+ib � t�s�a�ib�k � t�s�a+ib�k)dt

=
1

2

�
1

s� 1 + a+ ib
� 1

s� 1 + a+ ib+ k
+

1

s� 1 + a� ib
� 1

s� 1 + a� ib+ k

�
=

1

2

�
d

ds
log

�
s� 1 + a+ ib

s� 1 + a+ ib+ k

�
+

d

ds
log

�
s� 1 + a� ib

s� 1 + a� ib+ k

��

=
d

ds
log

(�
1� k

s� 1 + a+ ib+ k

� 1
2
�

1� k

s� 1 + a� ib+ k

� 1
2

)
:

Hence, we have

�
Z 1

1

t�s
cos(b log t)

ta
� 1� t�k

log t
dt

= log

(�
1� k

s� 1 + a+ ib+ k

� 1
2
�

1� k

s� 1 + a� ib+ k

� 1
2

)
+ constant:

By taking the limit as <(s) tends to in�nity we see that the constant of integration

is zero. Taking a = b = 0 givesZ 1
1

t�s
1� t�k

log t
dt = log

s+ k � 1

s� 1
:

Thus from the de�nition of 
N(t), we getZ 1
1

t�s
1� t�k

log t

N(t)dt = log

�
s+ k � 1

s� 1

�
+

X
n0<jnj�N

�n log

�
1� k

s� 1 + an � ibn + k

� 1
2
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= log

8<:s+ k � 1

s� 1

Y
n0<jnj<N

�
1� k

s� 1 + an � ibn + k

��n
2

9=; :

By taking the limit as N ! 1, we conclude the proof since 
N(t) ! 
(t) as

N !1 and log �P(s) =
R1

1
t�s d�P(t).

The representation of �P(s) given by (4.6) holds not only in the half plane

<(s) > 1; but also in a larger region. Let D� be the region de�ned by

D� = fs = �+ it 2 C : � > �k+ 2; s 6= �(1�an + ibn) + (1� �)(1�an + ibn� k);

for any 0 � � � 1; jnj � n0g:

By a theorem of Weierstrass on the uniform convergence of analytic functions,

the function

’(s) =
Y
jnj>n0

�
1� k

s� 1 + an � ibn + k

��n
2

;

is analytic in D� : The equation

�P(s) =
s+ k � 1

s� 1
’(s); � > 1;

gives us an analytic continuation of �P(s) to D� with s = 1 removed, where �P(s)

has a simple pole. Notice that, since the zeros of ’(s) are of fractional order, we

avoid problems of multiple-valuedness by restricting the domain of de�nition of

�P(s) to D� . We try to give a suitable upper bound for j�P(s)j in the extended

domain of de�nition. For this purpose we need the following

Proposition 4.4. If s = � + it is such that � > �k + 2; � =
P

n>n0
�n; and

s 2 D� ; then

j’(s)j � (k + 1)e�:

Proof. For s = �+ it, we �nd an upper bound for ’(s) which holds for arbitrary

positive sequences fang and fbng such that fang is decreasing to zero and fbng

is increasing to 1. We have

bn+1 � bn = expf(log xn+1)�g � expf(log xn)�g

= expf(log xn)!�g � expf(log xn)�g � �; (some � > 0);
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where � depends on � and !: So, we choose ! su�ciently large such that � � 2k.

Therefore the interval (t� 2k; t + 2k) contains at most one element of fbng: We

call this element (if exists) by bn(t); so we can write

j’(s)j =
����1� k

s� 1 + an(t) � ibn(t) + k

����
�n(t)

2 Y
jnj>n0;n6=n(t)

����1� k

s� 1 + an � ibn + k

�����n2 :

Since an > 0; we have � � 1 + k > 1 and hence����1� k

s� 1 + an(t) � ibn(t) + k

����
�n(t)

2

�
����1 +

k

� � 1 + k

����
�n(t)

2

� 1 + k:

Now, when n 6= n(t),����1� k

s� 1 + an � ibn + k

�����n2 = exp

�
�n
2

log

����1� k

s� 1 + an � ibn + k

�����

= exp

�
�n
2
< log

�
1� k

s� 1 + an � ibn + k

��
= exp

�
�n
2
<
�
� z � z2

2
� z3

3
� � � � �

��
;

where

jzj =
���� k

s� 1 + an � ibn + k

���� � k

j=(s)� bnj
=

k

jt� bnj
� k

�
� k

2k
=

1

2
:

Therefore

j’(s)j � (k + 1)
Y

jnj>n0;n 6=n(t)

exp

�
�n
2

�
jzj+

����z2

2

����+

����z3

3

����+ � � � �
��

� (k + 1) exp

8<:1

4

X
jnj>n0

�n

�
1 +

1

2
+

1

4
+ � � � �

�9=; � (k + 1)e�;

as required.

For k = 4; n0 = 3 and �n = 2n�2 we have

j’(s)j � 5 exp

(X
n>3

2

n2

)
< 9; if � > �2:

Corollary 4.5. For s 2 D� such that



Proof.

j�P(s)j =
����s+ k � 1

s� 1
’(s)

���� � 9

����1 +
k

s� 1�
�
�
��



Figure 4.1:

Now we write

MP(x) = I1 + � � �+ I5 +
X

n0<jmj�n

Jm + fk’(1)
x2

2
+ x(1� k)’(0)g;

where

Im =
1

2�i

Z
�m

�P(s)
xs+1

s(s+ 1)
ds; m = 1; 2; :::; 5;

Jm =
1

2�i

Z
Cm

�P(s)
xs+1

s(s+ 1)
ds; n0 < jmj � n:

Here, as above, Cm is the mth horizontal loop with imaginary part equal to bm.

Consider �rst the integral I3. In fact, we do not have one integral but many of

them. This is because the vertical segment �3 is broken at each horizontal loop

Cm: However, on each vertical component of �3 the integrand is bounded by the

same constant which is 45. Thus, since R(s) = �3
2

on �3; we have

jI3j �
1

2�

Z 1
�1

45
x�

3
2

+1��(3
2

+ it)(�1
2

+ it)
��dt = O(

1p
x

): (4.8)
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Let b = 1 + 1
log xn

: Then jI2j and jI4j are both O
�
( x
Tn

)2
�
; since

jI2j ; jI4j �
1

2�

Z 1+(log xn)�1

� 3
2

45
x2+(log xn)�1

T 2
n

d� � 8

T 2
n

x2+(log xn)�1

= O(
x2

T 2
n

): (4.9)

Now we consider the integrals I1 and I5: Each of jI1j and jI5j is at most

1

2�

Z 1
Tn

45
x2+(log xn)�1

t2
dt � 8x2 exp

(
1 +

�
1

log xn

�2
)

1

Tn
= O(

x2

Tn
): (4.10)

Therefore, we get

MP(x) =
�x2

2
+

X
n0<jmj�n�1

Jm + fJ�n + Jng+O

�
x2

Tn

�
: (4.11)

We estimate each term in the right hand side of (4.11) separately. Since log x =

log xn + o(1) we get

x2

Tn
= x2 expf(log xn)�g = x2 expf(log x)� + o(1)g:

From this and from equation (4.11) we get

MP(x) =
�x2

2
+

X
n0<jmn xn + o



� 2 exp
n
�(log x)1� 1��

!

o
:

Hence, X
n0<jmj�n�1

Jm � 30 x2e�(log x)1� 1��
!

X
jmj>n0

1

b2
m

= O

�
x2e�(log x)1� 1��

!

�
:

We see that 1� 1��
!
� 2�

�+1
= � since ! is taken su�ciently large, so equation

(4.12) becomes

MP(x) =
�x2

2
+ fJ�n + Jng+O

�
x2e�(log x)�

�
; (4.13)

It remains to study the expression J�n + Jn. Denote by J
0
n and J

00
n the integrals

along the line segments C
0
n C

00
n lying respectively above and below the branch cut

Cn so that Jn = J
0
n + J

00
n . Now, if we write

s = 1� an + ibn + te



To deal with the integral over (0; (log x)��) rewrite the integrand as follows:

�P(s)

s(s+ 1)
= (s� 1 + an � ibn)

�n
2 fn(s); say;

where

fn(s) =
(s+ 3)

s(s+ 1)(s� 1)(s+ an � ibn + 3)
�n
2

Y
jmj>n0;m 6=n

�
1� 4

s+ am � ibm + 3

��m
2

:

(4.15)

Here fn(s



Since Jn = J
0
n + J

00
n ; becomes

Jn = �
sin ��n

2
x2�an+ibn

�(log x)
�n
2

+1
Sn +O

�
x2e�(log x)1��

�
: (4.18)

Since J�n = �Jn; we have

Jn + J�n = (Jn + �Jn =)2<(Jn):

Our next step is to estimate the integral Sn appearing in (4.18). For this we

obtain lower and upper bounds for fn(s) in D(zn; 1) (that is js� znj � 1, s =

1� an + ibn � y). For the upper bound we notice that jsj � bn: Thus���� (s+ 3)

s(s+ 1)(s� 1)

���� � bn + 6

(bn � 2)3
� 2bn

(bn=2)3
=

16

b2
n

:

Also

js+ an � ibn + 3j
�n
2 > (4� js� 1 + an � ibnj)

�n
2 � 3

�n
2 � 1:

Now we want to estimate from above the product appearing in the de�nition of

fn in (4.15). As in the proof of Proposition 4.4 we have����1� 4

s+ am � ibm + 3

���� � 1 +
4

j=(s)� bmj
� 1 +

k

�
� 1 +

k

2k
=

3

2
; for m 6= n:

Thus the product in (4.15) is in modulus less than

Y
jmj>n0;m 6=n

�
3

2

��m
2

�
Y
jmj>n0

�
3

2

� 1
m2

�
�

3

2

�2
P1
j=1

1
j2

< 4:

Thus we have proved

Proposition 4.7. For js� (1� an + ibn)j � 1; then jfn(s)j � 64
b2n
:

This and Cauchy’s inequalities give the following

Corollary 4.8. For all j = 1; 2; 3; ::: jan;jj � 64
b2n
:

Now we estimate the lower bound for fn(s) in D(zn; 1):

jsj � js� 1 + an � ibnj+ j1� an + ibnj � 1 + 1 + janj+ jbnj � 3 + bn:
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Thus���� (s+ 3)

s(s+ 1)(s� 1)

���� � js+ 3j
(bn + 4)3

� jsj � 3

(bn + 4)3
� bn � 1� 3

(bn + 4)3
�

1
2
bn

(2bn)3
=

1

16b2
n

:

Each term in the in�nite product in (4.15) is����1� 4

s+ am � ibm + 3

���� � 1� 4

js+ am � ibm + 3j
� 1� 4

j=(s)� bmj
� 1�k

�
� 1� k

2k
=

1

2
:

Therefore Y
jmj>n0;m 6=n

����1� 4

s+ am � ibm + 3

�����m2 � Y
jmj>n0

�
1

2

� 1
m2

>
1

10
:

Thus we have

Proposition 4.9. For js� (1� an + ibn)j � 1; we have

jfn(s)j � 1

160b2
n

:

With all these inequalities we can estimate the integral Sn; the function oc-

curring in (4.18), as follows:

Sn =

Z (log x)1��

0

e�tt
�n
2 fn

�
1� an+ ibn �

t

log x

�
dt

=

Z (log x)1��

0

e�tt
�n
2

1X
j=0

an;j

�
�t

log x

�j
dt

= an;0

Z (log x)1��

0

e�tt
�n
2 dt+

1X
j=1

an;j

Z (log x)1��

0

e�tt
�n
2

�
�t

log x

�j
dt:

For the second term we get, by Corollary 4.8,�����
1X
j=1

an;j

Z (log x)1��

0

e�tt
�n
2

�
�t

log x

�j
dt

����� �
1X
j=1

64

b2
n

�
1

log x

�j� Z 1
0

e�tt
�n
2 dt

�
�

1

log x

��
64

�



The integral Sn in (4.18) is

Sn = an;0

�
�(

1

2
�n + 1) +O

�
log xe�(log x)1��

��
+O

�
1

b2
n(log x)�

�
: (4.19)

Since an;0 = fn(1 � an + ibn) and �(1
2
�n + 1) ! 1 as n ! 1, from Proposition

4.9 we �nd

jSnj �
d0

b2
n

�
1� 2 log xe�(log x)1�� � d1

(log x)�

�
� de�2(log x)� ; d > 0

for some d0; d1 > 0 and for x su�ciently large, that is for n is su�ciently large

(since x is a sequence depending on n). We use this lower bound of the integral

Sn appearing in equation (4.18). Now consider the other factor in that equation,

sin ��n
2

�
x2�an

�
1

log x

��n
2

+1

� �n
�
x2e�an log x � 1

2(log x)2

� ax2e
� log x

(log xn)1�� � 1

(log x)2(log log xn)2
; for some a > 0;

using �n = 1
n2 and n � log log xn

!�1
: From the above bound on Sn and (4.18), we get

jJnj � ax2 exp

�
�
�

c0 log x

(log xn)1�� + 2(log xn)�
��
� ax2e�c(log x)� ; 0 < � < 1;

(4.20)

for some constants a; c0; c > 0 and for su�ciently large n.

Our aim is to obtain large values for 2<(Jn) compared with the other error

term of (4.13). For this purpose we recall equation (4.18)

Jn = J
0

n + J
00

n = �
sin ��n

2
x2�an+ibn

�(log x)
�n
2

+1
Sn +O

�
x2e�(log x)1��

�
;

We can rewrite the above equation as follows,

A =
Jn

x2�an
= Bxibn + C;

where B = � sin(��n
2

)

�

�
1

log x

��n
2

+1
some�6 209.893 Td [(2)]TJ/F21 7.9701 Tf 10.093 3.125 Td [())]TJ
ET
qa9-0.c[(O)]TJ/F29 11.9552 Tf 11.264 13.23 Td [(�)]TJ/F23 11.9552 Tf 7.14 -13.27 Td [(x)]TJ/F21 7.9741 Tf 6.652 4.338 Td [(2)]TJ/F25 5.9776 Tf 4.498 -0.996 Td [(n)]TJ/F21 7.97552 Tf 5.853 0 5[]0-3 l S

2(logx)1�

x



From de�nition of B we have argB = argSn+�: The main term (involving the �

function) on the right hand side of equation (4.19) is independent of r. Now, as

r runs from �1 to +1, the argument of Sn (and therefore argB) does not exceed

2�, since the last two terms are much smaller than the �rst one. This tells us

that, as r runs from �1 to +1,�
bn log xn + argB

�
+ bn log

�
1 +

r

log xn

�
;

runs through an interval centred somewhere in�
bn log xn � 2�; bn log xn + 2�

�
:

The highest point is at least

bn log xn � 2� + bn log

�
1 +

1

log xn

�
;

whereas the lowest point is at most

bn log xn + 2� + bn log

�
1 +

�1

log xn

�
:

Therefore the length of (4.21) is

� bn log

�
1 +

1

log xn

�
� 4� � bn

1 + log xn
� 4� �!1; as n �!1:

For large n we choose values (r+ and r�) of r appropriately such that

<
�
A� C
jBj

�
= +1 and <

�
A� C
jBj

�
= �1:

For the �rst case we have <( Jn
x2�an ) = <(A) = jBj+ <(C); that is,

<(Jn) = jBjx2�an + <(C)x2�an

� jJnj � jCjx2�an + <(C)x2�an

= jJnj+O(x2e�(log x)1��
)

� A0x
2e�c(log x)� :

Therefore, for su�ciently large n we have

<(Jn) � A0x
2e�c(log x)� ; for r = r+ and A0; c > 0: (4.22)

42



Similarly we can get

<(Jn) � �A0x
2e�c(log x)� ; for r = r� and A0; c > 0: (4.23)

From the above inequalities and the following equation

MP(x) =
�x2

2



4.2 Discrete g-prime System

In the above section, we found a continuous g-prime system for which � = �.

Now we show that it may be adapted to give a discrete version. Finding discrete

system satisfying this same property is generally more challenging. The reason

for this is that if we have �P(x) de�ned as a step function, then seeing the

singularities of the Beurling zeta function is di�cult.

We shall use the method developed by Diamond, Montgomery, Vorhauer [11]

and later Zhang [31] which uses (the theory of) probability measures to �nd

discrete systems of Beurling primes.

Theorem 4.10. Let 0 < � < 1. Then there is a discrete g-prime system P for

which

�dP(x) = li(x) +O(xe�(log x)�); (4.26)

and

N d
P(x) = �x+ 
�(xe�c(log x)�); (4.27)

for some positive constants � and c. Thus �(�) � � for discrete systems.

To �nd the g-prime satisfying (4.26) we use the following lemmas from Zhang’s

paper [31].

Lemma 1. Let f(�) be a nonnegative-valued Lebesgue measurable function on

(�1;1) with support [1;1): Assume that there is increasing function F (x) on

(�1;1) with support [1;1) satisfyingZ x

1

f(�)d� � F (x);

Z x+1

x

f(�)d� �
p
F (x)(1 + log x);

log x = o(F (x));Z x

1

��1
p
F (�)d� �

p
F (x);

and

F (x+ 1)� F (x):
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Let

1 � �0 < �1 < �2 < � � � < �k < �k+1 < � � �

be a sequence such that �k !1 as k !1 and such that

pk =

Z �k

�k�1

f(�)d�;

satis�es 0 < pk < 1 for k > k0: Then there is a subsequence �kj ; j = 1; 2; ::: such

that X
�kj�x

�itkj �
X
�k�x

�itk pk �
p
F (x)

�p
1 + log x+

p
log(t+ 1)

�
; (4.28)

for 1 � x <1 and t � 0:

Lemma 3. If the sequence �k in Lemma 1 satis�es alsoX
�k�x

�itk pk �
Z x

1

�itf(�)d� �
p
F (x)

�p
1 + log x+

p
log(t+ 1)

�
; (4.29)

for F (x) � c log(t+ 1) with a constant c > 0 then there is a subsequence �kj ; j =

1; 2; ::: such thatX
�kj�x

�itkj �
Z x

1

�itf(�)d� �
p
F (x)

�p
1 + log x+

p
log(t+ 1)

�
; (4.30)

for 1 � x <1 and t � 0:

Lemma 4. Let f(x) be a Lebesgue measurable function on (�1;1) with support

[1;1) satisfying

0 � f(x)� 1� x�1

log x
:

Then the function

F (x) =
x

1 + log x
;

satis�es the conditions of Lemma 1 and both the sequences

(1) �k =
p

log(k + k0); k = 0; 1; 2; :::

and

(2) �k = logk

0k

); k= 0; 1; 2



satisfy the conditions of Lemma 1 and Lemma 3. Therefore both (1) and (2)

have a subsequence �kj ; j = 1; 2; ::: satisfying

X
�kj�x

�itkj �
Z x

1

�itf(�)d� �
p
x

 
1 +

s
log(t+ 1)

1 + log x

!
; (4.31)

for 1 � x <1 and t � 0:

Now, consider the continuous function

h(�) =
1� ��k

log �

(�); with 
(�) = 1�

X
n>n0

�n
cos(bn log �)

�an
; � � 1:

That is, the function h = �
0
P where �P from Theorem 4.1. Here k; n0; �n; bn and

an as in Theorem 4.1. The function h(�) � 1���1

log �
. So, by Lemma 4 there is a

sequence 1 � �0 � �1 � �2 � �� � �j � �j+1 � � � � such that �j ! 1 as j ! 1

for which X
�j�x

��itj �
Z x

1

��ith(�)d� �
p
x

 
1 +

s
log(t+ 1)

1 + log x

!
;

for 1 � x <1 and t � 0: In particular, when t = 0 we haveX
�j�x

1�
Z x

1

h(�)d� = O(
p
x): (4.32)

We shall take f�jgj�0 as our g-primes. By Proposition 4.2 we get

�dP(x) :=
X
�j�x

1 = li(x) +O(xe�(log x)�) +O(
p
x) = li(x) +O(xe�(log x)�);

with � as in section 4.1. We let

�d
P(x) =

X
n�1

�dP(x
1
n )

n
:

Then

�d
P(x) = li(x) +O(xe�(log x)�); (4.33)

since �d
P(x) = �dP(x) + O(

p
x): This proves (4.26). We estimate N d

P(x) through

its associated zeta function �dP given by

�dP(s) =

Z 1
1�

x�sdN d
P(x) = exp

�Z 1
1�

x�sd�d
P(x)

�
= exp

�Z 1
1�
� log(1� x�s)d�dP(x)

�
:

(4.34)
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This can be written as

�dP(s) = �P(s) exp fF2(s)� F1(s)g ; (4.35)

where �P(s) as in Section 4.1 is analytic in D� and

F1(s) =

Z 1
1

�
��sd�dP(�) + log(1� ��s)d�dP(�)

	
;

and

F2(s) =

Z 1
1

��s
�
d�dP(�)� h(�)d�

	
:

We see log(1 � ��s) = ��s + O(��2



Lemma 4.11. Let a function F (x; t) de�ned for 1 � x <1 and t � 0 be locally

of bounded variation in x and satisfy F (1; t) = 0 and

F (x; t)�
p
x

 
1 +

s
log(t+ 1)

1 + log x

!
:

Given x � x0 > 1, let � � 1
2

+ �; � > 0. ThenZ 1
1

��� dF (�; t)�
p

log(t+ 1):

Proof. Using integration by parts, the integral on the left hand side is

�

Z 1
1

����1F (�; t) d� �
Z 1

1

����
1
2

 
1 +

s
log(t+ 1)

1 + log �

!
d� �

p
log(t+ 1);

since
R1

1
����

1
2d� converges.

Let

g(x; t) =
X
�j�x

��itj �
Z x

1

��ith(�)d�; x � 1:

So, g(x; t) satis�es the conditions of Lemma 4.11. Thus, by Lemma 4.11, we have

F2(� + it) =

Z 1
1

��� (��it dg(�; 0))�
p

log t; t � 2; (4.37)

for � � 1
2

+ �; � > 0:

We shall need to use Tn = exp f(log xn)�g, such that 0 < � < � < 1: Therefore,

F2(� + iTn) = O((log xn)
�
2 ): (4.38)

Also,

F1(s) =

Z 1
1

�
��sd�dP(�) + log(1� ��s)d�dP(�)

	
=

Z 1
1

��sd�dP(�)�
X
m�1

1

m

Z 1
1

��msd�dP(�)

= �
X
m�2

1

m

Z 1
1

��msd�dP(�):

This shows that the integral for F1(s) converges unifomly for � � 1
2

+ � with each

� > 0: Therefore,

F1(s) = O(1); for � � 1

2
+ �; � > 0: (4.39)
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Hence, we see from equations (4.38) and (4.39) that for s = � + iTn; we have

<fF2(s)� F1(s)g � jF2(s)� F1(s)j � b(log xn)
�
2 ; b > 0: (4.40)

This tells us that

<fF2(s)� F1(s)g � �b(log xn)
�
2 ; for some b > 0: (4.41)

From (4.37) and (4.39) we have proved the following

Corollary 4.12. For � + it 2 D� \H 1
2
; we have

�dP



From this we see equation (4.42) becomes

Md
P(x) =

�x2

2
+

X
n0<jmj�n�1

Jdm+fJd�n+Jdng+O

�
x2e�c(log x)

2�
�+1

�
; � > 0: (4.43)

To estimate the second term in the right hand side of equation (4.43) we need to

prove again Proposition 4.6 with �dP(s) instead of �P(s) as follows

Proposition 4.13.X
n0<jmj�n�1

Jdm = O

�
x2e�q(log x)1� 1��

!

�
; for some q > 0:

Proof. Let us consider the integral Jm and let 
m



We see that 1� 1��
!
� 2�

�+1
= � since ! is taken su�ciently large, so equation

(4.43) becomes

Md
P(



where

gn(s) = eF2(s)�F1(s)fn(s):

Here gn(s) is analytic in a disc around the point zn = 1� an + ibn. Therefore By

Proposition 4.7 and equation (4.40) we obtain

jgn(s)j � 64

b2
n

exp f< (F2(s)� F1(s))g � q1

b2
n

e(log xn)
�
2 ; (4.46)

for some q1 > 0. While, by Proposition 4.9 and equation (4.41) we have

jgn(s)j � 1

160b2
n

exp f< (F2(s)� F1(s))g � q2

b2
n

e�(log xn)
�
2 ; (4.47)

for some q2 > 0. Therefore, by (4.18) with gn(s) instead of fn(s) and by (4.47)

we obtain ��Sdn�� � b exp
�
�
�
(log xn)

�
2 + 2(log xn)�

�	
; b > 0; (4.48)

for x is su�ciently large, that is for n is su�ciently large. We use this lower

bound of the integral Sdn: Now considering the other factor in (4.17) (with Sn is

replaced by Sdn), we have

sin ��n
2

�
x2�an+

�
1

log x

��n
2

+1

� �n
�
x2e�anlogx � 1

2(log x)2

� q3x
2e
� log x

(log xn)1�� � 1

(log x)2 (log log xn)2 ; q3 > 0:

where �n = 1
n2 and n � log log xn

!�1
: From the above and (4.48), we get

��Jdn�� � q3x
2

(log x)2 (log log xn)2 exp

�
�
�

log x

(log xn)1�� 1

) 1n)
;
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We next aim to obtain a large value for Jdn + Jd�n = 2<(Jdn) compared with the

other error term of (4.50). To achieve this we can use similar arguments as those



Chapter 5

Connecting the error term of

NP(x) and the size of �P(s)

When proving results linking the asymptotic behaviour of �P(x) and NP(x) one

often uses as a go-between the Beurling zeta function �P(s): Thus an assumption

made on �P(x) is translated into a property of �P(s) which is then shown to

imply a property of NP(x) and similarly vice versa. The property on �P(s) is

often related to its size along the vertical line (or holomorphicity). For example,

if NP(x) = cx + O(x�); � < 1: Then �P(s) is holomorphic in H�nf1g and

�P(� + it) = O(t) for � > �: That is, �P has at most polynomial growth on

vertical lines to the left of 1. Furthermore, bounds on the vertical growth can be

shown via the inverse Mellin transform to imply NP(x) = cx + O(x�): Here we

investigate the connection when NP(x) = cx+
(x1��); and where �P(�+ it) may

have in�nite order. Therefore, if we assume that �P(s) has polynomial growth

along some curve for � < 1, what can be said about the behaviour of NP(x) (as

x!1) and vice versa?

We concentrate in this chapter on determining the connections between the

asymptotic behaviour of the g-integer counting function NP(x) and the size of

Beurling zeta function �P(� + it) with � near 1 (as t!1). We aim to �nd this

link and apply it in chapter 6.
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5.1 From �P to NP

We start with showing how assumptions on growth of �P(s) imply estimates on the

error term of NP(x): Note that in fact, the following theorem is purely analytical

as there is no use of g-prime systems (only the fact that NP 2 S+
1 ).

Theorem 5.1. Suppose that for some � 2 [0; 1); �P(s) has an analytic continu-

ation to the half plane H� except for a simple pole at s = 1 with residue �.

Further assume that for some c < 1;

�P(� + it) = O(tc); for � � 1� 1

f(log t)
;

where f is a positive, strictly increasing continuous function, tending to in�nity.

Then for 
 = 1� c;

NP(x) = �x+O(xe�


2
h�1(
�1 log x));

where h(u) = uf(u).

Proof. We use the bound �P(s) = O(tc); for some c < 1 to �nd an approximate

formula for

MP(x) =

Z x

0

NP(y)dy =
1

2�i

Z b+i1

b�i1
�P(s)

xs+1

s(s+ 1)
ds:

This holds for any b > 1. Pushing the contour to the left of the line <s = b past

the simple pole at 1, we get for any T > 0

MP(x) =
�

2
x2 +

1

2�i

Z
�T

�P(s)
xs+1

s(s+ 1)
ds+

1

2�i

Z b+iT

1� 1
f(log T )

+iT

�P(s)
xs+1

s(s+ 1)
ds

+
1

2�i

Z 1� 1
f(log T )

�iT

b�iT
�P(s)

xs+1

s(s+ 1)
ds+

1

2�i

�Z b+i1

b+iT

+

Z b�iT

b�i1

�
�P(s)

xs+1

s(s+ 1)
ds:

Here �T is the contour s = 1� 1
f(log t)

+ it for a < jtj � T and s = 1� 1
f(log a)

+ it

for jtj � a: The constant a is chosen such that a > e and 1 � 1
f(log a)

> �; (see

Figure 5.1).
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The modulus of the integral over the horizontal line [1� 1
f(log T )

+ iT; b + iT ]

is �����
Z b+iT

1� 1
f(log T )

+iT

�P(s)
xs+1

s(s+ 1)
ds

����� = O

�Z b

1� 1
f(log T )

T cxu+1

T 2
du

�
= O(

x



= O

�
x2

Z 1
log a

exp

�
�(2u+

log x

f(u)
) + (c+ 1)u

�
du

�
+O(x2� 1

f(log a) );

= O

�
x2

Z 1
log a

exp

�
�((1� c)u+

log x

f(u)
)

�
du

�
+O(x2� 1

f(log a) ):

To estimate the integral, we split it intoZ 1
log a

exp

�
�(
u+

log x

f(u)
)

�
du =

�Z A

log a

+

Z 1
A

�
exp

�
�(
u+

log x

f(u)
)

�
du;

for some A > log a and 
 = 1� c:

The �rst integral over (log a;A) is � e�
log x
f(A)

R A
log a
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log x
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Similarly, the right hand side of the same inequality is

=
1

y

�
�xy +

�y2

2
+O

�
x2 expf�
h�1(
�1 log x)g

��
;

hold for any 0 < y < x.

Now, for some � > 0 and some d > 0 we have h(x)� h(x� d) = xf(x)� (x�

d)f(x�d) = x
�
f(x)�f(x�d)

�
+df(x�d) � � > 0:



2. For f(x) = x� for some � > 0. We have h(x) = x1+� and

h�1(log x) = (log x)
1

1+� :

That is,

�P(1� 1

(log t)�
+ it) = O(tc); (c < 1) implies

NP(x) = �x+O
�
x expf�b(log x)

1
1+� g

�
;

for some � > 0; where b = 

�

1+�

2
and 
 = 1� c:
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5.2 From NP to polynomial growth of �P

Our purpose in this section is to obtain a kind of converse of Theorem 5.1. That

is, we �nd the region where �P(�+ it) = O(tc); for some c > 0, if we assume that

we have a bound for the error term of NP(x). In the other words, the reason

of the following theorem is to obtain polynomial growth for �P(� + it), � < 1:

This depends on � and the bound of the error term of NP(x). We shall need to

assume a priori that �P is has an analytic continuation to the left of � = 1 and

that �P(� + it) is bounded above by O(et) for 0 � � < 1:

Theorem 5.2. Suppose that for some � 2 [0; 1); �P(s) has an analytic continu-

ation to the half plane H� except for a simple pole at s = 1 with residue � and

for � > �; �P(� + it) = O(et); (t > 0; t!1):

Further assume that

NP(x) = �x+O(xe�k(x));

for some positive, increasing function k tending to in�nity such that k
0
(x) = o( 1

x
).

Then for some c > 0;

�P(� + it) = O(tc);

for 1� k( e
t

t
)

t
� � < 1� log t

t
, where t is su�ciently large.

Proof. The usual Mellin transform

�P(s) =

Z 1
1�

x�sdNP(x); � > 1

cannot be used directly for � < 1; since the error term is not small enough to

ensure analytic continuation to � < 1: Instead we use a formula which is based

on: X
n�1

an
ns
e�(�n)� =

1

2�i�

Z c+i1

c�i1



We generalize equation (5.3) (with � = 1) in terms of the Beurling zeta func-

tion. The reason for doing this is to �nd an estimate for �P(s) for � < 1. That

is, we show Z 1
1�

x�se��xdNP(x) =
1

2�i

Z c+i1

c�i1
�(!)�P(s+ !)��!d!; (5.4)

holds for � > 0 and c > 0, c > 1� �:

To see this, notice that the right hand side of equation (5.4) is equal

1

2�i

Z c+i1

c�i1
�(!)

�Z 1
1�

x�(s+!)dNP(x)

�
��!d!;

and observe that we can invert the order of integrations by ‘absolute convergence’

since gamma is exponentially small. It becomesZ 1
1�

x�s
�

1

2�i

Z c+i1

c�i1
�(!)(�x)�!d!

�
dNP(x) =

Z 1
1�

x�se��xdNP(x):

Note that both sides of (5.4) are entire functions.

Now we integrate by parts the left hand side of equation (5.4) and on the right

we push the contour to the left of the lines <! = 0 and <! = 1� �. We get

�

Z 1
1

e��xx�sNP(x)dx+ s

Z 1
1

e��xx�s�1NP(x)dx = �P(s) + ��s�1�(1� s)

+
1

2�i

�Z c
0�i1

c�i1
+

Z c
0
+i1

c0�i1
+

Z c+i1

c0+i1

�
�(!)�P(s+ !)��!d!;

for some negative constant c
0
> �1 and c

0
+� > �, since the integrand of the right

hand side of equation (5.4) has singularities at ! = 0 and ! = 1� s with residues

�P(s) and ��s�1�(1� s) respectively.
�
The contribution from the horizontal line

[c
0
+ iy; c+ iy] is����Z c+iy

c0+iy

�(!)�P(s+ !)��!d!

���� =

����Z c

c0
�(x+ iy)�P(� + x+ i(y + t))��(x+iy)dx

����
= O

�
y�

1
2 exp

�
jy + tj � � jyj

2

�Z c

c0
yx��xdx

�
! 0 as y !1:

since j�(x+ iy)j



As we mentioned earlier, we are interested in �nding an estimate for �P(s) for

� < 1: So, we take � < � < 1; and try to estimate each term in the right hand

side of equation (5.5) separately. For the �rst integral we have

�

Z 1
1

e��xx�sNP(x)dx = �

Z 1
1

e��xx�s
�
�x+O(xe�k(x))

�
dx

= ��

Z 1
1

e��xx�s+1dx+O

�
�

Z 1
1

x��+1e�(�x+k(x))dx

�
:

= ��s�1�(2� s)� ��
Z 1

0

e��xx�s+1dx+O

�
�

Z 1
1

x��+1e�(�x+k(x))dx

�
;

since � < 1. Hence

�

Z 1
1

e��xx�sNP(x)dx = ��s�1�(2� s) +O

�
�

Z 1
1

x��+1e�(�x+k(x))dx

�
+O(1);

(5.6)

since
R 1

0
e��xx�s+1dx = O(1).

For the second integral of equation (5.5) we have

s

Z 1
1

e��xx�s�1NP(x)d = s

Z 1
1

e��xx�s�1
�
�x+O(xe�k(x))

�
dx

= s�

Z 1
1

e��xx�sdx+O

�
t

Z 1
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x��e�(�x+k(x))dx;

�
= s��s�1�(1� s)� s�

Z 1

0

e��xx�sdx+O

�
t
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1

x��e�(�x+k(x))dx;

�
since � < 1. Hence

s
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1

e��xx�s�1NP(x)dx = s��s�1�(1�s)+O(
t

1� �
)+O

�
t

Z 1
1

x��e�(�x+k(x))dx

�
;

(5.7)

since
���s� R 1

0
e��xx�sdx

��� = O(t
R 1

0
x��dx) = O( t

1�� ):

Finally, for the vertical line over [c
0 � i1; c0 + i1] we have�����
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0
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�(!)�P(s+ !)��!d!

����� =

����Z 1
�1

�(c
0
+ iy)�P(� + c

0
+ i(y + t))��(c

0
+iy)dy

����
= O

�
��c

0
Z 1
�1

(jyj+ 1)c
0� 1

2 exp

�
jy + tj � � jyj

2

�
dy

�
= O

�
��c

0

et
�
:
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From the above, equation (5.5) becomes

�P(s) = ��s�1�(2� s) + s��s�1�(1� s)� ��s�1�(1� s) +O(
t

1� �
) +O

�
��c

0

et
�

+O

�
�

Z 1
1

x��+1e�(�x+k(x))dx

�
+O

�
t

Z 1
1

x��e�(�x+k(x))dx

�
;

= O

�
�

Z 1
1

x��+1e�(�x+k(x))dx

�
+O

�
t

Z 1
1

x��e�(�x+k(x))dx

�
+O(

t

1� �
) +O

�
��c

0

et
�
;

(5.8)

since for � < 1, the gamma terms cancel each other.

Our aim is to �nd for which � we have �P(s) = O(tc) for some c > 0. So,

putting � = e�t, we see that the last term of the right hand side of equation (5.8)

is O(1), since c
0
> �1. We see also with � = e�t that the term

�

Z 1
1

x��+1e�(�x+k(x))dx = O(t):

Indeed, we split the integral into the ranges (1; B) and (B;1) for some B > 1:

For the �rst integral we haveZ B

1

x1��e�(�x+k(x))dx � B1��
Z B

1

e�k(x)dx

� B1��
�
Be�k(B) +

Z B

1

xk
0
(x)e�k(x)dx

�
� B2��e�k(B);

since k
0
(x) = o( 1

x
): For the range (B;1) the second integral isZ 1
B

x1��e�(�x+k(x))dx � e�k(B)

Z 1
B

x1��e��xdx

= ���2e�k(B)

Z 1
�B

y1��e�ydy

� ���2e�k(B)�(2� �):

Therefore,

�

Z 1
1

x1��e�(�x+k(x))dx� �B2��e�k(B) + ���1e�k(B)�(2� �):

Now, setting B =
q

1
�
, we get

�

Z 1
1

x1��e�(�x+k(x))dx� �
�
2 e�k(

p
1
�

) + ���1e�k(
p

1
�

)�(2� �):
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For 1� � > log t
t

we see ���1 < ��
log t
t = t. Therefore, the �rst term in the right

hand side of the above inequality ! 0 as t!1, whilst the second term is O(t).

Thus, equation (5.8) becomes

�P(s) = O

�
t

Z 1
1

x��e�(�x+k(x))dx

�
+O(

t

1� �
): (5.9)

To estimate the �rst integral in the right hand side of equation (5.9) we split it

into the ranges (1; A) and (A;1) for some A > 1:

The �rst integral is less thanZ A

1

e�k(x)

x�
dx � A1��e�k(A)

1� �
+

1

1� �

Z A

1

xk
0
(x)

x�
e�k(x)dx� A1��e�k(A)

1� �
;

since k
0
(x) = o( 1

x
); whilst the second integral over (A;1) is

� e�k(A)

A�

Z 1
A

e��xdx � e�k(A)

�A�
:

So these tell us thatZ 1
1

x��e�(�x+k(x))dx� A1��e�k(A)

1� �
+
et�k(A)

A�
=
e�k(A)

A�

�
A

1� �
+ et

�
:

Choose A = (1� �)et, equation (5.9) becomes

�P(s) = O

�
t

1� �
�
(1� �)et

�1��
e�k((1��)et)

�
+O(

t

1� �
)

= O
�
t2 exp

�
t(1� �)� k((1� �)et)

	�
+O(t2);

(5.10)

since 1
1�� <

t
log t

; and (1� �)1�� ! 1 as 1� � ! 0: Therefore

�P(� + it) = O(tc) for some c > 0; (5.11)

when

exp
�
t(1� �O(t



since 1� � > log t
t
> 1

t
: This shows that (5.11) holds when

1� � �
k
�
et

t

�
t

:

Therefore, for

1�
k
�
et

t

�
t
� � < 1� log t

t
;

we have �P(s) = O(tc) for some c > 0.

We now illustrate Theorem 5.2 with some examples (of course, in each case

we assume that �P has an analytic continuation to H�).

Examples

1. For k(x) = (log x)�, for some � 2 (0; 1): This means k
�
ex

x

� :



Chapter 6

Application to a particular

example.

In this chapter we investigate a particular example of a g-prime system P0. In this

example,  P



Here E(x) = o(x): We �nd O�results and 
�results for E(x) as an application

of Theorem 5.1 and Theorem 5.2.

Now, equation (6.1) (which implies  0(x) = x + O(1)) tells us that �0(s) has

an analytic continuation to the half plane fs 2 C : <s > 0g except for a simple

pole at s = 1 and �0(s) 6= 0 in this region (see Lemma 3.2). Moreover,

��
0
0

�0

(s) =

Z 1
1�

x�sd 0(x) = �(s)� 1: (6.3)

Here, the �



for some c > 0.

We can improve on this by using Theorem 5.1. The real reason which allows

us to improve on (6.5) is that �0(s) is connected to the Riemann zeta function

and we can use all the available information on �(s).

Theorem 6.1. We have

N0(x) = �x+O
�
x expf�b(log x)

3
5

�
log log x

� 2
5g
�
; (6.6)

for some b > 0. Furthermore, on the Riemann Hypothesis this can be improved

to

N0(x) = �x+O

�
x exp

�
� (1� �) log x log log log x

4 log log x

��
; for every � > 0: (6.7)

Proof. Firstly, we show that  7og



Our aim here is to apply Theorem 5.1. For this purpose we have to show for

which region (� near 1), �0(� + it)� tc for some positive constant c < 1: So, in

order for j�0(� + it)j � tc; to hold for some c < 1; we need

exp
�

(1 + t100(1��)
3
2 )(log t)

2
3

	
� tc:

That is, we need

1 + e100(1��)
3
2 log t � c(log t)

1
3 :

This certainly holds for t su�ciently large if

100(1� �)
3
2 log t � 1

4
log log t:

Therefore, for

� � 1�
�

log log t

400 log t

� 2
3

;

we have

�0(� + it) = O(tc); for some positive constant c < 1:

Thus, we can apply Theorem 5.1. We have f(x) = (400x
log x

)
2
3 , which tells us that

h(x



for some A; a > 0.

However, eu�1
u
� eu for all u � 0. Therefore, in order for log j�0(� + it)j �

c log t; for some positive constant c < 1; it is su�cient to have

exp

�
a(log t)2(1��) + a log log log t

�
� A1 log t;

for some A1; a > 0: That is,

a(log t)2(1��) � log log t+ logA1 � a log log log t:

So, for � � 1 � log log log t�k1

2 log log t
; the above holds for some suitable k1 > 0; if t is

su�ciently large. That is, in this region we have

�0(� + it) = O(tc); for every c > 0:

Now, apply Theorem 5.1 with f(x) = 2 log x
log log x�k1



Proof. If (6.11) is not true thenN0(x) = �x+o(x1��); which implies thatN0(x) =

�x+O(x1��); for some � > 0: Thus we have a ‘well-behaved’ system (see section

3).

 0(x) = x+O(1)

N0(x) = �x+O(x1��); � > 0;

By Lemma 3.3 for 1� � < � < 1; we have

�(s)� 1 = ��
0
0



Proof of Theorem 6.3. If (6.12) is not true then

N0(x) = �x+O(xe�ck(x)) for some c > 1:

We know that �0(s) has an analytic continuation to Cnf1g with a simple pole at

s = 1 and �0(s) 6= 0 in this region. Moreover, by (6.10) we have �0(� + it) �

e�t; 8� > 0 for � � � < 1; (some �xed �). Therefore, we can apply Theorem 5.2

as the conditions are satis�ed. We obtain

�0(� + it) = O(tb); for some b > 0;

for 1 � log t
t
� � � 1 � (1��)c log log log t

log log t
, (any � > 0, and t > t0(�) since

ck( e
t

t
)

t
�

c log log log t
log log t

). Furthermore, (6.9) tells us that

log j�0(s)j �
Z 2

�

j�(u+ it)� 1j du+O(1)� log t;

since �(s) = O(log t) for 1� a
log t
� � � 2, (any a > 0), see Theorem 3.5. in [29].

Let B(t) = (1��)c log log log t
log log t

: Therefore, for 1�B(t) � � � 2,

log j�0(� + it)j � A log t for some A > 0:

Consider concentric circles with centre # + it (for some # > 1) and radii R1 =

#� 1 + B(t)� �(t) and R2 = #� 1 + B(t)� 2�(t); (with �(t) = 1
log log t

). Apply

the Borel-Carath�eodory Theorem to log �0(z); (see 9:1 in [29]). Therefore, for

� � 1�B(t) + �(t) and t � t0; we obtain

jlog �0(� + it)j � 2R2

R1 �R2

A log t+
R1 +R2

R1 �R2

jlog �0(#+ it)j

� A1

�(t)
log t+

D

�(t)
� log t log log t;

for some A1; D > 0:

Now, let C be the circle (see Figure 6.1) with centre 1� dB(t) + �(t) + it; for

some d 2 (1
2
; 1) and radius R = rB(t) for some positive constant r < 1 � d: By

Cauchy’s integral formula

��
0
0

�0

(s) =
1

2�i

Z
C

log �0(z)

(z � s)2
dz for s 2 C:
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Figure 6.1: circle C

Therefore, for s 2 C; we have����� 00�0

(s)

���� � 1

R
max
z on C

jlog �0(z)j � 1

B(t)
log t log log t = o(log2 t):

So, this tells us that for s 2 C

�(s) = o(log2 t); for � � 1� (1� �)c log log log t

log log t
(6.13)

However, by Proposition 6.4, for 1 � � = (1��)c log log log T
log log T

; with (1 � �)c > 1; we

have

max
1<t<T

j�(� + it)j � exp

��
1 + o(1)

�
(log T )1��

16(1� �) log log T

�
= exp

��
1 + o(1)

� (log log T )(1��)c

16(1� �)c log log log T

�
> e2 log log T = (log T )2:

This is a contradiction with (6.13).

In the previous sections we have been trying to obtain good lower and upper

bounds for N0(x)� �x: That is, upper bounds for N0(x)� �x which holds for all
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su�ciently large values of x and lower bound for N0(x) � �x which holds for a

sequence of x’s tending to in�nity [and not necessarly for all (su�ciently large)

values of x]. For the upper bound ofN0(x)��x we have shown some unconditional

O�results and one result was conditional with the unproved Riemann Hypothesis.

Set �(x) = N0(x)��x: A comparison of the O�results and 
�results (based

on Theorem 6.1 and Theorem 6.3) of this chapter, we have shown that

�(x) = 


�
x exp

�
� c log x log log log log x

log log log x

��
for every c > 1;

while on the Riemann Hypothesis,

�(x)� x exp

�
� (1� �) log x log log log x

4 log log x

�
; for every � > 0:

This shows that there is a small gap between these results which re
ects the

great di�culty in determining the behaviours of �0(s) in the strip 1
2
< � < 1: The

interesting question is: What is the true order of this error term?
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6.3 P0 is a g�prime system

We end this chapter by showing that the pair (�0;N0) is a g-prime system. That

is, we show �0 2 S+
0 ; (i.e. �0 is increasing).

Theorem 6.5. (�0;N0) is a g-prime system.

We prove Theorem 6.5 by showing �0 2 S+
0 : Writing

#0(x) =

Z x

1

log y d�0(y); (6.14)

which tells us that �0 2 S+
0 , #0 2 S+

0 : Therefore, we will show that #0 2 S+
0

and this will complete the proof of Theorem 6.5.

Now, we have

 0(x) =
1X
n=1

#0(x
1
n );

(see de�nition 13 in chapter 3) and by the M�obius Inversion Formula we get

#0(x) =
1X
n=1

�(n) 0(x
1
n ):

Therefore, with  0(x) = [x]� 1; x � 1; we have

#0(x) =
1X
n=1

�(n)
�
[x

1
n ]� 1

�
:

[Note: The above series is �nite since the terms are zero for n > log x
log 2

.] The

following Proposition will complete the proof.

Proposition 6.6. Let #0(x) =
P1

n=1 �(n)
�
[x

1
n ]� 1

�
; x � 1: Then the following

hold:

(i) #0(x) = #0(k) for k � x < k + 1; k 2 N; (i:e: #0(x) = #0([x]):)

(ii) De�ne f(n; k) = [k
1
n ]� [(k � 1)

1
n ]; n; k 2 N: Then

f(n; k) =

8<: 1 if k = qn; for some q 2 N



(iii) We call k 2 N a perfect power if there exist natural numbers

q > 1, and n > 1 such that k = qn: Then

#0(k)� #0(k � 1) =

8<: 1 if k is not a perfect power ; k � 2

0 if k is a perfect power :

Proof. (i) For k � x < k + 1; k 2 N

#0(x)� #0(k) =
1X
n=1

�(n)
�
[x

1
n ]� [k

1



However,

However,



(iii) We have from (ii) that

f(n; k) =

8<: 1 if k = qn; for some q 2 N;

0 if k 6= qn; q 2 N:

Therefore, for k is not a perfect power, we have

#0(k)� #0(k � 1) =
1X
n=1

�(n)f(n; k) = 1 +
1X
n=2

�(n)f(n; k) = 1:

Now, for k is a perfect power, let r be a maximal natural number greater

than or equal 2 such that k = qr; q > 1; q 2 N: So, by the above Remark

we have

#0(k)� #0(k � 1) = #0(qr)� #0(qr � 1) =
1X
n=1

�(n)f(n; qr) =
X
njr

�(n):

By Theorem 2:1 of [2] we have the last sum is zero (since r > 1). The proof

of Proposition 6.6 is completed.
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