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Numerical reservoir simulation is an important area of research within the oil in-
dustry. An accurate prediction of the performance of a reservoir under a recovery
strategy is needed to assess the optimum oil recovery, and hence to determine the

economics of the project.
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Ch pter 1

Introduction

1.1 Oil Reservoir Engineering

Oil reservoir engineering encompasses the processes of reservoir characterisation,
mathematical modelling of the physical processes involved in reservoir fluid flow,
and finally the numerical prediction of a given fluid flow scenario. The basic
problem associated with oil recovery involves the injection of fluid or combinations
of fluids and/or chemicals into the reservoir via injection wells to force as much
oil as possible towards and hence out of production wells. Accurate prediction
of the performance of a given reservoir under a particular recovery strategy is
essential for an estimation of the economics, and hence risk, of the oil recovery
project. Therefore a large amount of research, and money, is directed towards
the above processes, by the oil industry.

The reservoir characterisation process provides the physical parameters, such
as size, resident fluid and rock composition and properties, which are needed
by the mathematical model. Given the physical parameters, the mathematical
model describes the fluid flow with a set of partial differential equations and
other relations, which are derived from physical principles. The resulting set of
partial differential equations are too complex, for most realistic reservoir fluid flow
models, to be solved by analytic methods. Therefore numerical methods are called
upon to perform this task, resulting in the field of numerical reservoir simulation.
Design of oil recovery strategies is heavily influenced by numerical simulation,

by simulating various injection strategies the optimum recovery technique can



be assessed. Simulation is also useful for aiding understanding of the physical
processes involved in reservoir fluid flow.

An oil reservoir can be described as a region of porous rock containing mixtures
of oil, gas and water trapped in the rock pores, surrounded above, below, and
to the sides by impermeable rock. The available pore volume in the rock, in
which the fluid resides, is given by the rock porosity which is defined as the
rock pore volume divided by the bulk volume. Another important parameter
characterising reservoir rock is the permeability which is a measure of how readily
fluid flows through the rock under the influence of the forces causing the flow.
Oil reservoirs are located in many parts of the world both inshore and offshore,
for example land based reservoirs in the United States and reservoirs under the
North Sea. Reservoirs vary in size, usually being very large in area and can
be in the region of 200 feet thick, resulting in very large field scale simulation
operations. Many different types of rock may exist in the reservoirs, with the
porosity of most commercially productive reservoirs being 10-25 | and with rock
permeability ranging from 0.5 to 3500 milliDarcy’s [14]. In practice reservoirs are
not homogeneous in nature, the main reason for this being the variation of the
permeability field. Fractures in the rock and shales (impermeable laminates) also
add to the complexity of the simulation project.

Three types of oil recovery technique exist and are referred to as primary, sec-
ondary and tertiary (also known as enhanced oil recovery EOR). In the primary
process, oil is forced out of the reservoir, at a production well, by the naturally
prevailing pressure gradients, but is only effective at producing a few percent of
the original oil in the reservoir, before the pressure gradients subside. The pres-
sure gradient, which forces the oil towards the production well, may be restored
by injection of fluid such as water, known as waterflooding, to help force more oil
to the production well. The technique of injecting water (and/or gas) to restore
the pressure gradients in the reservoir is known as secondary recovery.

The efficiency of wateflooding may be improved by lowering the water-oil



A mobility ratio M of greater than unity is referred to as unfavourable since
the water is more mobile than the oil and can ‘finger’ through the oil zone,
a process known as viscous fingering. This results in a reduced oil recovery
efficiency, but may be improved by decreasing the ratio M by increasing the water
viscosity. This can be accomplished by addition of chemicals such as polymers to
the water, the displacement of oil by water then occurring in a piston-like way.
Application of secondary recovery techniques can result in a 20-50  recovery of
oil [14], depending on the oil and reservoir properties.

Tertiary recovery (EOR) involves one of a number of procedures, such as injec-
tion of chemicals, miscible displacement processes and thermal recovery methods,
which are described in [14]. These methods are designed to increase the recovery
from reservoirs previously depleted by secondary recovery techniques. Chemi-
cal and miscible displacement processes are used to recover low viscosity oils by
controlling the mobility ratio or decreasing the interfacial tension between the
oil and the other fluids. The thermal methods of steamflooding and combustion
techniques are used to recover high viscosity oils, with the heat transferred to the
oil reducing its viscosity causing it to flow more easily. In this thesis we consider
injection of water and immiscible gas and therefore consider secondary recovery

techniques only.

1.2 Mathematical Modelling of Reservoir
Fluid Flow

A number of mathematical models exist for the description of fluid flow in oil
reservoirs. These can be divided into categories as to whether the fluid flow
is considered to be compressible or incompressible and whether the fluid compo-
nents are immiscible or miscible. A fluid component is deemed compressible if the
volume it occupies is dependent on its pressure. The compressibility associated
with the reservoir rock may also be modelled. Fluid components are considered
miscible if they are able to mix in all proportions without any interface form-
ing between them. The physical parameters of the resulting fluid mixture, for

example viscosity and density, are then obtained from a relation involving the



individual fluid component parameters and are known as mixing laws. This is in

contrast to immiscible fluids in which different phases exist which exhibit distinct



has been presented by Trangenstein and Bell in [46] and is the formulation of
the flow equations used in this thesis. This method decouples the parabolic
and hyperbolic behaviour by a linearisation of the volume balance equation to
form the parabolic equation for pressure, however this introduces a ‘volume error
discrepancy’ which is a consequence of the linearisation and indicates that the
volume balance equation is not exactly satisfied.

An alternative compressible fluid flow model exists, called the compositional

model, which is used when the modelling capabilities of the Black-Oil model

1.3 Numerical Methods for Reservoir

Simulation



numerical diffusion, resulting in the smearing of shock fronts over many grid cells.
Whereas the classical second order methods, although increasing the resolution
of the shocks suffer from spurious oscillation in their vicinity. Hence work in
the oil industry on high resolution (second order accurate), oscillation free Total
Variation Diminishing (TVD, see [24]) numerical schemes was undertaken. A
number of TVD flux-limiter type methods had been independently proposed,
outside the oil industry, by a number of authors, for example Roe [34] and Van
Leer [50]. However explicit and implicit TVD flux-limiter schemes have been
developed for use in the oil industry by, for example, Blunt and Rubin [7] and
Rubin and Edwards [36]. These methods are based on the types of numerical
fluxes typically used in the oil industry, rather than using the Lax Wendroff flux,
as in [34] and [50]. Originally reservoir simulation codes only achieved first order
accuracy in space and time, but with advent of the flux-limiter schemes in [7]
and [36] can now achieve second order accuracy whilst being free of numerical
oscillations, i.e. TVD. Flux Corrected Transport (FCT), another high resolution
non-oscillatory method [8, 9, 56], has also been applied, but to the more restricted
circumstances of incompressible miscible flow.

There has also been a recent interest in the application of Godunov type
methods to reservoir simulation. These methods, originally developed by Go-
dunov [20], have undergone extensive development and are applied to a wide

range of problem areas. Solutions of Riemann problems are central to these types






Bell [46], we show results of three of these simulations. We also present results
of a 2-D Areal problem, which have not previously been seen in the literature.
In this chapter we also investigate the accuracy of the Higher Order Godunov
method when applied to degenerate systems, by comparing the numerical results
of 3-phase incompressible Buckley-Leverett simulations with the corresponding
analytic solutions which we construct. The incorporation of source terms in 1

and 2 dimensions, to model injection of fluid into, and production of fluid from



Ch pter 2

Hyperbholic Conserv tion L ws

2.1 Introduction

In this chapter we review some of the theory and nomenclature, associated with
hyperbolic conservation laws, which we use throughout this thesis. Firstly an
indication of how hyperbolic conservation laws are derived and characterised is

given. Particular attention is given to systems that exhibit two types of degen-



2.2 Derivation



posed. The differential equation along with the initial condition is said to hold
on a region {2, the boundary of which is denoted by (). Boundary conditions on
2 may be needed depending on the structure of the problem, i.e. whether there

is inflow, outflow or reflection from the boundaries.

2.3 haracterisation

The equation (2.2.1) is said to be in conservation form, with the quasi-linear form

being given by

4+ =
where — is an matrix called the Jacobian matrix. If — is a function of
and only then the conservation laws are termed linear, whereas if — is also

a function of  then we have a non-linear system. The system (2.2.1) is termed
hyperbolic if all the eigenvalues of the Jacobian matrix are real. If the eigenvalues
are also distinct then the system is referred to as strictly hyperbolic. If this is

the case then the eigenvectors and eigenvalues of the Jacobian satisfy
= A

where A is a real diagonal matrix and  a real non-singular matrix. The entries
of A are termed characteristic wavespeeds and the columns of | denoted by
the characteristic directions. A loss of strict hyperbolicity occurs when two or
more wavespeeds coincide at a point, which is referred to as an umbilic point.

A particular eigenvalue and its corresponding eigenvector define a character-

istic field of the system. The characteristic field is said to be genuinely non-linear

if



In this thesis we consider systems of conservation laws which exhibit certain
pathologies in their wave structure as previously mentioned. In particular we
consider systems with the following two degeneracies, namely those which ex-
hibit local linear degeneracy and eigenvector deficiencies in the wavefields. A
local linear degeneracy occurs at a specific value of U for which the genuine
non-linearity condition fails. An eigenvector deficiency arises when two or more
eigenvalues coincide and their corresponding eigenvectors are parallel. Other de-
generacies are also possible such as elliptic, parabolic and rotational but we do

not consider these.

2.4 Analytic Solutions

2.4.1 The Weak Form

The differential form of the conservation laws preclude discontinuous solutions,
however the problems of interest to us, namely the simulation of flow in porous
media, typically exhibit discontinuous solutions hence we need to consider the
weak form of the conservation laws. The weak form is an integral formulation
and hence discontinuous solutions are admitted. It is obtained by multiplying the
conservation laws by a smooth test function ¢ which has compact support, i.e. is

zero outside of some finite interval, and integrating over the region, resulting in
[ [ 16U+ R dedt =~ [ 6(z,0U(z,0) d.
0 —o0 — o
For more details see Smoller [41] or any other standard text on hyperbolic conser-
vation laws. The conservation laws are then satisfied in the sense of distributions
and discontinuous solutions are now allowed since the act of integrating by parts
moves the derivatives onto the test function. Admission of discontinuous solu-

tions has a consequences in that weak solutions are non-unique, hence a way of

selecting the physically correct solution is required.

2.4.2 Entropy Conditions

The way in which a discontinuity is determined as being physically correct is if

it satisfies a condition known as an Entropy Condition. The entropy condition

12



requires that the physically meaningful solution to the conservation laws is the
limit of the solution to a modified differential equation, with an infinitesimal

amount of diffusion, namely
Ut —I_ Fx = eUamm

as the diffusion tends to zero, i.e. € | 0. This condition is thought, see for example
Trangenstein [49], to be reasonable when considering reservoir flow problems,
particularly so when diffusive forces such as capillary pressure and mixing are
ignored. This is because enforcement of the entropy condition ensures that the
solutions to the conservation laws are related to more realistic flow models which
do include diffusive forces.

Work by Oleinik [31] and Lax [28] has provided straightforward quantitative
versions of the entropy condition. Oleinik showed that the scalar Riemann prob-
lem has an admissible shock from u” to u® if and only if

flu) — f(u) flu) — fu)

> g >
u—ul - = u— uft

Y

for all v between u” and u® and termed this condition E, where ¢ is the shock

speed and is given by

Condition E applies to both convex and non-convex scalar conservation laws,
whereas Lax showed that the convex problem has an admissible weak shock if the
shock speed o satisfies

a(u®) > o > a(ul),

where a(u) (= f'(u)) is the wavespeed of the scalar conservation law. This
second condition states that the characteristics should go into the shock as time
progresses. For convex f Oleinik’s condition reduces to that of Lax. A similar

condition for systems is also due to Lax and is expressed by
)\k(UL) >0 > )\k(UR),

where A denotes one of the characteristic wavespeeds of the system, and is only

valid for genuinely non-linear fields. If satisfied for a particular k the discontinuity

13



is referred to as a  shock. In the case of characteristic fields which are not
genuinely non-linear another entropy condition is required. This extended entropy

condition is due to Liu [30] and is given by

and is less restrictive than the Lax condition for genuinely non-linear fields by

allowing equality of the shock speed with one of the wavespeeds.

The Riemann problem is defined as the initial value problem (2.2.1) with a single

discontinuity in the initial data,

if 0
(0= _
if 0
where and are constant states to the left and right respectively of the
initial discontinuity at = 0. The Riemann problem is very important in the

theory of hyperbolic conservation laws since it serves as a component of a number
of numerical schemes.

The solution to the Riemann problem is composed of two types of elementary
waves, termed shocks and rarefactions, usually connected by constant states.
Another type of wave termed a contact discontinuity may also arise. A shock is a
discontinuity that satisfies an appropriate entropy condition and travels with the
Rankine-Hugoniot shock speed which is given below. An expression for the speed
of a propagating shock can be obtained from the weak form of the conservation

laws, and is given by the following well known Rankine-Hugoniot jump condition

) )




The contact discontinuity is not a valid shock, but is a valid discontinuity
and may arise if one of the characteristic fields is linearly degenerate. In this
case the wavespeeds on both sides of the discontinuity are equal and hence the
discontinuity moves with speed equal to the wavespeed.

A rarefaction is a smoothly varying solution which is a function of the sim-
ilarity variable only. The following characterisation of rarefaction solutions

exists, a  rarefaction is defined by

where  is any state on the rarefaction wave and and are states to the
left and right of the wave.

Classical hyperbolic theory, see Lax [28], states that for an system the
Riemann problem solution is composed of  distinct waves connecting to
For a strictly hyperbolic system these waves can only be connected by constant
states, but for a system that exhibits local linear degeneracies, rarefaction-shock
compound waves become a possibility, see Liu [30]. For example a 1 rarefaction
may be connected to a 1 shock, in fact the two waves must be of the same family
because at the connection point the fastest wavespeed in the rarefaction must be
equal to the first characteristic speed to the left of the shock. Shock-rarefaction
compound waves are also a possibility. However, some types of compound waves
are precluded, depending on the number of components in the system  and the
degree of the flux function, for example see Schaeffer and Shearer [38]. Also, at

points where strict hyperbolicity fails, transitional



2.5 Numerical Solutions

We shall consider conservative difference schemes for numerically solving the sys-
tem (2.2.1), as we want to retain the conservation property of the equations.
This is important because not only do we maintain conservation, but an impor-
tant theorem of Lax and Wendroff [29] will then apply. This theorem states that
if the numerical scheme is convergent then it converges to a weak solution of the
conservation laws (2.2.1). As a consequence shock wave solutions will satisfy the
Rankine-Hugoniot relation for the shock speed, so that shocks will appear in the
correct locations. This type of difference scheme may be derived by integrating
the conservation laws over a box in space defined by [ _ 101 ]

and applying the Gauss divergence theorem, which results in

A - _
S (252
where we have used standard notation and A = ~ _and A =
The quantity is an integral averaged value of  over the interval, i.e.
1
A (A 4)

The _is termed the numerical flux and is defined by

- 1

= (-

where _ is the unit outward normal to the relevant face of the space-time box.

If the fluxes _in the finite difference update (2.5.2) are functions of quantities
at the current time level then the resulting scheme is termed explicit. In this case

all the quantities on the right hand side of (2.5.2) are known and hence the



sides of (2.5.2) are functions of . In general implicit methods are more



were present in the original equation together with spatial derivatives only. The
elimination method should not use the original partial differential equation as
its solution will not satisfy the finite difference equations. Instead the result of
the Taylor series expansion of the finite difference approximation should itself
be manipulated by applying — and — operators and taking linear combinations
of these forms with the original expansion to remove the required derivatives.
The resulting modified equation will have infinitely many terms but in practice
only the lowest order terms need be considered as these describe the dominant
behaviour. For example when a first order finite difference method is used to
approximate the solution to the linear advection equation analysis shows that

the modified equation is actually of the form
+ =

where the term is a diffusion term. Hence the reason for first order methods
suffering from large doses of numerical diffusion. Similarly with second order

methods, the modified equation looks like
+ =

with the term being a dispersive term. This term gives rise to the dispersive
ripples in the Lax-Wendroff and Warming and Beam schemes.

Two examples of scalar first order schemes are the upwind scheme and the



states to the left and right of the discontinuity at = ., where specifies the
speed of the discontinuity. Godunov’s method takes the cell edge flux to be

= 0 0))



where TV (u") is the total variation of the solution at time level n and is defined
by

TV(u") =3 lujyy — gl
k

The total variation is an important property of a numerical scheme which can be
used to prove convergence of a scheme, and also ensures that oscillations cannot
appear in the solution.

The concept of a TVD scheme is essentially one-dimensional although a def-
inition of the total variation of the solution to the two-dimensional conservation
laws of the form

ut+fx+gy:07

has been given by Goodman and LeVeque [23]. The total variation is defined by
the sum of the variations in both coordinate directions and is given by
TVQ) = TV 4 TV ) = Ay 3 = w5l + A 3y =
7, 7,

Goodman and LeVeque [23] showed that any scheme in two-dimensions which
satisfies the TVD criteria (2.5.5) must be only first order accurate. However,
when most 1-D TVD methods are applied in 2-D they usually work well in prac-
tice. Second order accuracy is maintained on smooth solutions and no oscillatory
behaviour is observed, despite the fact that the scheme is not strictly TVD.

Other types of non-oscillatory scheme, which are not TVD, have been devel-
oped for multidimensional linear advection by for example Roe and Sidilkover
[35]. Their scheme is termed an Optimum Positive Linear Scheme for linear ad-
vection. The coefficients of such schemes are positive quantities, which defines
a positive scheme, and are optimum in the sense that the truncation error is
minimised. This is accomplished by a particular choice of coefficients, subject to
the positivity condition. Extension of numerical schemes to model multidimen-
sional flow is usually made on a dimension by dimension basis, i.e. dimensionally
splits schemes, which will be outlined later. However this approach is reported in
the literature to give poor results if the flow is unsteady or not aligned with the
grid directions, hence the development of the Positive schemes. These schemes
are said to be the multidimensional equivalent of simple upwinding and in 2-D

have been shown to be about 4 times less dissipative than the dimensionally split

20



schemes, and permit time steps that can be greater by a factor of 2. Roe and

Sidil



It is well known that the Lax-Wendroff scheme is not TVD due to the spurious
oscillations it produces near shocks, as previously mentioned. This can be reme-
died by adding only a limited amount of the antidiffusive flux to the first order

scheme by introducing a flux-limiter ¢,

n n 1
u,+1 = u] — Z/Auj_% — A_(¢]§(1 — I/)Au]'_l_%),

J

where ¢; is a function ¢ of a parameter r; which is taken to be a ratio of consec-

utive gradients, i.e.

Au,

1

-1

r; = =
1

J Fﬁ‘g

The limiter function ¢ is then chosen such that the limited antidiffusive flux is
maximised subject to the TVD constraint. Details of this procedure for the linear
and non-linear cases can be found in Sweby [45]. The result of the analysis by
Sweby can be shown graphically, i.e. a region in ¢,r space in which the limiter

must lie to give a second order T'VD scheme, which is given by the shaded area in

Figure 2.1. For example ¢(r) = 1 reverts the scheme back to Lax-Wendroff and

3.0 Warming and Beam

i d(r)=r

g
=}
1

¢(r) 1.5

Lax-Wendroff
(=1

o [y
14 o
TN T N T T T T O

o
o

LI N N B O O O Y L B o |
0.0 0.5 1.0 15 2.0 25 3.0

Figure 2.1: The second order TVD region, also indicating the limiter functions ¢

corresponding to the Lax-Wendroff and Warming and Beam schemes.

é(r) = r gives the scheme of Warming and Beam. As can be seen from Figure
2.1 these two lines do not lie entirely within the TVD region hence explaining
the non TVD property of these two classical schemes. The following conditions

also exist on the limiter function, firstly it » < 0 then ¢ = 0 so that the sign
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cell interface, whereas the Higher Order Godunov scheme uses a fuller description
of the Riemann problem.
The general principle is as follows. The piecewise constant approximation,

denoted by () say, of the solution at the current time level is given in each

grid cell =] ] by
( ) = for

The piecewise linear approximation () is constructed in each cell by the

interpolant of

A and —A (256)

i.e. is given by

( )=+ ( ) for (257)

The slopes  must be chosen such that the integral of the piecewise linear ap-
proximation over each cell is the same as with = 0 and the total variation of
the resulting profile, is not increased. Hence the piecewise linear representation

maintains conservation as cell averages are preserved. The slope  can be given
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he Bl ck-0il Fluid Flow

E u tions

3.1 Introduction

The Black-Oil model is the industry standard mathematical model most often
used in petroleum reservoir simulation. It assumes that the fluid components
are immiscible and includes compressibility and the general mass transfer effects
between the phases that are needed to model primary (pressure depletion) and
secondary (water injection) recovery. The particular form of the model we are
using in our reservoir computations was developed byaclrangenstein and Bellac[46]
and is one of a number of formulations of the ‘Black-Oil’ type which are distinct

from another class of model termed the compositional model. A compositional



extra computational expense of the iterative techniques needed to solve phase
equilibrium along with the larger systems of conservation laws, because of the
consideration of individual species, limits their applicability.

Reservoir fluid flow equations exhibit both hyperbolic and parabolic behaviour,
for instance fronts separating different fluid states move at a finite speed of prop-
agation whereas pressure effects are quickly felt throughout the reservoir. Both
of these types of behaviour can be treated by a fully implicit discretisation. How-
ever, to effectively treat both types of behaviour present in the flow equations,
different types of numerical procedure are required for each and so a splitting of
the flow equations into a system of hyperbolic conservation laws and a parabolic
pressure equation is used. In addition, implicit discretisations of the unsplit equa-
tions typically use large amounts of numerical diffusion, providing further reason
for use of the sequential (or split) strategy.

In our computations with the Black-Oil model we follow Trangenstein and Bell
and use the Higher Order Godunov method to discretise the hyperbolic part of the
flow equations. This numerical scheme is able to address the problems associated
with eigenvector deficiency and local linear degeneracy which are present in the
Black-Oil model. The pressure equation is discretised using a Backward-Euler
(implicit) approach.

Sequential methods were first proposed by Sheldon et al. [39] and Stone and
Garder [43] around thirty years ago. These early and some subsequent formula-
tions contained certain anomalies, for instance the hyperbolic and parabolic parts
were not properly separated. Further developments were made, and in 1986 Bell,
Shubin and Trangenstein [5] presented a new sequential method to model two-
phase, two-component fluid flow. This formulation is based on conservation of
mass of the fluid components and does not have the consequences of a ‘volume
error discrepancy’ which is present in their later work. The volume error discrep-
ancy indicates the extent to which the volume balance equation is not satisfied
and is described in Section 3.4. This later work by Trangenstein and Bell [46]
models three-phase, three-component fluid flow, and is the formulation we are

working with. It should be noted that the form of the Black-Oil model used in



development. For a description of the formulations that are used, see Aziz and
Settari [1].
The fluid flow equations are derived from four main principles which are used

to derive most isothermal porous media flow models. These are:

i) Phase equilibrium - determines how the components combine to form phases,
ii) The equation of state - requires that the fluid fills the pore volume,
iii) Darcy’s law for the volumetric flow rates,
iv) Mass conservation equations for each component.

The flow equations are formulated sequentially, therefore they cannot be sat-
isfied exactly at each step of the computation, and so some incompatibility is
introduced. Phase equilibrium, Darcy’s law and the component conservation
laws are satisfied exactly but the equation of state is linearised so that it is only
satisfied approximately. This splitting of the flow equation is termed a ‘volume-
discrepancy splitting’.

In the next four sections of this chapter we describe the formulation, and the
equations that result, of the four main principles used to derive the mathemat-
ical model. Then we summarise the sequential formulation in broad terms and
mention the consequences of the splitting of the flow equations and the resulting
volume error discrepancy. In the last section we describe the parameters of the

model we used for our reservoir computations.

3.2 Thermodynamic Equilibrium

The fluid in the reservoir is considered to be composed of three components, oil,
gas, and water. These are the separations the fluid chooses at surface tempera-
tures and pressures. However to reach phase equilibrium at reservoir conditions

these components combine to form at most three phases, liquid, vapour and aqua.



are conserved by mass, thus it is necessary to determine how the mass of each
component is apportioned into the phases. This phase equilibrium problem can
be expressed as follows: given the pressure p and the vector n = [n,, n,,n,]" of

mass component densities, find the matrix

Nol  Noy 0

N = n n n

gl

0 0 Nuwe

gv ga

of component densities in each of the phases, subject to the mass balance condi-
tion

n = Ne,

where e is a vector of one’s of the appropriate length. Thus it can be seen from the
definition of NV that there is a restriction on the way the components are allowed
to mix in the phases, i.e. oil may be allowed in the liquid and vapour phases, gas
in all three phases and water in the aqueous phase only. Oil and water do not
mix and steam is not treated due to the isothermal nature of the model. At this
point there is not enough information to solve the phase equilibrium problem,

this extra information is provided in the next two sections.

3.2.2 Mass Transfer and Phase Equilibrium

A principal component is associated with each phase, oil with the liquid phase,
gas with the vapour phase and water with the aqueous phase. The amount of each
component in each phase is related to the amount of the principal component in
that phase by the ratio matrix £. When all three phases are formed R is given
by

1 R, 0
R=|R 1 R,|=N »,
0 0 1

where u is the diagonal part of N. For example the solution gas ratio defined
by

Ry =ng/na,
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to volatilise into vapour, then it is possible that no liquid is formed and the

vapour phase is undersaturated. In the present work neither or are

:
identically equal to zero therefore both types of undersaturation are possible.
Analysis of undersaturated flow, see [46], shows that at most one phase can be
missing due to undersaturation. Therefore both types of undersaturated flow
occurring simultaneously would be impossible. The possibility also exists of a
phase being missing due to the principal component associated with that phase
being missing. If this is the case the fluid will still be termed saturated as the
phase will not be missing due to mass transfer effects. For example if no oil is

present then the liquid phase will not be formed.

When the vapour phase is missing the physical meaning of the negative vapour



case of the vapour phase being undersaturated, () and q are given by

0 0 1
Q=110 , a=]0],
0 1 0

10 0
Q=100 o a= |1
0 1 0

Throughout this chapter, quantities denoted with an overbar refer to the reduced
matrix or vector in the undersaturated case.

The solution to phase equilibrium is then given by
N=R yQ.

In the case of the liquid phase being undersaturated the matrix N is given by

n, 0 0
N=1Rn, 0 Ry, |
0 0 ny,

i.e. all the oil is contained in the liquid phase and the gas present is dissolved in
both the liquid and aqueous phases. When the vapour phase is undersaturated
the matrix N is given by

0 T, 0
N=10 ng — Ryny, BRany,
0 0 Moy

Here all the oil has volatilised into the vapour phase and the gas in the vapour
phase is equal to the total amount of gas less the gas dissolved in the aqueous
phase. In both cases of undersaturation, as well as saturated flow, all of the water
must be in the aqueous phase.

In the case of undersaturated flow an undersaturation parameter w is used to
develop the flow equations and becomes one of the dependent variables. In the
case of an undersaturated liquid w becomes the bubble point pressure and in the

case of undersaturated vapour w is the volatile oil ratio.
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In this section we examine the compressibility of the reservoir fluids and describe
their effect on the phase volumes.

Fluid compressibility is defined by

where  is the volume of the fluid and is its density. The negative sign is needed
since compressibilities are defined as positive numbers. The compressibilities

of oil and water are considered constant, typical values would be, for oil

20 10 psi  and for water 30 10 psi . Gas compressibility is usually
considered a function of pressure, and for this work ranges from 90
10 psi  at 1000 psi to 30 10 psi at 3000 psi. Here psi refers to the

unit of pressure in pounds per square inch.

The small compressibilities of oil and water, along with the relatively high
compressibility of gas, and the swelling effects caused by gas dissolving in liquid
lead to important volume changes at reservoir pressures. The Black-Oil model
incorporates these volume changes by relating the volumes of each of the phases

to the amount of the principal component in that phase. To quantify this re-



no mass transfer is assumed to have a small compressibility in that as pressure
increases the liquid phase volume decreases. If we then allow mass transfer so
that gas, which is more compressible than oil, is allowed to dissolve in the oil,
then for pressures below the bubble point, increases in pressure cause more gas to
dissolve and the phase volume then increases, and to a greater extent than with
no mass transfer. Above the bubble point pressure the liquid phase is assumed

slightly compressible. These effects can be described by,

1 i =0
( )= 1+ if
if

Here is the compressibility of the pure oil component and  is the compress-

ibility of the liquid phase, i.e. oil containing dissolved gas. Analogous formulas






With this definition, the saturations sum to one even if the volume balance equa-
tion is not satisfied. It should be noted that must be considered distinct from

because of the volume error discrepancy associated with this formulation of
the flow equations. However in the case of no volume error discrepancy when

= 1 the vectors and are identical.

Relative permeability describes how the presence of each phase adversely affects
the flow of the other phases and are non-negative functions of the saturations

Due to the complex interaction of the phases with the rock pore space the depen-
dence of the relative permeabilities on the rock and fluid properties is not fully
understood. However it is known that as the saturation of a phase approaches

zero, its mobility must tend to zero implying its relative permeability must van-



3.4 Equation of State

When satisfied exactly, the equation of state (or volume balance equation) states

that the fluid fills the rock pore volume, i.e.
elu=1, (3.4.4)

where as usual e is the vector of one’s. The extent to which this equation is not
satisfied, i.e. the sum of the phase volumes is not equal to the pore volume, is

termed the volume error discrepancy and is given by

elu—1.

In the sequential formulation it is not possible to satisfy all of the fluid flow
constraints simultaneously and so equation (3.4.4) is linearised to form an equa-
tion for pressure. Performing a Taylor’s series linearisation about time level ¢
gives

e’u ~ eTu‘t + Atel — (3.4.5)

t+ At

It is assumed that we have a volume error discrepancy at time level ¢, i.e. eTu\t =
1, and we wish to calculate pressure at the advanced time ¢t + At such that there
is no volume error, i.e. eTu‘H_At = 1. Applying these assumptions and since u is
a function of n and p, equation (3.4.5) becomes

1 e'u  ;0udp ;0udn
At S opor TS mor

Multiplication by the porosity ¢ and use of the mass conservation laws to replace

the time derivative of n results in the following equation for pressure

('u o g0u gdu 96 0p poud
Al (0 S, T oo € amort )« V)

First degree homogeneity properties of the phases are now used to simplify
the term multiplying g—f. Firstly the matrix of partial phase volumes is computed,

which in the saturated case is

du
— = BT.
on
Post multiplying this by N gives
Ju .
—N=BTN=BR"R ny= ..
On
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This implies that

—n =u,

on

which says that each phase volume u is a homogeneous function of the first degree
in the fluid composition n. An identical result also holds in the undersaturated
case.

The pressure equation can now be written in the general form

dp o, B
o +w a—x(fvT +g7)=4q, (3.4.6)

with the total velocity vy being given by

v = [—a—x + 4], (3.4.7)

where the coefficients ¢, w, f, g, v, ¢ and 7 depend on the pressure p and com-

ponent density n. For completeness we define them here

c= gbeTg; — eTugjz,
r=elLex |, ’y:((iif:gg;l
1
f=N ;lLeeTLe
g=N ;leggjeTlLe—fv
whoer % u e

For a more detailed discussion on the pressure equation, including its numerical

solution, see Section 3 of [49].

3.4.1 Analysis of the Pressure Equation

To examine the character of (3.4.6) we need to examine the coefficient ¢ of %7; and
the coefficient of 2272 which is obtained after substitution of (3.4.7) into (3.4.6)
and is given by

—wlifr = —elLex,

since w and f satisfy w/f = 1. It is known that pressure effects within the

reservoir are of parabolic nature for compressible fluid flow, so we need to ensure
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that the differential equation (3.4.6) is of parabolic type. The transmissibility

is positive, hence the coefficient of — is negative, and therefore for (3.4.6) to be
parabolic is required to be negative. Now, as pressure increases the rock occupies
a smaller volume hence porosity is a non-decreasing function of pressure,— 0.
Therefore for to be negative the inequality = — 0 is required which is the
condition of negative total fluid compressibility. This is guaranteed by placing

restrictions on the formation volume factors  and ratios , namely

with a more complicated condition in the undersaturated case, see [46].

3.5 onservation of Mass

The mass of each fluid component is required to be conserved. The matrix
represents the density of each fluid component in each phase, hence the conser-

vation of mass equations are
—( )+ —( )=0 (358)

The flux function = can also be expressed as = , which is the

form that will be used in the characteristic analysis. Here the vector of Darcy

phase velocities is written in terms of the total velocity ,i.e. in the form (3.3.3).
The flux is therefore a function of , and |, hence in quasi-linear form we have
—t ——= - - - —— (359)

where is a gravitational term, namely



has real eigenvalues for all values of n. We also need to compute the eigenvalues
and right eigenvectors of H to provide information about the structure of the
wave fields, which will be needed by the numerical method that we use to solve
the conservation laws. Both p and vy are considered to be independent of n
for the purpose of the characteristic analysis since the volume balance equation
(3.4.4) is not enforced in the sequential formulation. To calculate the hyperbolic
wavespeeds we must divide the eigenvalues by the porosity ¢ since it multiplies

the time derivative of n in the quasi-linear form of the conservation laws.

3.5.1 Characteristic Analysis

For saturated flow a similarity transformation and eigenvector deflation is used
to derive the matrix of eigenvectors X, of H. The component derivative of the

flux vector h is given by

since only v is a function of n. Expansion of % using the chain rule and further

manipulation yields

Helu = RB‘lgV[] —sel|BR7".
S

Therefore it can be seen that Helu is similar to the matrix

_6V

V=%

[] - SeT]v

which is the same matrix that appears in the characteristic analysis of the 3 phase
incompressible Buckley-Leverett model [49]. Therefore the similarity transforma-

tion defined by
Heu = MVM"', where M; =RB™,

can be considered to map from component densities to saturations. The matrix
V' can now used to deduce one of the eigenvalues of the system because of the

relation

e’V =0,

which arises because the total fluid velocity is independent of s. Thus e is a left

eigenvector of V with eigenvalue zero. This eigenvector is then used to deflate V'
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as follows:

0 0
MVM = )
C
where
1
M = )
0 I
('is a2 2 matrix given by
0
1
and is a 2 vector defined by
= Clo 1]

We therefore now have a block-eigenproblem to solve with the remaining 2

eigenvalues of being eigenvalues of matrix | i.e.
0 0 1 0 1 0 0 0
0 A
This block-eigenproblem yields four equations which are 0 = 0 twice, = A
and the relation 4+ = 0 which we need to solve for vector . If we put

= then this last relation can be re-expressed, so that we need to solve

for where

A= (35 10)

It is assumed that a real, non-singular matrix and a real diagonal matrix A
can be found so that

= A
The right eigenvectors of  are then given by the columns of

1 10 1 0
0 0

and the corresponding full matrix of eigenvalues is then



To summarise we have HX = XA where X and A are given above.
When one of the fluid components and hence phases is missing in saturated
dh

flow, the corresponding row and column of the Jacobian matrix 53, and hence

the matrix 2¥, are both zero. This means that the similarity transformation

B8
defined by the matrix M; cannot be used because (RB~')(BR™") # I, hence the
analysis must be reformulated. The remedy is straightforward because we can
work with the Jacobian matrix H directly, since it has a zero row, instead of
deflating matrix V. We still have the zero eigenvalue, and can proceed with the
block-eigenproblem as before.

The two non-trivial eigenvalues obtained from matrix (', i.e. the entries of
A, are the same as the eigenvalues from the 3 phase Buckley-Leverett problem.
This shows that the hyperbolicity of the system is inherited from the relative
permeability model and not the compressibility and mass transfer effects which
complicate the Black-Oil model.

In the case of undersaturated flow a similarity transformation of H is also

used to find the eigenvectors and eigenvalues, with the eigenvectors given by

XUO I —a
0 1 0 1

X=[RB" q]

The analysis proceeds as before, again reducing to a block-eigenproblem. Here q

is a constant vector dependent on which phase is missing, and the vector a solves

1

eTu

Xz (( JAva—al\) = BTHq.

This auxiliary equation, which we need to solve for a, corresponds to (3.5.10) in

the saturated flow analysis. Xz and Az are given by

s, —1 0 0
XU: AU:

Ovg _ Odva
Sa 1 0 dsq D54

Y

where s, is the saturation of the other existing phase. The full matrix of eigen-

values is then given by

(srq)Az 0

eTu

0 A

A=
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3.6 Sequential Formulation

The idea behind the splitting of the equations into a pressure equation and a
system of conservation laws is that, over some time interval, we first solve for
pressure with the composition fixed and compute a total velocity. We then solve
for the new composition with pressure and total velocity fixed, i.e. with the latest

values of and . Thus the sequential method is based on alternately freezing



a severe restriction on their time step due to stability considerations, i.e. A
should be of the order (A ) . For this reason the reservoir simulation community
have used implicit discretisations of the pressure equation so that this restrictive
stability condition does not apply, as most implicit methods are unconditionally
stable. This motivation for use of an implicit method does not carry over to
the solution of the conservation laws. This is because the stability condition for
hyperbolic conservation laws is less restrictive, i.e. A should be of the order A .
Also implicit discretisations of conservation laws typically are more diffusive than
explicit methods. For these reasons an explicit method has usually been used to
discretise the hyperbolic conservation laws arising in the sequential formulation
of the Black-Oil model. However there are cases when an implicit method is

desirable, for instance, when the fronts in the problem travel at much slower

3.7 2- omponent 2-Phase Black-Oil Model









035 if aqua is saturated

035(1+678 10 ( )) if aqua is undersaturated.
We recall the component density vector  has the units of standard cubic feet
per reservoir cubic foot. This results in the formation volume factors having the

units of reservoir cubic feet per standard cubic foot, and these functions are given

by

1 231 10 if ()=0
( )= 1415 10 if liquid is saturated ( )

if liquid is undersaturated ( )

_ _ if vapour is saturated

+ —| | if vapour is undersaturated

1 678 10 it ()=0

( )= 1 30 10 if aqua is saturated ( )
if aqua is undersaturated ( )
The definitions of  and when  and are zero respectively are provided,
even though we have = 0, because  and may be forced to zero when

the relevant fluid component is missing.
From the definition of the aqueous formation volume factor above, it can

be seen that the compressibility of water ( )is6 78 10 psi . The value of



used in the computations, unless otherwise stated, were

52.787
p =1 0.05154 |,
62.3967

with the units of 1b ft™°, and are only needed when gravitational effects are

included.

33



Ch pter

he Higher Order Godunov

Scheme

4.1 Introduction

The Black-0il model described in the previous chapter exhibits both lack of strict
hyperbolicity and points of local linear degeneracy. Therefore to effectively treat

such a system of conservation laws requires a numerical method that can handle






We now review the Higher Order Godunov method [2, 10] for degenerate
systems of 1-dimensional conservation laws. In multi-dimensions a central concern

is the choice of the unsplit versus split methodology, this will be discussed later

4.2 Details of the Scheme



right states, that are used to compute a numerical flux, are second order approx-
imations at the half time level and the cell edge then the overall scheme will be
second order accurate. Of course this is only in regions of smooth flow, the mono-
tonisation process lowers the order of accuracy at discontinuities. The numerical
flux at the cell edge is computed by solving a local Riemann problem there. Even
in problems for which the Riemann problems are well understood analytically,
it is usually more computationally efficient to introduce approximations, for ex-
ample see Roe [33]. In any case there is not much point in solving the Riemann
problem to a greater accuracy than that of the underlying discretisation. This
idea is central to the approximate Riemann problem solution given in [2], which
proceeds by computing a generalisation of the Engquist-Osher numerical flux for
systems.

The Higher Order Godunov scheme, in the 1-dimensional case, can be consid-

ered as a 5-step procedure:

1. Beginning with the piecewise constant approximation , compute

‘centred’; ‘left” and ‘right’ slopes, whilst maintaining conservation.

2. ‘Limit’ the slopes using monotonicity criteria, again whilst maintaining
conservation. This provides a piecewise linear discontinuous approxi-

mation to the solution at time .

3. Trace along characteristics, using a Taylor series extrapolation, to de-
rive left and right states at grid cell interfaces at time + -A . It is
possible that the traced states are unphysical, if this is the case the

physical cell centred value is used instead.

4. Solve the Riemann problem with these left and right states.









, the more numerical diffusion added into the scheme, with = 0 reducing the
scheme to first order. There are three important criteria which the above slope

limiting formula obeys, these are

1. If the cell average is a local extremum then the slope is set to zero,

2. If the sign of a slope is different to that of either of its neighbours then

it is set to zero, i.e. the local trend in slope signs is maintained,

3. The linear profile should not take values beyond those of the neigh-

bouring cell averages.

However, additional limiting is required when local linear degeneracies and
eigenvector deficiencies are detected amongst the . A sufficient modification
given by Trangenstein [49], when a local linear degeneracy is detected would
be to set = 15 for that particular wavemode. Local linear degeneracies are
associated with shock-rarefaction compound waves and are detected by testing

for a change in sign of spatial differences of the wavespeeds, i.e.

( ) ) 0



of the jump

corresponding to

+ (425)

involves an eigenvector deficiency, i.e. and are nearly parallel. To detect

for such an eigenvector deficiency the following test given in [2] may be used

01

This test estimates whether it is possible for both of the wavespeeds to coincide
in a neighbourhood of the state at which the eigenvectors  are evaluated. The
are called structural coefficients and represent the gradient of the eigenvalue with

respect to the conserved variables in the direction of a particular eigenvector, and

are defined by

= )
If this test is satisfied then the wavemodes and  are assumed to involve an
eigenvector deficiency. To ensure the slope limiting process does not introduce
instabilities it is necessary to treat the entire jump corresponding to (4.2.5) as

one wave because individual components of the jump are badly behaved. This



We now focus on the calculation of the traced left and right states used to de-
termine the numerical flux. The monotonised slopes defined by (4.2.3) are used
to construct time-centred left and right states at the cell edges. Values in cell
j are used to compute U;::’L and U?j:’R, the computation being based on a
Taylor series expansion about the cell centre, with the quasi-linear form of the
hyperbolic equations used to replace the temporal derivatives of U. The left state

to second order accuracy in both space and time is given by

n-|——7L n Al’ At
Uj-l—— = Uj + TUx,j + 7Ut,j
Ax At
U? + 7Um 7Fm (4.2.6)
. Ax At
= Ui+ (7] 7Hj) U
oF

where H is the Jacobian matrix 5.

For linear problems (4.2.6) can be used to compute a left traced state by
replacing U, with the monotonised slope approximation (4.2.1). A right traced
state is calculated with a similarly derived formula. For nonlinear problems how-
ever, (4.2.6) must be modified to disregard components of U, corresponding to
waves that do not propagate towards the correct cell edge, i.e. for nonlinear
problems different characteristics may propagate towards both cell edges, but we
only want to use information traveling to the left to calculate the left state and
information traveling to the right to calculate the right state, due to the upwind
nature of the scheme. This subtraction of unwanted information is accomplished
by multiplication of the second order terms in (4.2.6) by the characteristic pro-

jection operators defined by
P% = RATR™,

where R is a matrix with columns r;, and AT is a diagonal matrix with

1 .
A= 5(10 sign(\)),

where if we have A\, = 0 then we take A, = 1. This procedure is redundant in
the linear case but has been reported by Collela [10] to lead to a more robust

algorithm for strongly nonlinear problems.

62



Formally the left and right states at cell edge 4 - are then given by

- 1 A
- - = A
N
_ 1 A
- - = A
_ S ()

’s

(We note The first order Godunov scheme may be recovered by setting the A






In the general case of finite amplitude jumps, the phase space solution of the

Riemann problem takes the form
K
U —U" =3 ayRy,
k=1

where Ry is a generalised eigenvector that represents the net change along I'y,
and which is normalised to be of unit length.

The approximate phase space solution is therefore a decomposition of the
jump from U* to U® into K jumps corresponding to each of the wave modes.
To approximate this decomposition a simple phase space solution is used, as was
recommended in [2] for problems involving flow in porous media. We calculate

an expansion state as the average of the left and right states
7 oL R
and then evaluate the generalised eigenvectors at this expansion state
Ek = I'k(U),

so that Rj becomes an approximation to Ry. If we expand UF — U” in terms of
the R, we have,
K
U# - U" =Y @Ry, (4.2.7)
k=1

so that @, approximates ay. It is also assumed that the Rj are orientated so
that the @, are positive. The approximate path in phase space, for example a

2-system is shown in Figure 4.3.

o | length @,
length o, U /

Figure 4.3: The path in phase space, taken by the Riemann problem solution,

connecting the left and right states at the cell interface.
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The intermediate state  shown in Figure 4.3 given by

= +

The numerical flux is then written as a flux at a reference state plus integral
correction terms which were constructed to be of dissipative form. Firstly to

determine this reference state a mean speed

L) ) .

is calculated and the reference state is then defined by
= if 0

= otherwise



u* Vo A,

/ |

A

u U

Figure 4.4: The parameters needed in the wavespeed approximation process on

path Ty

and provide the second derivative information that is needed to compute a cubic
approximation of the wavespeed )\ along I';. A cubic approximation is used so
that inflexion points in the flux can be represented. An additional simplifying
procedure can also be introduced by replacing the cubic by its piecewise linear
approximation in order to avoid finding zeroes of a cubic in the algorithm. Hence
we need to compute the extrema of the cubic and then the piecewise linear ap-
proximation A, is defined to be the piecewise linear interpolant of the wavespeed
at the two ends of the path and the extremum states. We note that analytic
expressions for the gradients of the wavespeeds in (4.2.10) may be difficult to
obtain, as with the Black-Oil model. In this case an alternative approach may be
used, described by Trangenstein [48], which amounts to sampling the wavespeeds
at two interior points along the path I'; and then again forming a piecewise linear
approximation.

We now turn to the possibility of encountering a point where strict hyperbolic-
ity fails. In a neighbourhood of the eigenvector deficiency two of the eigenvectors
become nearly parallel, which leads to large expansion coefficients in (4.2.7). The
phase space approximation is not reasonable and its use with the flux computa-
tion (4.2.9) can introduce instabilities into the method. The test for eigenvector
deficiency described in [2] uses the structural coefficients, for implementation with
the Black-Oil model these are not available therefore the approximate tests de-

scribed in [48] may be used. When we detect that two wavespeeds may coalesce,
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say A; and A,,, we only modify the treatment of the two wave families involved,
the remaining families are treated as before. Hence we assume that R; and R,,
are nearly parallel and hence the associated expansion coefficients are unreliable.
When more than two wavespeeds are involved the changes are a natural extension
to the two-mode case.

The modifications needed depend on whether the eigenvector deficiency is
associated with a change in sign of the wavespeed during the transition from U’

to UR. To test for this the following are defined

min __ . L R L R
= min( A7, A7 AL AL,

im

ma — max(AF, ML),

Im

If A7 and A79% are of the same sign it is assumed the deficiency is not associated

with a transonic wave. In this case the portion of the jump
alﬁk + amﬁma

is collapsed into a single jump which is denoted by Ry, and is of length aj,,. A
modified flux is then defined, which in the case of the reference state being the
left is

F UL _I_ Z / mln )‘k7 0) dOé) Ek ‘|‘ (/alm min(le, 0) dOé) Elm?

E£Lm 0
where \j,, 1s a linear function which satisfies

At (0) = max(Ar, A7),

X (@) = min( A, A1),

When A" and A7'9% are of opposite signs the integral correction terms are re-
placed by a dissipative term similar to that which is incorporated into Rusanov’s

scheme [37], the modified flux is then given by

_ 1 —
FEO UL )+ Z / min )\k,()) da) Ry — §Vallem7
k£l,m

where

v = max([A7], Al AL A
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The modified flux formulae for the cases when the reference state is the right
state are easy to deduce by comparing with (4.2.9).

The Engquist-Osher flux is known to diminish the total variation of the so-
lution to scalar conservation laws. However for the system case the approximate
paths in state phase, between the left and right traced states, may not be a good
representation of the true paths in state space. This is because at certain points
the system may exhibit a lack of strict hyperbolicity and genuine nonlinearity.
Therefore the calculated flux could possibly introduce some oscillation into the
results. This is then damped out by addition of an artificial viscosity term which
also ensures satisfaction of the entropy conditions and is described in the next

subsection.

We need to ensure the numerical solution converges to the correct physical solu-
tion satisfying appropriate entropy conditions. This is ensured by the addition
of a small amount of numerical diffusion. The amount of which must be care-
fully selected otherwise fronts may become excessively smeared. Therefore in the

case of the second order scheme the flux in (4.2.9) is modified by addition of a



by Collela and Woodward [11] and is of the form
0 1 max( 0)( )

This is of (A ) and hence also maintains the accuracy of the method. Collela
and Woodward [11], also used the parameter of 0 1. This parameter of 0 1 has
been used successively with a number of Godunov type methods. Some schemes
are reported in [11] to require more viscosity, and hence have a parameter greater
than 0 1.

No artificial viscosity is added for the first order scheme as an ample amount
of diffusion will already be present due to the discretisation. The numerical fluxes
in (4.2.11) are then used in the conservative difference formula to update the cell

averages.

A
= ) (4212)

4.3 Extension to Higher Dimensions

In multi-dimensions a central concern is the choice of the unsplit versus split
methodology, which can have an effect on the overall computational efficiency of
the scheme. An operator split algorithm would involve applying 1-dimensional
operators in their particular coordinate direction separately, in order to advance
the solution to the next time level. There being a rule by which the separate ad-

vancements of the solution in each coordinate direction are combined to achieve



to consider an unsplit scheme, and again follow the work of Collela [10] when
describing a multi-dimensional Higher Order Godunov method. We restrict our-
selves here to the 2-Dimensional scheme since higher dimensional schemes follow
on naturally from this description.

We note that an alternative form of an unsplit multidimensional Higher Order
Godunov method has been developed by Bell, Dawson and Shubin [3]. In this
formulation a limited piecewise bilinear approximation of the solution in each
grid cell is used to ensure oscillation free results. The left and right states at the
cell edges being traced using the geometry of the characteristic surfaces. However
this method has only been applied to scalar conservation laws, the authors of [3]
stating that extension to systems of conservation laws would be difficult; we do

not consider this method any further.

Firstly we state that we are considering the following 2-Dimensional systems of

hyperbolic conservation laws
—+—+—=0

where = ( ) and with initial data

The numerical solution procedure largely proceeds as in the 1-Dimensional
case. We calculate left and right traced states at each cell edge and hence solve
the Riemann problems there. The jump between these two states is assumed to
take place perpendicular to the cell edge, hence we solve 1-Dimensional Riemann

problems at all the cell edges. The resulting fluxes, which are calculated in both



the state

since the other left states are calculated by interchanging the roles of and |,

and , and the right (R) states follows on naturally from our experience of the
1-D algorithm. We proceed as in the 1-D algorithm and use a Taylor’s series
extrapolation to the half time level and the cell edge in the coordinate direc-
tion. We again use the quasi-linear form, with respect to the direction, of the

hyperbolic equations i.e. we use

to replace the temporal derivative of  in the formula for ~, where is
the -directional Jacobian —. We therefore have
- 1 A
— N A =2
, + — 5

which looks like the 1-D traced states with an extra term due to the extra coor-
dinate direction, i.e. the fact that we are working in two dimensions. We again
apply the characteristic projection operators to the second order tracing terms,
they are neglected here to simplify the exposition.

The tracing of this left state can be viewed as a 2 step procedure by firstly cal-
culating the traced states as in the 1-D case by replacing — with its monotonised

central difference approximation, i.e.

1 A
= — — A
_ + 2( A )
Secondly we add on the effect of the transverse flux gradient —. i.e.
- A

- el (4313)



where
( )

denotes the flux obtained from solving the Riemann problem with the indicated
left and right states. So Godunov’s first order method used to approximate —

would take

= (43 14)

i.e. the cell centred quantities.

However for problems involving moderately strong discontinuities traveling
obliquely to the grid directions, it is necessary to use a more accurate approxima-
tion to the transverse derivative. This is because if the approximation calculated
is sufficiently different from the actual change calculated in the conservation (con-
servative update) step then the solution will overshoot or the discontinuity will

spread. To address this possible problem more accurate left and right states




1. Compute 1-D left and right traced states at each cell interface in each

coordinate direction,

2. Add on the effect of the transverse flux derivatives to all the traced

states,
3. Solve 1-D Riemann problems at every cell intertace,
4. Use a conservative difference formula to update the cell averages,
S gt _prti g St gt

utl=ur. - —(F 2. —-F. 2)- —(G."
gy gy Ax( it1,j i—1, Ay( ijt+3 hi—%

In the next chapter we describe the implementation of the Higher Order Go-
dunov scheme on the Black-Oil model, and show results of numerical reservoir

simulations in 1 and 2 dimensions.
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Ch pter 5

Implement tion of the Higher

Order Godunov Method on the
Bl ck-0Oil Flow E u tions

5.1 Introduction

In this chapter we discuss the implementation of the Higher Order Godunov
method on the Black-Oil fluid flow equations. We also describe the general com-
putational details associated with the numerical modelling, such as time step
control and the type of computational grid used, and also discuss the discreti-
sation of the parabolic pressure equation. A 1-D and a dimensionally unsplit
2-D Fortran code were written to numerically solve the flow equations so we may
perform reservoir simulations in 1 and 2 dimensions. The 1-D code was validated
by comparison of results with those presented by Trangenstein and Bell in [46],
who also applied the Higher Order Godunov method to the Black-Oil equations.
We show results of three of these comparison problems.

Results of a 2-D cross-sectional problem, using the same numerical method
and mathematical model, are shown by Bell et al. in [2] but the initial conditions
are not supplied therein. No other 2-D Black-Oil results have appeared in the
literature, so the 2-D code was validated by comparison of results with those from
a commercial reservoir simulator. These comparisons relate more closely to the

discussions in Chapter 7 and can be found there. However, in this chapter we
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present results of a 2-D Areal problem which was used to investigate the effect
on the numerical results of the accuracy of the transverse flux derivatives (4.3.15)
and (4.3.14), described in Section 4.3.2.

It is not possible to construct analytic solutions to the Black-Oil fluid flow
equations but analytic solutions to 3-phase incompressible flow equations are
possible. Comparison of the analytic solutions of these problems with the cor-
responding numerical results has not appeared in the literature. Incompressible
flow problems are a good test of a numerical method since analytic solutions ex-
ist for comparison with numerical results. Construction of analytic solutions in
this case is straightforward since the mathematical model for incompressible flow
reduces to a 2-system of conservation laws. The model also exhibits local linear
degeneracies and eigenvector deficiencies, as does the Black-Oil model, and hence
is a good test of the numerical method, although for the types of problem consid-
ered, namely those with no gravitational effects and therefore no counter-current
flow, the Higher Order Godunov scheme used to simulate the problems is not
fully tested. This is because the phase space construction of the Riemann prob-
lem described in Section 4.2.3, will not be needed because the flux computation
reduces to upwind determination. Physical assumptions and experience of incom-
pressible flow problems are used to aid the solution construction process. The
Higher Order Godunov method was found to be successful at simulating these in-
compressible (Buckley-Leverett) flow problems and so confidence is provided that
the numerical method is resolving the solutions to the analogous Black-Oil model
problems well. Some numerical results of 3-phase incompressible flow problems
were also presented by Bell et al. [6] but these were not compared against analytic
solutions since they were used to investigate the prescence of elliptic degeneracies
in the conservation laws.

Finally in this chapter we describe the incorporation of source terms to model
injection of fluid into and production of fluid from the reservoir. Source terms
are traditionally used in the computer codes used by the reservoir simulation
community to model these processes. However as far as we know source terms
have not previously been used in conjunction with the form of the Black-Oil

model in [46] but have been used with the much simpler Polymer Flood Model
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[49], neither of these models being used in commercial reservoir simulation codes.
Locally implicit procedures are usually utilised when applying source terms to
remove the numerical stability problem associated with their use. We follow this

approach when applying source terms in conjunction with the Black-Oil model

and Higher Order Godunov method.

5.2 omputational Approach

5.2.1 Computational Grids

The discretisations of the differential equations are based on a block (or cell)
centred grid system. The block centred grid is particularly suitable for reservoir
simulation problems because fluid and rock properties can be assigned, and as-
sumed to hold throughout each computational cell. The 1-Dimensional grid is

specified by giving the grid block interfaces which are denoted by

with an analogous definition of the grid in higher dimensions. The block centred
grid can be distinguished from the more standard point (or node) centred grid in
the following way. The block centred grid can be considered as the computational
region having been distributed with cells, with the nodes residing in their centres,
whereas the node centred grid having been distributed with nodes. Therefore the
two ends of the block centred grid align with block edges, whereas in the case of
the point centred grid the ends of the grid align with nodes and hence a half cell
is present at the ends of the grid. Again in two dimensions all the boundaries
of the grid, assuming it is regular, align with block edges. In 1-Dimension grid
block B; is bounded by TiL and Tip1 and is of length Az = Tipl =1

For each grid block B; we define a vector of component densities at time ¢
which is denoted by n?, and provides a piecewise constant approximation to n at
time £. A pressure p? is associated with each n? and at time ¢ = 0, i.e. the initial
conditions, p and n should be paired such that the volume balance equation (3.4.4)

is satisfied. A staggered grid is used with pressure and component densities stored

at grid block centres and with total velocities stored at grid block interfaces, see
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Figure 5.1. This is due to the centred discretisation of Darcy’s law (5.2.2) and is

standard in reservoir simulation work, see Aziz and Settari [1].
V n
Tj+1/2

| ‘ | ‘
X 112 / \ X j+1/2 X j+312
n n
n j p i

Figure 5.1: The staggered 1-D grid, indicating where the variables pressure ( ),

component density () and total velocity () are stored.

The use of a block centred grid with the Higher Order Godunov method is also
particularly suitable due to the cell based nature of the scheme. Also specification
of numerical boundary conditions is straightforward. For example at = 0 we
have the first cell edge where we need to specify a flux, so if we have an inflow
boundary we assign the physical inflow flux there. On the other hand if the
boundary is of no-flow type then we simply set the flux to zero. At the other
end of the 1-D grid, at = say, we also need to specify a flux. The no-flow
boundary is treated as before, but if we have an outflow boundary then we can
perform a characteristic tracing of  to the boundary, as in the internal flowfield,

and calculate the resulting outflow flux.

The system of conservation laws (3.5.8) is discretised using the Higher Order
Godunov method described in the previous chapter. There are a number of points
regarding implementation with the Black-Oil model worth mentioning. Firstly,
due to the high component density of gas, because of its high compressibility, the
component densities are poorly scaled. This results in an unreliable calculation
of the average wavespeed (4.2.8), used to determine the reference state for the

flux computation. This can be overcome, see [49], by multiplication of  and
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As the numerical solution of the pressure equation is of implicit type there is
no restriction on the time step due to stability considerations. The solution of
(5.2.1) after substitution of (5.2.2) is accomplished by solving a tridiagonal linear
system every time step. This system is straightforward to solve directly via a
standard forward /backward substitution algorithm, and in any case is the most
efficient, see Golub and van Loan [21].

We note however, that the fluid parameters in the discretisations (5.2.1) and
(5.2.2) can only be evaluated at the current time level, because they are functions
of the quantities we are trying to calculate. This results in the approximation
of pressure being second order accurate in space but only first order in time.
The fact that pressure is only first order accurate in time is not thought to be
too serious by Trangenstein [49]. This is because although pressure effects are
quickly felt throughout the reservoir, once the fluid flow has settled down the
pressure field is slowly varying in time because of the small compressibilities in
the reservoir fluids, i.e. the coefficient of — is of the order 10 . Therefore the
time truncation errors associated with the pressure equation should not be too
large compared to those in the hyperbolic conservation laws.

The transmissibilities _in (5.2.1) and (5.2.2), at the cell interfaces are

formed by a harmonic weighting

the other quantities at the cell interfaces being evaluated by arithmetic averaging,

for example

The reason for the differing methods of calculation of the quantities needed at



transmissibilities 7. This is because he is very keen to stress the equivalence of the
discretisation, along with the given method of obtaining the cell edge coefficients,
with the mixed finite element formulation of the pressure equation. If all the
coefficients were harmonically averaged, as the above reason dictates, this would

not then be the case.

5.2.3 Time Step Control

Time step control for the component conservation equations is based on CFL [13]

considerations,

Az
A" < \
- S;;Lal’

where ST is the largest wavespeed at the current time level. As we are approx-

imating the solution of the differential equations with the numerical method, the
possibility exists that the maximum wavespeed calculated 57, could be smaller
than the maximum wavespeed in the analytic solution. This would result in the
calculated time step being an unstable one. To allow for this possibility the cal-
culated time step is reduced by a multiplicative factor termed a CFL number. A
CFL number of 0.9 is usually sufficient for use with the Higher Order Godunov
method, to achieve stable numerical solutions.

This time step is also suitable for correctly capturing the transient behaviour
in the parabolic pressure equation. To justify this we can examine how the time

step responds to fluctuations in the pressure field. The time step is inversely

proportional to the wavespeed which is proportional to the total velocity vr, i.e.

Ar A
Smax = vt

At x

Y

and since in the absence of gravitational effects vy o %, we have

(Ae)*

At
x A

(5.2.3)

Time steps of O(Axz?) are of the correct size for ensuring stability in explicit
numerical solutions of parabolic equations, however, we are using an implicit
discretisation which has a far less severe stability criteria, if indeed any. The
relation (5.2.3) tries to ensure that the O(At) and O(Ax?) leading terms in the

truncation error balance.
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When we solve the pressure equation we use a time step based on CFL con-
siderations at the current time level. Once the pressure field at the advanced
time level is obtained we may calculate the maximum wavespeed and hence an
associated stable time step at this level. If this time step is greater than that at
the current time level we complete the update procedure by solving the conserva-
tion laws, if this is not the case we repeat the pressure equation with the stable
time step from the advanced time level. Thus this process represents an extra
technique of ensuring stability and is important in problems with high injection

rates. This strategy of ensuring a stable time step can be summarised by

A
max (- () ( )

The time stepping used in the Higher Order Godunov code is based on CFL

A

criteria with a CFL number of 0.9. However we need to supply the code with
an initial time step since at = 0 all wavespeeds are zero. We supply a very
small time step of 0.001 days to break the computation in. Also we do not
allow the increase of the time step to go beyond a specified limit, an increase of
a factor of 1.5-2.0 is usually acceptable which has the effect of controlling the
volume error discrepancy which can become large near the wells early on, due to
the comparatively large changes in pressure and component density there. Once
the computations have settled down the usual CFL criteria then takes over in

controlling the time steps. Also, during the course of the computation, if large






up a considerable amount of the total CPU time, i.e. around 20 . Therefore we
require the method of solution to be as efficient as possible so we prefer an iterative
method such as the Successive Line Over Relaxation (SLOR) method, see Varga
[52] for details, or the pre-conditioned Conjugate Gradient method see Golub
and van Loan [21] for general details and Van Der Vorst [533] for the algorithm
used. We tried both methods of solution and found the pre-conditioned conjugate
gradient method to be more efficient as the grid was refined.

We now describe the implementation of boundary conditions for a 2-D Areal
reservoir simulation problem. An Areal problem takes place in the  — y plane,
gravity is assumed to act in the z-direction, therefore there are no gravitational
effects in the problem, if there is no dip angle in either coordinate direction. See
Aziz and Settari [1] for a more detailed description of the Areal problem and for
other types of reservoir simulation performed in 2-D, for example cross-sectional
problems which do include gravitational effects. The Areal region is usually
square with injection of fluid taking place in the bottom left hand corner and
production of fluid in the top right hand corner. All boundaries other than the
injection and production points are of no normal flow type. The computational

region is shown in Figure 5.3.

Y —
VT_O Production
Well
V=0 « - V=0
Injection
Well
v'=0

Figure 5.3: The geometry of the Areal problem, indicating the locations of the

wells and the no-flow boundaries.

The grid block in the bottom left hand corner containing the injection well is
shown in Figure 5.4.

We need to specify the four fluxes shown on Figure 5.4 to update the compo-
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Figure 5.4: The injection grid block, indicating the 4 fluxes needed to update the

component density vector.

nent density held at the block . The two fluxes ~ _are calculated

using the methods explained in Chapter 4. We see that the fluxes ~ ~



conservative finite difference update, the same process as in the 1-D case. Again

this modelling of production is also used in the pressure equation.

5.3 Validation of the Higher Order Godunov
ode

A Fortran code was written to solve the Black-Oil fluid flow equations given

in Chapter 3 using the Higher Order Godunov method described in Chapter 4.



water. The initial fluid distribution was taken to be uniform along the length
of the reservoir,