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Abstract

A generalised prime system P is a sequence of positive reals pi; p,; ps; ::: satisfying
1<p; p2 i pn  randfor whichp, ¥ 1 asn ¥ 1. The fp.g
called generalised primes (or Beurling primes) with the products p3*:p52::::pS«
(where k 2 N and a;;a;;::;;ax 2 N [ f0g) forming the generalised integers (or
Beurling integers).
In this thesis we study the generalised (or Beurling) prime systems and we
examine the behaviour of the generalised prime and integer counting functions
p(X) and Np(Xx) and their relation to each other, including the Beurling zeta
function p(S):
Speci cally, we study a problem discussed by Diamond (see [7]) which is to
determine the best possible in Np(X) = x + O(xe 199X ). for some > 0;

given that p(X) = li(x) + O(xe (%92 ). 2 (0;1): We obtain the result that

We study the connection between the asymptotic behaviour (as x ¥ 1) of
the g-integer counting function Np (X) (or rather of Np(X) ax ) and the size of
Beurling zeta function p( +it) with nearl1 (ast ¥ 1). We show in the rst
section how assumptions on the growth of p(s) imply estimates on the error term
of Np(Xx), while in the second half we nd the region where p( + it) = O(t°);
for some ¢ > 0, if we assume that we have a bound for the error term of Np(X).

Finally we apply these results to nd O and results for a speci ¢ example.
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Chapter 1

Introduction

In the late nineteenth century, Weber (see [30]) de ned N(x) to be a number of



function of g-primes less than or equal to x and Np(x) to be the counting func-
tion of g-integers less than or equal to x (counting multiplicities). Beurling was
interested to see under which conditions on N and the multiplicative structure,
a Prime Number Theorem holds.

In 1937, Beurling proved (see [6]) that if Np(X) = ax+ 0O X



The problem is to determine the best possible (i.e. largest possible) ; given

Furthermore, we investigate the connection between the size of the Beurling
zeta function p( +it) with near1 (ast ¥ 1) and the error term of Np(X).

As part of this investigation, if we assume that p(s) has polynomial growth in



In the rst section of this chapter, we generalise Balanzario’s result by adapt-
ing his method to show that for any 0 < < 1 there is a continuous g-prime
system for which (1) and (3) hold with = . Thus we cannot (in general) make

>

In the second half of this Chapter we use the method developed by Diamond,
Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the theory of)

probability measures that there is a discrete system of Beurling primes satisfying



Chapter 2

Preliminary concepts

In this chapter we will give details of some relevant concepts and known results
which we shall need in Chapters 3-6. In particular, for the de nitions of gener-
alised prime systems (especially the continuous version) we need the Riemann-
Stieltjes integral and Riemann-Stieltjes convolution.

In the second half of this chapter we summarize some (relevant) results about
the Riemann-Zeta function. In particular, we will give a brief survey of some
of the known lower bounds for the Riemann-Zeta function in the critical strip
0 < < 1. We consider also the upper bounds for the Riemann-Zeta function
which are unconditional bounds in that strip and those which are conditional on
the unproved Riemann Hypothesis.

We begin with the Riemann-Stieltjes integral.

2.1 Riemann-Stieltjes integral

Let f and be bounded (real or complex) functions on [a; b]: Let P = TXo; X1; X»;
: Xng be a partition of [a;b] and let tx 2 [Xx 1;%k] for Kk =1;2; ;n: We de ne
a Riemann-Stieltjes sum of £ with respect to as

X
S(P;f; )= ft) () (X 1)

k=1
De nition 1. A function T is Riemann Integrable with respect to on [a;b], if

there exists r 2 R having the following property: For every > 0; there exists a

5



partition P of [a;b] such that for every partition P ner than P and for every

choice of the points ty in [Xk 1;Xk]; we have



bounded variation with f(x) = 0; 8x 2 ( A;1): Let S* S such that for any
f 2 S*; fis an increasing function. Fora2 R; let S, = ff 2 S : f(1) = ag and
Sy =S,\S™".

De nition 3. For any f;g 2 S; we de ne the convolution (or Riemann-Stieltjes

convolution) by 7

* X
(f 9= T - do():
1
We note that (S; ) is a commutative semigroup and the identity (with respect

to )isi(x) =1for x 1 and zero otherwise.



2.2 The Riemann zeta function

We will move our attention to the Riemann zeta function which we need for
later chapters. In particular, we shall give a brief survey of some of the known
results for the order of the Riemann Zeta function in the critical strip0 < < 1:
We consider both unconditional results and those results conditional upon the

Riemann hypothesis.

De nition 4. The Riemann zeta function is de ned for <s > 1

X
(s) = —

n=1
The above series converges absolutely and locally uniformly in the half-plane
<s > 1 and de nes a holomorphic function here. Moreover, (s) has an analytic
continuation to the whole complex plane except for a simple pole at 1 with residue
1 and is of nite order (i.e. ( +it) = O(tY); for some A > 0 dependent on
). The Riemann zeta function (s) had been studied by Euler (1707-1783) as a

function of real variable s. The notion of (s



the Euler product) nor for <s < 0 (by the Functional Equation) except for so
called ‘trivial zeros’ at 2n (n 2 N). Furthermore, it is well known that no zeros
of (s) lie on either of the lines <s = 1 and <s = 0 (see [29]). Note that (s) is

the Mellin transform of [x] (see [2]).

Notation

We de ne the big oh notation O (or ), little oh notation o, asymptotic equality

of functions and notation as follows:

De nition 5. If g(x) >0 for all x a; we write

F(x)=0(@(X) or f(x)  g(x);

to mean that the quotient % is bounded for x  a; that is there exists a constant
M > 0 such that
JF(X)] Mg(x); forall x a:

An equation of the form f(x) = h(x)+0(g(x)) means that f(x) h(x) = O(g(x)):
De nition 6. Let g(x) >0 for all x a; then the notation
f(x) =0(g(x)) asx ¥ 1;

means that
X

(x
An equation of the form £(x) = h(x)+o(g(x)) asx ¥ 1 means that f(x) h(x) =

o(g(x)) asx ¥ 1.:

)
~
Nt

=0:

lim
x¥ 1

o
N—

De nition 7. Let g(x) >0 for all x a: If

lim & =1;
X171 g(x

N | N

we say that f(x) is asymptotic to g(x) as x ¥ 71; and write f(xX) g(x) as

x 0 q:

We de ne notation as follows:



De nition 8. Let F; G be functions de ned on some interval (a; 1) with G 0.

We write

F(O = (G@O);

to mean the negation of the F(t) = o(G(t)). That is, there exist a constant ¢ > 0
such that jF(t)] cG(t) for some arbitrarily large values of t:

Further, we write F(t) = +(G(t)) and F(t) = (G(t)) if there exist a
constant ¢ > 0 such that F(t) cG(t) and F(t) cG(t) hold respectively for
some arbitrarily large values of t:

We write F(t



This will be used to facilitate the proof of a result in Chapter 6 as part of our

purpose in that chapter.

Proposition 2.4. For 3 1 lpoalslts we have
A (log N)?
+ It 1+o0(1 X
021 C+iop - exp A+ o) 17— 100 T0g N

for N N independent of

Proof. Take 2



Thus,

X 1
g 2@ 3 P)  logl+ )
p P P pe

for some absolute constant >0, since x log(1+x) X %; for0 x 1L

We end the proof of the Proposition by showing that for every > 0; and

3 1 —";9, (')‘;% c')ggN'\'; we have
<1 (logN)?
— 1 f N N :
o pP ( )8(1 )loglogN’ or o()
Now, we have
Z Z
X 1 P P P
— = t d ()= ) + _® dt:
o pP 2 P » T

By the Prime Number Theorem (x) (1 )@ for x  Xo( ). This tells us

that, 7
> p! Pt g
— 1 + (1 —dt
o pP ( )IogP ( ) , logt
for some absolute constant > 0: Here
Z, Zp
t a ) a ) 1 1
1 = ————P 2
( ) 5 logt t logP todt (1 )logP
Thus, forany >0,and P Pgy( ), we have
<1 Pl 2 Pt 2 Pl 2
T R R T T R (R T T
o pP og @ )log @ )log

Now, we have P £ logN: So,

pt 2 (logN)? _
(1 )logP 81 )loglogN’
when 1 St (actually, for (1 )loglogN 1) Therefore, from the
above for 1 et we have
. - 1 P—
max j ( +it)j (Ns) 1 max n) 1
1<t<N n Nili
C )
12X 1 (1 +o(1))(log N)*
exp = — 1 exp ;
2 - p 16(1 ) log log N
for N Ng independent of : The proof of Proposition 2.4 is completed. m
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O results for (s) in the critical strip



with B = 100 (see [27] page 98). More research on this subject has been done to
improve (2.1). In 1975, Elson proved (2.1) with B = 86 and A = 2100; see [12].
Ching in his paper (1999) improved this obtaining (2.1) with B = 46 and A = 175:
Moreover, Heath Brown (in unpublished work (see page 135 in [29])) proved (2.1)
with B = 18:8 and some A > 0:

O results for (s) on the Riemann Hypothesis

If we assume the truth of the unproved Riemann Hypothesis the bounds can be
improved signi cantly. This will give us the strongest conditional upper bound
for the Riemann Zeta function available at present in the critical strip % 1:

For the cases in which =1



Chapter 3

Beurling prime systems

In this chapter we give the necessary background to Beurling (or generalised)
prime systems and the associated Beurling zeta function. It is bene cial to give
historical context to this subject.

In the late nineteenth century, Weber (see [30]) de ned N (X) to be the number
of the integral ideals in a xed algebraic number eld F with the norm not
exceeding x and proved that N(x) = ax + O(x ); as x ¥ 7 for some a > 0
and < 1: Early in the twentieth century, Landau (see [22]) used Weber’s result
and the multiplicative structure to prove the Prime Ideal Theorem, which asserts
that the number of the distinct prime ideals of the ring of integers in an algebraic
number eld F with the norm not exceeding X is a asymptotic to @; as X tends

to in nity. His result showed that the only ‘additive’ result needed was Weber’s.

3.1 Discrete g-prime systems

In 1937, Beurling (see [6]) considered number systems with only multiplicative
structure, and was interested in nding conditions over the counting function of
integers N (x) which ensure the validity of the Prime Number Theorem. Beurling

introduced generalised prime systems as follows:

De nition 9. A generalised prime system P is a sequence of positive reals

P1;P2;P3; i satisfying 1 < p; p. i pn :and for whichp, ¥ 4

15



asn ¥ 1.

The numbers fphg, 1 are called generalised primes (or Beurling primes). The
associated system of generalised integers (or Beurling integers) N = fn;g; ; can

be formed from these. That is, the numbers of the form
pitip32iipee ()

where k 22 p 1pl



This in nite product may be formally multiplied out to give the Dirichlet series
p(s) = Pn2N = This is also the Mellin transform of Np:

The important question in this work is: how do the distributions of P and N
relate to each other?

Much of the research on this subject has been about connecting the asymptotic
behaviour of the g-prime and g-integer counting functions de ned in (3.1) as
x X 1. Speci cally, given the asymptotic behaviour of p(Xx), what can be
said about the behaviour of Np(x)? On the other hand, given the asymptotic
behaviour of Np(x), what can be said about the behaviour of p(X)? Therefore,

this research concentrates on nding



2. For P =12;2;3;3;5;5;7;7;:::9 (each prime occurs twice), with ( ) forming
N to be the set of integers such that each integer occurs d(n) times, where

d(n) is the number of divisors of n. That is,
N =11;2;2;3;3;4,4,4,5;5,6,6;6;6,7,7;:::0;

F)
therefore p(X) =2 (X) =2 . 1 and

p

<
Np(X) = d(n):

n Xx;

n2N

Then the behaviour of these counting functions for large X is Np(X)
xlogx (see [2]) and p(X) 2 :(by the Prime Number Theorem).

log x

3.2 Continuous g-prime systems

The notion of g-primes as de ned earlier can be generalised in such a way that
we consider p(X) and Np(X) as general increasing functions not necessarily step
functions. Such an extension is often referred to loosely as a ‘continuous’ g-prime
system. Indeed Beurling’s Prime Number Theorem is actually proven in this
general setting. In the most general form, the ‘continuous’ g-prime systems are

P
based on the analogue of p(X) (= klzlﬁ e (x}¥)) and are de ned as follows:

De nition 10. Let p;Np be functions such that p 2 Sy and Np 2 S;" with

Np =exp p: Then ( p;Np) is called an outer g-prime system.

Note that, if p 2 S;; then automatically exp p 2 S;: Henceany p 2 Sy
de nes an outer g-prime system. On the other hand, if Np 2 S, then Np =
exp pforsome p 2 Sy, but p need not be increasing (see section 1.3 in [15]).
Here we do not (yet) have the analogue of g-primes (i.e. p(x)). We introduce

p(X) as follows:

De nition 11. A g-prime system is an outer g-prime system for which there
exist p 2 Sy such that
X 1 1=k
p(X) = K p (X7

k=1

18



We say Np determines a g-prime system if there exists such an increasing

p 2 So. As such by Mobius inversion, p(x) is given by

X
P00 =" ooy (3.2)

k=1
provided this series converges absolutely. To show that this sum always converges
for p 2S*, welet ax = -% and let by = p(x'™*): The partial sums of the

P
ax are bounded in magnitude by g (some q > 0) since klzl % = 0. The sum

P, . . . .
kl:ljbk bk+1j converges since by decreases to zero. By Abel’s summation we

have
D & <

ahy = Ax(bx  br+1) + Anbn;
k=1 k=1

Pn
where A, = | _; ax: Therefore,
X D2G D28

akhy = Ax(bx  bke1) FANDN 0 jox  breaj +qjbnj:
k=M K=M k=M

This shows that (3.2) always converges whenever p is increasing.
In general though, p(X) (as given by (3.2)) need not be increasing (see ex-

ample 2 in this section). We make the following de nitions (see [4] and [15]):

De nition 12. For an outer g-prime system ( p;Np), let p = p.: That s,
Z

X

p(X) = logtd p(D);

1

denote the generalizedx



We can write this as



By (3.2), we nd

X ® XKo"t 4

— 1=ky — t

P(X) - k P(X ) - k 1 |Ogt dt

X g% xut ut o, Z x > ¢ ,

= E(k) ukl UK WET du= L (k)(ui 1) du
le 1 ogu 1 uloguk:1 Kk

_Tr 1 KomGogum X )
zl ulogu . m! - k1+m

xlxzm(logu)m 1
p U oml (1+m)

du; for x 1:

This shows that p 2 S and therefore we have a g-prime system. More-

over, in this case we have Np (x) = x?; since by (3.3) we have

Z X Z X X Z X X
|0gt de(t) = Np — d p(t) = Np — t — dt
X X U du
= N oz =
X . P(u) u X U2
That is,
Z Z Z
N *N *N
Np (X) log x Ne® i = 2 pgu)du P g
1 t 1 u 1 u

By di erentiating and simplifying, we get = Ne()logx — — N’)’(S‘): Therefore,

X2

log Np (X) = 2log X + ¢; but Np (1) = 1; which means ¢ = 0:

R ¢ :
2. Let p(X) = 1’(1'()% dt; x 1;and ¢ > 0: This means that p and p



Working with p(x) is often more convenient than working with p(Xx). One

reason is due to the following direct link between p and p
0 VA 1
L) = X %d p(X):

P 1

From De nition 12 above, the following statements
p(X) =li(x)+0(x *); 8 >0 (3.4)
and
p(X)=x+0(x 7); 8 >0; (3.5)

are equivalent for 2 [0; 1): Furthermore, we see that p(X) p(X) and

(0 p(Pr = 2 P ()

2

k=1 K k=1 2K

X opxd) < p(xk)
= 2

k

k 1 k even

X 1k 1 X%
S S O

k 1

since p is increasing. This tells us that
p_
0 p(X)  p(X) (" X):
Thus, p(X) = p(X)+O( p(pi)): Then the following statements

p(X) =1liX)+0O(x 7); 8 >0and p(X)=x+



1. In 1937, Beurling (see [6]) proved that

X
(logx)

Np(X) =ax+ O for some > g D> pX)

log x;
(generalises Prime Number Theorem), and he showed by example that the

result can fail for = 2:

2. In 1977, Diamond (see [10], Theorem 2) as a type of converse of Beurling’s
PNT, showed the following: suppose that Rzlt N () @ dt < 4.:
Then there exists a positive constant ¢ such that Np(X) cxasx ¥ 1.:
Diamond in his work was seeking weakest possible conditions on p(x)
which are su cient to deduce that Np(X) c¢xasx ¥ 1: So, for example
it follows from Diamond’s work that

X X
= — + - f > N .
p(X) log x O (109 0™ or some 0 ) p(X) X

3. In 1903, Landau (see [22]) proved that
Np(X) =ax+0O(x );( <1); (3.6)
implies p(X) @: Furthermore, he proved that (3.6) implies
: Pissx
p(X) = li(x) + O(xe * °9%)

for some k > 0:

4. In 2006, Diamond, Montgomery and Vorhauer (see [11]) showed Landau’s
result is best possible. That is, they proved that there is a discrete g-prime

system for which (3.6) holds but

5(x) = li(X) + (xe @ 9% for some q > 0:

5. In 1969, Malliavin (see [24]) showed that for 2 (0;1) and a;c >0

Np(x) = ax + O(xe (109>



6. In his paper 1970, Diamond (see [7]) improved Malliavin’s result and con-

versely he showed that if
p(x) = li(x) + O(xe 9 ),

holds for 2 (0



then by Diamond’s result we see ()  5—: Further, from Balanzario’s result
we see that (3) 3: Diamond and Bateman [5] raised the interesting problem
to determine ( )for0< <1:

In our work we study Balanzario’s method in his paper and modify it to show
(by adapting the method) that there is a (continuous) g-prime system for which
(3.7)and (3.8) holdwith = (any0< <1), thisshowing ( ) : Further-
more, we prove that there is a discrete g-prime system with the same property

() : This is more challenging since we need p(x) de ned as a step function.
For this we use the method developed by Diamond, Montgomery, Vorhauer [11]
and Zhang [31] to prove by using (the theory of) probability measures that there
is a discrete system of Beurling primes satisfying this same property. We illustrate

this in Chapter 4.

From the known results (listed above), we see that for 0 ;< 1 the
statement
p(X) =X+ 0(X ); 3.9

does not necessarily imply
Np(X) = x+0O(x); =>0: (3.10)

Actually, the example given in chapter 6 shows that (3.9)=) (3.10) is false for
g-prime systems. For general g-prime systems that (3.10) does not imply (3.9) for
discrete g-prime systems follows from a result of Diamond, Montgomery, Vorhauer
paper [11] shows by using the probabilistic construction that there is a discrete

system for which (3.10) does not imply (3.9).

Discrete g-prime systems where the functions Np(x) and p(X) are simulta-
neously ‘well-behaved’, that is (3.9) and (3.10) hold have been investigated by
Hilberdink (see [17]). In particular, if (3.9) and (3.10) hold then one of or is
at least % (see Theorem 1: in [16]). We shall require the following two results in

our subsequent work.
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Lemma 3.2. Suppose that for some 2 [0;1); we have (3.9) holds. Then p(S)
has analytic continuation to the half-plane H = fs 2 C: <s > ¢ except for a

simple (non removable) pole at s =1 and p(s) & 0 in this region.

Proof. See rst part of Theorem 2.1 in [17]. ]
Lemma 3.3. Suppose for 0 ;< 1 both (3.9) and (3.10) hold. Then for
> = maxf ; g; and uniformly for + (any >0), p(s) is of zero

order for > . Furthermore,
0 1
£(s)=0 (logt)r " ;
P

and
p(s) =0 expf(logt)yi—* g ;

for all > 0:
Proof. The proof of this lemma is given for discrete g-prime systems [17, Theorem

2.3], but holds more generally for outer g-prime systems as well (since no use is

made of p(X)). H

Assume that we have a discrete g-prime system such that (3.10) holds with

< %: It was shown in [16] that this implies p(S) has non-zero order for < <

N[



Chapter 4

Examples of continuous and

discrete g-prime systems

In this chapter we introduce a problem discussed by Diamond [7](as mentioned
brie y in section 3.3), which is the following:

Assume p(x) li(x) xe (9% - for some 2 (0;1); so that
Np(x) = x+ O(xe 9% y; (4.1)

for some ;c > 0and > 0: The problem is to determine the best possible ;
given :So, let ( ) be the supremum of such over all systems satisfying (3.7)
for given 2 (0; 1): It follows from Malliavin’s result that ( ) 10 : Diamond
in 1970 (see [8]) proved that ( ) +;—:In 1998, Balanzario [3] proved (by giving
a concrete continuous example) that there exists a continuous g-prime system for
which = =1in(3.7) and (3.8). Thus, (3) 3t

In the rst section of this chapter, we generalise Balanzario’s result by adapt-
ing his method to show that for any 0 < < 1 there is a continuous g-prime
system for which (3.7) and (3.8) hold with = : Thus, ()

In the second section we do more challenging work using the theory developed
by Diamond, Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the
theory of) probability measures that there is a discrete g-prime system for which

(3.7) and (3.8) hold with = : Thus, () for discrete g-prime systems.

27



4.1 Continuous g-prime System

Theorem 4.1. Let 0 < < 1. Then there exists an outer g-prime system P for
which
p(X) = li(x) + O(xe (099 ); (4.2)

and
Np(X) = x+ (xe ¢I09% ). (4.3)
for some positive constants and c¢. Thus, ()
We de ne p(X) (of g-primes) as in Balanzario’s paper by

(X)_le (.
PV logt

(Odt; (4.4)

where
> cos(bn logt)
e

=1 1

n>np

Here k and ng are positive constants and ,; a, and b, are sequences to be chosen.
In fact, we shall takek =4;ng =3; , = %; but it is notationally more convenient
to use k;ng and . The sequences b, and a, are de ned (in terms of another

sequence X,) as follows:

1 1
b, = expf(log x and a, = = ;
n pf(logxn) 9 "= Tlogxp)! (log by,)
where =1 1. Here x, = expfe?'"g; for some a > 0 and ! > 1 which we

shall choose later. Note that, a, ¥ O whileb, ¥ 1 asn ¥ 1: So, Xpn+1 =

expf(logx,)'g; with x; = expfe®'g: We choose ! so that ! 1:
The function p(X) is increasing since for t  1;

X cos(bylogt) X< 2 L
n— A .

tan n2
n>ng n=no
First, we show that (4.2) holds.
Proposition 4.2. If p(X) is given by (4.4), then

p(X) = li(x) + O(xe (09 ):

28



Proof. We have

YA e 1 t k Z X 1 t k
(t)dt +
1 logt o logt

p(X) = (t)dt;

the rst integral is just O(1), therefore we get

Z Z
X1t kdt > X1 t* cos(b,logt)
. logt " . logt tan

dt + O(1)

p(X) =
Nn>nNg
B Zx gt X cos(bn log t)

- v 7 + 1):
. logt ", tanlogt dt+O0();

Nn>np

because k > 1. Now we show that the second term is O(xe (°9% ): Notice that

Z Z
X cos(bn log t) gt = 9% cos(bnt) ot an gy
e tinlogt 1 t

. Z
Sln(bnt)et(l an) loax 1 109

Sin(bnt) t(l an) 1
A ny n)(1 z
thn L br 4 t © (1 an Pt

Xl an

2
b, log X



at all points of continuity of Np(X): The main di culty will be to show (4.3),

that is to nd the result for Np. The proof forms the rest of this section.

R
Now, let Mp(X) = “Np(t)dt. Then for x > 1

1 VA b+idl Xs+1
M = — ———ds; b>1:
p(X) 21 i1 P(S)S(S+1) S
We already know that (4.1) holds for some 1+ (see result 5 in 3.3). So,

to prove that equation (4.3) is true it su ces to show that for some positive
constants c;

Mp(X) = Exz + x2e clogx) - (4.5)

Actually, if (4.3) does not hold then
Np(X) = x+o(xe 092 );

so that,
Z X

Mp(Xx) = f t+o(te <099 Ygdt = EX2 +0 X% 09X .
1

which contradicts (4.5). So, (4.3) must hold if (4.5) holds. Our aim is therefore
to prove that (4.5) is true for some ¢; > 0. For this purpose we estimate the
integral of Mp (X) and the simplest way to do so is by calculating the contribution

of the singularities of the integrand g(s) = p(s) X

D We rewrite p(S) as an

in nite product to enable us to read o the singularities of g(s). The sequences
fa,g and fh,g are de ned earlier will give us the position of the singularities of
p(s) in the complex plane, and from this we can deduce the statement (4.5).
Extend the sequences an;b, and , by de ningforn>ng,a n=an, b n = by,
and , = ,: Then we use the following proposition to rewrite the zeta function

as required.

Proposition 4.3. For <(s) > 1;

NS

s+k 1Y . K
s 1+a, ib,+Kk

p(s) =

(4.6)

jnj=no
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Remark: Recall the de nition of (t) and let

XX cos(bn logt)
e

n(® =1 1:

no<n N

Then (t) converges uniformlyto (t)fort 1sincej (t) (b))

n>N n
2

SE

Proof of Proposition 4.3. We have

cos(blogt) 1 t K
t2 log t

1 i inl tFK
= Z(t a+|b+t a ib .
2( ) logt

So, for <(s) > 1; we have

Z
d ™1 .cos(blogt) 1 tk

— t dt
ds ta log t
1Zl
S tsaib+tsa+ib tsaibk tsa+ibkdt
5 )
1 1 1 . 1 1
2 s l+a+ib s l+a+ib+k s 1+a ib s 1+a ib+k
1 s l+a+ib d s l1+a ib
=> —log ) + — log -
2 ds s l+a+ib+k ds s l+a ib+k
C . »
—dlo 1 K : 1 k :
~ s Y s 1+a+ibtk s 1+a itk
Hence, we have 7
1 k
¢ s cos(tj[ :og ) 1 Iogtt dt
1
C . 1)
k 2 k 2
=log 1 s 1ratribrk 1 s 1+a btk + constant:

By taking the limit as <(s) tends to in nity we see that the constant of integration

is zero. Taking a = b = 0 gives

ZZL
1 tkX s+k 1
ts dt =log ———:

1 logt s 1
Thus from the de nition of §(t), we get
z
Tl U dt=log STKL L g1 K
) logt " -9 T ol s 1l+a, ib,+k

no<jnj N
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8
<

o

s+k 1 Y k z

=log — 1 - :

- s 1 o s 1+a, ib,+Kk ;
No<<jnj<N

By taking the limit as N ¥ 1., we conclude the proof since N(t) ¥ (t) as
R
N ¥ 2 andlog p(s)= "t °d p(b). 0

The representation of p(S) given by (4.6) holds not only in the half plane

<(s) > 1; but also in a larger region. Let D be the region de ned by
D =fs= +it2C: > k+2;s6& (1 a,+ib))+(1 )Q a,+ib, Kk);

for any 0 1;jnj  NneQ:

By a theorem of Weierstrass on the uniform convergence of analytic functions,

the function
Y Kk z
> : 1 _ ;
) s l+a, ib,+Kk

inj=no
is analytic in D : The equation

s+k 1

pO)=—— 76 =1L

gives us an analytic continuation of p(s) to D with s =1 removed, where p(S)
has a simple pole. Notice that, since the zeros of ”(s) are of fractional order, we
avoid problems of multiple-valuedness by restricting the domain of de nition of
p(s) to D . We try to give a suitable upper bound for j p(S)j in the extended

domain of de nition. For this purpose we need the following

P
Proposition 4.4. If s = +itissuch that > k+2, = _ = and
s2D ; then

176N (k+1)e:

Proof. Fors= +it, we nd an upper bound for ~(s) which holds for arbitrary
positive sequences fa,g and fb,g such that fa,g is decreasing to zero and fb,g

is increasing to .. We have

bh+1  bn =expf(logxn+1) 9 expf(logxn,) ¢
=expf(logx,)' g expf(logx,) g ; (some > 0);
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where dependson and !: So, we choose ! su ciently large such that 2k.
Therefore the interval (t 2k;t + 2k) contains at most one element of fb,g: We
call this element (if exists) by b,(t); so we can write

n(t) n
o Kk 2 Y Kk z
FEI=1 1 '

Since a, > 0; we have 1+ k > 1 and hence

n(t) n(t)
k 2 k 2
1 - 1+ —— 1+k:
s 1+ an(t) Ibn(t) +k 1+k
Now, when n & n(t),
k z n k
1 = — 1
s 1+a, itk P 09 ST ra, b, +k
k
n
= <
xp 2 log 1 s 1+a, ib,+Kk
—exp —< z é 2—3
—%P 5 2 3 :
where
i k k _k k k 1
1= s 1va, itk j=() b it b K~ 2
Therefore
Y 72 73
- - n . .
75 (k+1) exp - jzj+ o + - +
. 2 2 3
jnj=ng;n&n(t)
8 o
(k +1)ex R 1+1+1+ B (k+ e ;
Pz  n 7377 - !
jnj>no
as required. O
Fork =4:no=3and ,=2n 2 we have
G,
j7(s)] 5Sexp = <9 if > 2
n>3

Corollary 4.5. For s 2 D such that



Proof.

+
stk 1.9 91+_Sk

i p()i= :



mE Sl T e
e A =] :

B Y TR W
== S

Figure 4.1
Now we write
X X2
Mp(X) =1, + + 15+ Jm+fk’(1)7+x(1 k)~ (0)g;
no<jmj n
where
1 Z Xs+l
Iy = — ds; =1;2;:::5;
T2 F’(S)s(s+1) s m
Z
1 xs+1 .
Im = 5— P (S) Np <)Jmj n:

21 o, "Psern®
Here, as above, C,, is the mth horizontal loop with imaginary part equal to by,.
Consider rst the integral I5. In fact, we do not have one integral but many of
them. This is because the vertical segment 3 is broken at each horizontal loop

Cm: However, on each vertical component of 3 the integrand is bounded by the

same constant which is 45. Thus, since R(s) = % on 3; we have
z 3
1 -7t x z*1 1
jlaj — 45 dt = O(p=): 4.8
b om [P+ T+ (PL) 8
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Let b =1+ =~ Then jlyj and jl4j are both O (3)? ; since

log Xn
Z 1 1
1 1+(log Xn) X2+(Iog Xn) 8 1 X2
S L 45 d = 2+(logxn) * — Oo(X): 4.9
12) 5 14) 2 3 T2 Tﬁx (Tr%) (4.9)
Now we consider the integrals 1, and Is: Each of jl;j and jlsj is at most
1 Z 4 x2+(logxn) * 5 C 1 2) 1 X?
— 45— dt 8xPexp 1+ — =0(=): 4.10
2 1, t2 P log Xn Tn (Tn) (410

Therefore, we get

G 20 X2
MP(X): T"‘ Jm+fJ n+Jng+O T_ . (411)
n

no<jmj n 1
We estimate each term in the right hand side of (4.11) separately. Since logx =
log X, + 0(1) we get
2

)T(_ = x?expf(logx,) g = x*expf(logx) +o(1)g:

n
From this and from equation (4.11) we get

X2 >
Mp(x) = —-+

no<jmn Xp +0



n . O
2exp  (logx)' T

Hence,
=< L1 X g .,
Im 30 xze (log>x)™ ~*~ R =0 X2e (logx)t "1
no<jmj n 1 imj=no m
[l
Weseethat 1 ;- 2= since ! istakensu ciently large, so equation
(4.12) becomes
_x 25 (logx) .
MP(X)_ +fJ n+Jng+O Xce : (413)

2

It remains to study the expression J , + J,. Denote by Jﬁ, and Jﬁf the integrals
along the line segments Cﬁ, Cff lying respectively above and below the branch cut

Cn so that J, = J; +J,. Now, if we write

s=1 a,+ib,+te



To deal with the integral over (0; (logx) ) rewrite the integrand as follows:

P(S) — . _n . .
sG+1) (s 1l+a, iby)=zfu(s); say;
where
Y <
f.(s) = +3) _ 1 al
s(s+1)(s 1(s+a, ib,+3)z s+ay, ib,+3

jmj>ng;mé&n

(4.15)



Since J, = J,, + J..; becomes

1 n 2 n+-bn
3 = Sins® X an+i P (4.18)
" (logx)Z+t " ' '

Since J , = J,; we have
Jn+J n=(0n +In =)2<(Jp):

Our next step is to estimate the integral S,, appearing in (4.18). For this we
obtain lower and upper bounds for f,(s) in D(z,;1) (thatisjs z,j 1,s=
1 a,+ib, y). For the upper bound we notice that jsj b,: Thus

(s+3) b, + 6 2b, 16
s(s+1)(s 1) (b 2)° (b=2)® b2’

Also

js+a, ibh+3jz2>@ js 1l+a, ibj)z 3% 1L
Now we want to estimate from above the product appearing in the de nition of
T, in (4.15). As in the proof of Proposition 4.4 we have

4 4 K K 3
/T S S . S I S S :
stan bm+t3 " j=G) bmi Tk~ formé&n

Thus the product in (4.15) is in modulus less than

Y 3 2 Y = 2
2

[
Il
-

\_r\.J"

<4:

N w

jmj=>ng;mé&n jmj>no

Thus we have proved
Proposition 4.7. For js (1 an+iby)j 1; then jf,(s)j E—ﬁ:
This and Cauchy’s inequalities give the following

Corollary 4.8. For all j =1;2;3;::: jan;j g—;‘:

Now we estimate the lower bound for f,(s) in D(z,; 1):

jsi js l+a, ibyj+jl a,+iby,j 1+1+jasj+jbnj 3+byn:
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Thus

(s + 3) js + 3j jsi 3 by, 1 3 i, 1
ss+1)(s 1) (bn+4)B3  (ba+4)3 (b, +4)3  (2b,)3  16b2°

Each term in the in nite product in (4.15) is

S+am4ibm+3 1 js+am4ibm+3j 1 J:(S)mej 1 k 1
Therefore
Y 4 + Y | = 1
jmj>no;mé&n s+am iby+3 i 5 T

Thus we have

Proposition 4.9. Forjs (1 a,+iby)] 1; we have

.1

With all these inequalities we can estimate the integral S,,; the function oc-

curring in (4.18), as follows:

Z (1o ) t
0 log x
Z (logx)* 3k ¢
= e ttT anj —— dt
0 =0 log x
2 Gogot X Lot ¢
= an. e tZdt+  an e 'tz —
no M log x
j=1
For the second term we get, by Corollary 4.8,
< Z gogx Lot 1 X oq i%a1
an;j e 't? —— dt = e 't2dt
0 log b2 logx 0

N -



The integral S, in (4.18) is

1
b3 (log x)
Since ano = (1 an +1iby) and (% n+1) ¥ lasn ¥ 1, from Proposition

49 we nd

1
Sn=ano (5 n+1)+O logxe (logx)* (4.19)

- . do (Iogx)l d]_
JSnj 02 1 2logxe {1090

for some dy;d; > 0 and for x su ciently large, that is for n is su ciently large

e 2(log x) : d>0

(since x is a sequence depending on n). We use this lower bound of the integral

S, appearing in equation (4.18). Now consider the other factor in that equation,
. n N
sin 2 X2 an 1 a _nxze an logx 1
log x 2(log x)?

2 7logxl 1 .
ax“e (ogxn) ;
(log x)?(log log x)?

using = # and n % From the above bound on S,, and (4.18), we get

for some a=>0;

Co log x

_ O 4 i’ 9 |
(log X,)* 2(log xn) ax2e 09%) . < <1
n

(4.20)

jInj ax®exp

for some constants a; co; ¢ > 0 and for su ciently large n.

Our aim is to obtain large values for 2<(J,) compared with the other error

term of (4.13). For this purpose we recall equation (4.18)
N _n 2 an+ibn
Jo=d+dn= 2 X T Tg 40 xe G99
(logx) 2"

We can rewrite the above equation as follows,

J .
A= X2 na = Bx" +C;

where B = oy

- ARSI
sin(—") 1 @B 8951 d [(@{F3/F21 7.9701 T 10.093 3.125 Td [0)]TJ ET 9-0.c[(O)]TJ/F29 11.9552 Tf 11.264 13.23



From de nition of B we have arg B = arg S, + : The main term (involving the

function) on the right hand side of equation (4.19) is independent of r. Now, as
r runs from 1 to +1, the argument of S,, (and therefore arg B) does not exceed
2 , since the last two terms are much smaller than the rst one. This tells us

that, as r runs from 1 to +1,

bnlogx, +argB +b,log 1+

logx,

runs through an interval centred somewhere in
bnlogx, 2 ;bnlogx,+2
The highest point is at least

bhplogx, 2 +bylog 1+

logxn '
whereas the lowest point is at most

1

bhlogx, +2 +bylog 1+ log X

Therefore the length of (4.21) is

bn

_— T 31;asn ¥ 1:
log X, 1+ log X,

bolog 1+

For large n we choose values (r* and r ) of r appropriately such that

A C_ +1 and < A C
iBj iBj
For the rst case we have <(;2%-) = <(A) = jBj + <(C); that is,

X2 an

<(n) = BixX? * +<(C)x *
Jnj  JCjx® a4+ <(C)x® B
= jJnj + O(xe (290" )
Agx?e clogx) -
Therefore, for su ciently large n we have
<(Jn) AgxZe 09 - for r =r* and Ag;c > 0: (4.22)
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Similarly we can get
<(Jn) AgxZe €109 - for r=r and Ag;c > 0: (4.23)

From the above inequalities and the following equation

52
Me(X) = -



4.2 Discrete g-prime System

In the above section, we found a continuous g-prime system for which =
Now we show that it may be adapted to give a discrete version. Finding discrete
system satisfying this same property is generally more challenging. The reason
for this is that if we have p(X) de ned as a step function, then seeing the
singularities of the Beurling zeta function is di cult.

We shall use the method developed by Diamond, Montgomery, Vorhauer [11]
and later Zhang [31] which uses (the theory of) probability measures to nd

discrete systems of Beurling primes.

Theorem 4.10. Let 0 < < 1. Then there is a discrete g-prime system P for

which

d(x) = li(x) + O(xe @99 y; (4.26)
and
NE(x)= x+ (xe °(9% ) (4.27)
for some positive constants and ¢. Thus () for discrete systems.

To nd the g-prime satisfying (4.26) we use the following lemmas from Zhang’s

paper [31].

Lemma 1. Let f( ) be a nonnegative-valued Lebesgue measurable function on
( A; 1) with support [1; 1): Assume that there is increasing function F(x) on
( A; 1) with support [1; 1) satisfying

Z X
f()d F();
1
VAR
1f( )d IDF(x)(l + log X);
log X = o(F (x));
Z x P— P—

F()d F(X);

and
Fix+1) F®X):
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Let
1 o< 1< ;< < k< ka1 <

be a sequence such that ¥ 1 as k ¥ 1 and such that
z

o= F()d;

k 1
satis es 0 < px <1 for k > ko: Then there is a subsequence ;;j = 1;2;::: such

that

X
,'é Pk IOF (X) pl + log X + IDIog(t +1) ; (4.28)

forl x<d1 andt O

Lemma 3. If the sequence  in Lemma 1 satis es also

Z
X x
Pk F( )d pF(x) pl + log X + lC)Iog(t +1) ;  (4.29)
1

k X
for F(x) clog(t+ 1) with a constant ¢ > 0 then there is a subsequence ;;j =
1;2;::: such that

> Z x

K 1 "t )d IoF(x) Iol+|ogx+plog(t+1) ; (4.30)

. X
Kj

forl x<d andt O

Lemma 4. Let £(x) be a Lebesgue measurable function on ( 1; 1) with support

[1; 1) satisfying

1 x1
0 f(X) ogx
Then the function
X
F(X) = T+ logx

satis es the conditions of Lemma 1 and both the sequences
@ I
(1) «= logk+kp); k=0;1;2;::

and

(2) « =log



satisfy the conditions of Lemma 1 and Lemma 3. Therefore both (1) and (2)

have a subsequence ;; j = 1;2;:: satisfying
Z S——1
> x _
i tf(yd Px 14 90*D
J

. 1+ logx ; (4.31)

ox
Kj

forl x<dandt O:

Now, consider the continuous function

1 K >< cos(b,log )
n— 4.

()= "jgg— ()i with ()=1

an
Nn>nNg

That is, the function h = Op where p from Theorem 4.1. Here K;ng; n;b, and

an as in Theorem 4.1. The function h( ) % So, by Lemma 4 there is a

sequence 1 0 1 2 i j+1 suchthat ; ¥ 1 asj ¥ 1
for which
Z S—1
>x< X _ | +1
i It Ith( )d pX 1 + Og(t )
1 1+ log x
j X

for1 x< X1 andt O: In particular, when t =0 we have
X Z X P—
1 h( )d =0( x): (4.32)

i X !

We shall take T jg; o as our g-primes. By Proposition 4.2 we get
< p_
d(x) = 1 =1i(x) + O(xe 199 )+ O( x) = li(x) + O(xe (°9» ):
j X

with as in section 4.1. We let

X d(yt
%(x)=n 1 P(nx ).
Then
d(x) = li(x) + O(xe (099 ) (4.33)

since $(x) = g(X)+ O(pi): This proves (4.26). We estimate NZ(x) through
its associated zeta function g given by
Z, Z .
d(s) = x SdNZ(x) = exp x Sd 4(x)
Yz, ! (4.34)
= exp log(1 x )d ¢(x)
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This can be written as

p(8) = p(s)expfFa(s) Fui(s)g; (4.35)

where p(S) as in Section 4.1 is analytic in D and
YA 1
Fi(s) = °d p()+log(l  °)d £() ;

and Z,
Fa(s) = *dg() h()d

1
We see log(1 Y= S+0( 2



Lemma 4.11. Let a function F(x;t) de nedfor1 x< 1 andt O be locally

of bounded variation in x and satisfy F(1;t) =0 and

s 1
_ log(t+ 1
F(x;t) IC)x 1+ M :
1+ log x
Given X X > 1, let T+, >0. Then

z
B dF( ;t) Iolog(t+1):

1

Proof. Using integration by parts, the integral on the left hand side is

z Z S——1
1 1 1 log(t + 1) P—
1 . 1 + +1)
) F(;t)d 1 1 I+1og d log(t + 1);
since | 2d converges. O
Let
> Lx
g(x;t) = it "h()d; x 1
. 1
i X
So, g(x; t) satis es the conditions of Lemma 4.11. Thus, by Lemma 4.11, we have
Z 4 p
Fo( +it) = (" dg(;0)) logt; t 2 (4.37)
1
for s+ >0

We shall need to use T, = exp f(log x,) g,suchthat0 < < < 1: Therefore,

Fo( +iT,) = O((log xn)2): (4.38)
Al
SO, Z,
Fi(s) = °d 5()+log(  °)d 5()
1
Z 4 > 1 ya
= ey o~ ™dE()
1 m 1 1
— > 1 2 t msd d( )
= = a0 ):
m 2
This shows that the integral for F1(s) converges unifomly for %+ with each
> 0: Therefore,
Fi(s) = O(1); for %+ ;>0 (4.39)
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Hence, we see from equations (4.38) and (4.39) that for s = +iT,; we have
<fF,(s) Fi(s)g jFa2(s) Fi(s)j b(logxy)z; b>0: (4.40)
This tells us that
<fF,(s) Fi(s)g b(log X,)2; for some b > O: (4.41)
From (4.37) and (4.39) we have proved the following

Corollary 4.12. For +it2D \ H%; we have

d
=)



From this we see equation (4.42) becomes
X2 X 2‘+I
Mg (x) = —-+ JO+F19 +399+0 x% 00T - 50 (4.43)

no<jmj n 1
To estimate the second term in the right hand side of equation (4.43) we need to

prove again Proposition 4.6 with g(s) instead of p(s) as follows
Proposition 4.13.

1
Jd =0 x2 090" X for some g > 0

no<jmj n 1

Proof. Let us consider the integral J,, and let |,



Weseethat1 1~ 2. = since ! istakensu ciently large, so equation
(4.43) becomes

Mg (



where
gn(S) = gF2(®) Fl(S)fn(s):

Here gn(s) is analytic in a disc around the point z, =1 a, + ib,. Therefore By

Proposition 4.7 and equation (4.40) we obtain

] ) 64
()i X T<(Fo(3) Fa(9)o S—%e('(’%f“; (4.46)

for some q; > 0. While, by Proposition 4.9 and equation (4.41) we have

N 1
j9n(s)i 16012 expf<(Fa(s) Fi(s))g g—ge (logxn)2, (4.47)

for some g, > 0. Therefore, by (4.18) with g,(s) instead of f,(s) and by (4.47)
we obtain
S¢  bexp (logxn)z +2(logx,) ; b>0; (4.48)

for x is su ciently large, that is for n is su ciently large. We use this lower
bound of the integral S: Now considering the other factor in (4.17) (with S,, is

replaced by S9), we have

sin —n 1 = 1
2 y2an+t _— _Ny2g anlogx =
log x 2(log x)?
log x 1
(aXx2e ogxm? gs > O:

(log x)? (log log X)*"
where =L andn '99/°: From the above and (4.48), we get

d 03X? ex log x
" (logx)2 (log log Xp)? P (log xn)*

23 o~ [10d 052 TF 19 876 9 83 T]d?TJ/FZHO d 0<50



We next aim to obtain a large value for J¢ + J9_ = 2<(J39) compared with the

other error term of (4.50). To achieve this we can use similar arguments as those



Chapter 5

Connecting the error term of

Np(X) and the size of p(S)

When proving results linking the asymptotic behaviour of p(X) and Np(X) one
often uses as a go-between the Beurling zeta function p(s): Thus an assumption
made on p(X) is translated into a property of p(s) which is then shown to
imply a property of Np(x) and similarly vice versa. The property on p(S) is
often related to its size along the vertical line (or holomorphicity). For example,
if Np(X) = cx + O(x ); < 1: Then p(s) is holomorphic in H nflg and
p( +1it) = O(t) for > : Thatis, p has at most polynomial growth on
vertical lines to the left of 1. Furthermore, bounds on the vertical growth can be
shown via the inverse Mellin transform to imply Np(X) = ¢cx + O(x ): Here we
investigate the connection when Np(X) = cx+ (x* ); and where p( +it) may
have in nite order. Therefore, if we assume that p(s) has polynomial growth
along some curve for < 1, what can be said about the behaviour of Np(Xx) (as
x ¥ 1) and vice versa?
We concentrate in this chapter on determining the connections between the
asymptotic behaviour of the g-integer counting function Np(X) and the size of
Beurling zeta function p( +it) with nearl1(ast ¥ 1). We aim to nd this

link and apply it in chapter 6.
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51 From p to Np

We start with showing how assumptions on growth of p(s) imply estimates on the
error term of Np (X): Note that in fact, the following theorem is purely analytical

as there is no use of g-prime systems (only the fact that Np 2 ST").

Theorem 5.1. Suppose that for some 2 [0;1); p(S) has an analytic continu-
ation to the half plane H except for a simple pole at s = 1 with residue

Further assume that for some ¢ < 1;

1

+ it) = O(t°); for —;
where T is a positive, strictly increasing continuous function, tending to in nity.

Then for =1 c¢;
Np(x) = x+O(xe 2" *( 109y,
where h(u) = uf(u).

Proof. We use the bound p(s) = O(t°); for some ¢ < 1 to nd an approximate
formula for

Z X 1 Z b+il s+1
Mep (X) = ; NP(y)dy_ﬂ - P(S)mds-

This holds for any b > 1. Pushing the contour to the left of the line <s = b past

the simple pole at 1, we get forany T >0

1 Z xS+1 Z pit xS+1
Me (X) = EXZ * o5 P(S)S(S T 1)d5 *o5 R P(S)mds
1 Z, faesT 1T xs+1 Z pria b iT x5+1
+ﬂ b iT F’(S)S(S"'l)ds-kﬂ b+iT " b i1 P(S)mdS:
Here 1 is the contour s =1 ﬁ+itfora<jtj Tands=1 m+it
for jtj a: The constant a is chosen such that a > e and 1 f(Tlga) ; (see

Figure 5.1).
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The modulus of the integral over the horizontal line [1 f(,ogT)
yA b+iT s+1 YA b Tch+1
P( ) =0 2 du
R s(s + 1) e T
X

:O(

+IT;b+1T]



Z 4

=0 Xx° ex 2u +
IO%a p ( f( )
1

log x — )+ (c+1u du +0O( f<'°lga));

=0 2 exp (1 ou+% dqu +00d )

loga f( )
To estimate the integral, we split it into

Z a1 ZA Z 1
log X log X
exp  (u+ f(g)) du + exp  (u+ f(g)) du;

loga loga A
for some A>logaand =1 c:
log x R log x
The rst integral over (loga;A) is e Hoy loga © Ydu = O(e %); whilst

the secol.9TJ/F27 7.9701 Tf 5.426 5.907 Td [( )] TJ/F22 5.9776 Tf 8.084 3.693 Td [(log)] TI/F25



Similarly, the right hand side of the same inequality is

2
} Xy+ y

) 2 1 1 .
y > +0 x“expf h *( “logx)g ;

hold for any 0 <y < x.
Now, for some >0 and some d >0 we have h(xX) h(x d)=xf(xX) (X
df(x d)y=x f(x) f(x d) +df(x d) > 0:



2. For f(x) = x for some > 0. We have h(x) = x!* and

That is,

for some

h 1(logx) = (logx) ™ :

p(1 +it) = O(t°; (c <1) implies

1
(logt)
Np(x) = x+0O xexpf b(logx)¥ g ;

>O;Whereb:;and =1 c

59



5.2 From Np to polynomial growth of p

Our purpose in this section is to obtain a kind of converse of Theorem 5.1. That
is, we nd the region where p( +it) = O(t°); for some ¢ > 0, if we assume that
we have a bound for the error term of Np(x). In the other words, the reason
of the following theorem is to obtain polynomial growth for p( +it), < 1:
This depends on  and the bound of the error term of Np(X). We shall need to
assume a priori that p is has an analytic continuation to the left of =1 and
that p( +it) is bounded above by O(e') for 0 <1

Theorem 5.2. Suppose that for some 2 [0;1); p(s) has an analytic continu-
ation to the half plane H except for a simple pole at s = 1 with residue and
for > ; p( +it)=0(Y; (t>0;t ¥ 1):

Further assume that
Np(X) = x+ O(xe *®);

for some positive, increasing function k tending to in nity such that k' (x) = 0(3).
Then for some ¢ > 0;
p( +it) = O(t°);

t

for 1 k(tT) <1 9 where tissu ciently large.

Proof. The usual Mellin transform
Z a1
p(s) = X °dNp(x); >1
1

cannot be used directly for < 1; since the error term is not small enough to
ensure analytic continuation to < 1: Instead we use a formula which is based

on:
1 Zc+i1

g (m =1
Lo e 21 (i1



We generalize equation (5.3) (with = 1) in terms of the Beurling zeta func-
tion. The reason for doing this is to nd an estimate for p(s) for < 1. That

is, we show
Z a1 1 Z c+il
X S XdNp(X) = =— (M) p(s+1) ‘'dI; (5.4)
1 20 ¢ i1
holds for =>0andc>0,c>1

To see this, notice that the right hand side of equation (5.4) is equal
1 Z c+il Z 1
— ) x C*YdNp(x)  'dl;
21 ¢ i1 1

and observe that we can invert the order of integrations by ‘absolute convergence’

since gamma is exponentially small. It becomes
Z a1 1 Z c+il Z 1
S = (M( x) 'd! dNp(x) = X e *dNp(x):
1 21 ¢ i1 1

Note that both sides of (5.4) are entire functions.
Now we integrate by parts the left hand side of equation (5.4) and on the right

we pgsh the contour to the Ieth of the lines<! =0and <! =1 . We get
1 a1
e XX SNp(X)dx+s e *x S INp(X)dx= p(s)+ 5! (1 s)
1 1
1 Z ¢ i1 Z il Z c+ild
* 53 * + (1) p(s+1) ‘db;
21 c il ¢ i1 il

for some negative constantc' > 1landc'+ > |, since the integrand of the right
hand side of equation (5.4) has singularitiesat ! =0and ! =1 s with residues
p(s)and S 1 (1 s)respectively. The contribution from the horizontal line

[c +iy;c+iy]is

_ z
c+iy c .
S M es+n fdr = (x+iy) p( +xHi(Y+D) e M dx
o Cz.,
:Oy%exp jy +tj % ny dx ¥ 0 asy ¥ 1A:
C

since j (X+1y)j



As we mentioned earlier, we are interested in nding an estimate for p(s) for
< 1. So, we take < < 1; and try to estimate each term in the right hand

side of equation (5.5) separately. For the rst integral we have

Z 1 Z 1
e *x SNp(x)dx = e *x S5 x+0O(xe K®) dx
1 1
Z 1 Z 1
— e XX s+1dx+o X +le (X+k(x))dX :
1 1
1 Z a1
= sl @ 59 e *x Stldx+0 x Tle (xFkOgy

0 1

since < 1. Hence

Z 1 Z 1
e XX SNp(X)dx= 5! (2 s)+0 x Tle (XFkCNgx  + O(1);
1 1
(5.6)
Ry
since ;e *x *"ldx = O(1).
For the second integral of equation (5.5) we have
Z 1 Z 1
s e X SINp(x)d=s e *x ! x+0(xe ¥®) dx
1 1
YA 1 Z 1
=s e *x %dx+0 t x e (*xkgy;
1 1
YA 1 Z 1
=s 1 (@1 s) s e *x Sdx+0 t x e (XkCqx:
0 1
since < 1. Hence
s e X SINp(X)dx=s ! (1 s)+O(1—)+O t  x e (x¥kC)gy .
1 1
(5.7)
' "o xsax =0t Ix dx)=O(L)
since s e *x ®dx =O0O(t ;x dx)=0(—):
Finally, for the vertical line over [c id;c +id] we have
Z dvia Z4 : 0 -
(D p(s+1) 'dI = € +iy) p( +c +i(y+1) " Mdy
d i1 1
YA a1

=0 ¢ jvj+1)° 3 v+t 2 g
1(JyJ )" zexp Jy +t] > y
=0 ‘et
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From the above, equation (5.5) becomes

t 0

p(s)= *t (@2 s)+s *1 (1 ) ¢ S)"'O(—l )+0  Ce
Z 4 Z 4

+0 x tlg (X*FkMgx +0 t x e (XFkOgy -

=0 x g OkODgx +0 t x e (XTKCgy

1 1
0

+ O(1L) +0 ‘e
(5.8)

since for <1, the gamma terms cancel each other.
Our aim is to nd for which  we have p(s) = O(t®) for some ¢ > 0. So,

putting =-e Y we see that the last term of the right hand side of equation (5.8)

is O(1), since ¢ > 1. We see also with = e * that the term
VA 1
x Tlg (X*kCDgx = O(t):
1
Indeed, we split the integral into the ranges (1;B) and (B; 1) for some B > 1:

For the rst integral we have
Z B YA B
Xl e (x+k(x))dX Bl e k(x)dX
1 1
VA B
B! Be *® 4+  xk'(x)e “®dx B2 e &,
1

. 0 . . . .
since k (X) = o(%). For the range (B; 1) the second integral is

Z 1 Z 1
Xl e (X+k(x))dX e k(B) Xl e XdX
B B Z 1
— 2o k(B) y! e Ydy
B
2e kKB (2 ):
Therefore,
z 1
b e (x+k00) gy B2 e k®) 4 1g k(B) @ ):
1
- q_
Now, setting B = %, we get
Z 1

P P,
xt e (kg ze KO D4 g KO H (o
1
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lo

For 1 > Ingt we see 1< ¥ =1t Therefore, the rst term in the right
hand side of the above inequality ¥ Oast ¥ 71, whilst the second term is O(t).

Thus, equation (5.8) becomes
Z 4 ¢
p(s)=0 t x e (x+kCAgx +O(1—): (5.9)
1
To estimate the rst integral in the right hand side of equation (5.9) we split it
into the ranges (1; A) and (A; ) for some A > 1:

The rst integral is less than

Z Ae k(x) Al e k(A) 1 Z AXko(X) KGO Al e k(A)
dx + e kg & 7
1 X 1 1 1 X 1
since k'(x) = o(;l(); whilst the second integral over (A; 1) is
o k() Z 4 e kA
e *dx ;
A A A
So these tell us that
Z
1 < e ( x+k(X))dX Al e k(A) N et k(A) _ e k(A) A N et -
L 1 A A 1 '

Choose A =(1 )et, equation (5.9) becomes

P©)=0 —— (1 et e K N 4o
1 1 (5.10)
=0 tPexp t(1 ) k(@ )Y +O(t?);
since ;- < pepand (1 )t Tlasl ¥ 0: Therefore
p( +it) =O(t%) for some ¢ > 0; (5.11)
when

exp t(1 O(t



since 1 > Ingt > %: This shows that (5.11) holds when

t
1 k%
t
Therefore, for
k & logt
1 t < 1 ﬂ
t t '
we have p(s) = O(t°) for some ¢ > 0. O

We now illustrate Theorem 5.2 with some examples (of course, in each case

we assume that p has an analytic continuation to H ).
Examples

1. For k(x) = (logx) , for some 2 (0;1): This means k %



Chapter 6

Application to a particular

example.

In this chapter we investigate a particular example of a g-prime system Pq. In this

example, »p



Here E(X) = o(x): We nd O results and results for E(X) as an application
of Theorem 5.1 and Theorem 5.2.

Now, equation (6.1) (which implies o(x) = x+ O(1)) tells us that o(s) has
an analytic continuation to the half plane fs 2 C : <s > 0g except for a simple

pole at s =1 and o(s) & 0 in this region (see Lemma 3.2). Moreover,
() = x %d o(X)= (s) 1 (6.3)

Here, the



for some ¢ > 0.
We can improve on this by using Theorem 5.1. The real reason which allows
us to improve on (6.5) is that (s) is connected to the Riemann zeta function

and we can use all the available information on (s).

Theorem 6.1. We have
No(X) = x+ 0O xexpf b(log x)g log log X %g ; (6.6)

for some b > 0. Furthermore, on the Riemann Hypothesis this can be improved

to

(1 )logxlogloglog x
4 log log x

No(X) = x+O xexp ; for every >0: (6.7)

Proof. Firstly, we show that 7og



Our aim here is to apply Theorem 5.1. For this purpose we have to show for
which region ( near 1), o( +it) t°for some positive constant ¢ < 1: So, in

order for j o( +1it)] 1t to hold for some ¢ < 1; we need
3 2
exp (1+1t1%C D%)(ogt)s

That is, we need

1+ e100(1 )% log t C(lOg t)%
This certainly holds for t su ciently large if
3 1
100(1 )2 logt 7 log log t:
Therefore, for

loglogt %_
400logt

we have

o( +it) =0O(t%; for some positive constant ¢ < 1:

Thus, we can apply Theorem 5.1. We have f(x) = (42%)5, which tells us that

log x
h(x



for some A;a > 0.
1

However, &

- e for all u 0. Therefore, in order for logj o( + it)j

clogt; for some positive constant ¢ < 1; it is su cient to have
exp a(logt)>?® ) +alogloglogt  A;logt;
for some A;;a > 0: That is,
a(logt)>’® ) loglogt+logA; alogloglogt:

So, for 1 %; the above holds for some suitable k; > 0; if t is

su ciently large. That is, in this region we have
o +it) =0(t%; forevery c>0:

Now, apply Theorem 5.1 with f(x) = mﬂg—g}f&



Proof. If (6.11) is not true then Ng(x) = x+o(x} ); which implies that No(x) =

X+ O(x* ); for some > 0: Thus we have a ‘well-behaved’ system (see section

3).
o(X) =x+0(1)
No(X) = x+0X* ); =>0;

By Lemma 3.3 for 1 < <1; we have

() 1= 0



Proof of Theorem 6.3. If (6.12) is not true then
No(X) = X+ O(xe *®) for some ¢ > 1:

We know that (s) has an analytic continuation to Cnflg with a simple pole at
s =1 and ,(s) & 0 in this region. Moreover, by (6.10) we have o( =+ it)
et; 8 >0 for < 1; (some xed ). Therefore, we can apply Theorem 5.2

as the conditions are satis ed. We obtain

o( +it)=0(t"); for some b > 0;

for 1 ‘gt 1 G pieakel, (any >0, and t > to( ) since —Ck(teT)
£ieg 9 99%). Furthermore, (6.9) tells us that
yA 2
logj o(S)j J u+it) 1jdu+0O(1) logt;
since (s) = O(logt) for 1 ﬁ 2, (any a > 0), see Theorem 3.5. in [29].
Let B(t) = &-552°09": Therefore, for 1 B(t) 2,

logj o( +it)] Alogt forsome A=>0:

Consider concentric circles with centre # + it (for some # > 1) and radii R; =

# 1+B@{) @®andR,=# 1+B(t) 2 (b); (with ()= m). Apply

the Borel-Caratheodory Theorem to log o(z); (see 9:1 in [29]). Therefore, for
1 B()+ ()andt ty; we obtain

jlog of +it) =2 Alogt+ L R2ilog o+ it)]
1 2 1 RZ
L ogt D log tlog log t;
() ) ’

for some A;; D > 0:

Now, let C be the circle (see Figure 6.1) with centre 1 dB(t) + (t) + it; for
some d 2 (%; 1) and radius R = rB(t) for some positive constant r <1 d: By

Cauchy’s integral formula

1 % log o(2)
20 c(z 9

72

(s) = dz for s2C:

o |OO



VARG N, ae— - F -, T
| * | |
v P R & T8 i = I i s e = e T o
'-:__'-—“"r,gfi-t.‘—ﬁ—,_—'—'-r‘—_ "}':'z_._n,. L _'f_.lllll--. T £ ‘-"“"[ Faoeerooow

Figure 6.1: circle C

Therefore, for s 2 C; we have

! 1 1
_0 il - - — 2 .
0(s) R erc]gl)éjlog 0(2)] BO log tloglog t = o(log” t):
So, this tells us that for s 2 C
_ 2 on. (1 )clogloglogt
(s) = o(log°t); for loglog t (6.13)
However, by Proposition 6.4, for 1 = %; with (1 )c > 1; we
have
. N 1+0(1) (logT)*
1Tta<)$J ( +igj exp 16(1 )loglog T
(loglog T)& e
= 1+o0(1
exp o) 16(1 )clogloglog T
= e2Iog|ogT — (logT)Z:
This is a contradiction with (6.13). ]

In the previous sections we have been trying to obtain good lower and upper

bounds for Np(x)  x: That is, upper bounds for No(X)  x which holds for all
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su ciently large values of x and lower bound for No(x)  x which holds for a
sequence of x’s tending to in nity [and not necessarly for all (su ciently large)
values of x]. For the upper bound of Np(x) X we have shown some unconditional

O results and one result was conditional with the unproved Riemann Hypothesis.

Set (X) = No(X) x: A comparison of the O results and results (based

on Theorem 6.1 and Theorem 6.3) of this chapter, we have shown that

clog x log log log log x
log log log x

X)= xexp for every ¢ > 1;

while on the Riemann Hypothesis,

(1 )logxlogloglogx

: >0
Zlog log X ; for every 0

(X) xexp

This shows that there is a small gap between these results which re ects the
great di culty in determining the behaviours of o(s) in the strip 2 < < 1: The

interesting question is: What is the true order of this error term?
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6.3 Pyisag prime system

We end this chapter by showing that the pair ( o; No) is a g-prime system. That

is, we show o2 Sy; (i.e. o is increasing).
Theorem 6.5. ( o; Np) Is a g-prime system.

We prove Theorem 6.5 by showing o 2 Sg: Writing
Z X
#o(x) = logy d o(y); (6.14)

1
which tells us that ¢ 2 S , #o 2 Sy Therefore, we will show that #, 2 Sg
and this will complete the proof of Theorem 6.5.

Now, we have

X 1
o(¥) = #o(xn);

n=1
(see de nition 13 in chapter 3) and by the Mobius Inversion Formula we get
X 1
#o(X) = (n) o(xn):
n=1

Therefore, with o(x) =[x] 1, x 1; we have

X L
#o(X) = (n) [xr] 1:
n=1
[Note: The above series is nite since the terms are zero for n > 'Ig%.] The

following Proposition will complete the proof.

P 1 .
Proposition 6.6. Let #y(x) = nl:1 (n) [xn] 1; x 1: Then the following
hold:

) #o(X) =#Ho(k) for k x<k+1; kK2N; (i:e: #o(X) = #o([X]):)
(ii) De ne f(n;k) = [ka] [(k 1)a]; n;k 2 N: Then

8

<1 if k=q"; for some q2 N

f(nk) = _



(i) We call k 2 N a perfect power if there exist natural numbers

g > 1, and n > 1 such that k =q": Then
8
=1

#o(k) #o(k 1)= _ L
-0 if k is a perfect power :

if k is not a perfect power ; k 2

Proof. () Fork x<k+1; k2N

X 1 1
#o(X)  H#o(k) = (n) xr] [k~

n=1



However,



(i)  We have from (ii) that
8

) <1 ifk =q"; for some q2N;
nk) = _
-0 ifk&q";, gq2N:

Therefore, for k is not a perfect power, we have

X X
#o(K) #Hok L= (MFM:k) =1+  (MFM;k) =1

n=1 n=2
Now, for k is a perfect power, let r be a maximal natural number greater
than or equal 2 such that k =q"; q>1; g 2 N: So, by the above Remark
we have

X <
#(k) #Ho(k 1) =#(@") #(@Q 1= (Mf(n;q") = (n):

n=1 njr

By Theorem 2:1 of [2] we have the last sum is zero (since r > 1). The proof

of Proposition 6.6 is completed.
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