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1 Introduction

Understanding the dynamics of marine ice sheets has been a subject of increasing



The glacier begins to 
oat when there is enough water to support the weight of

the ice. This is known as the condition for 
otation and can be described by the

equation

�ih = �w(l � b);

where�i is the density of the ice,�w is the density of sea water,h is the ice thickness,

l is the sea level andb is the elevation of the ice base [11].

The position of the grounding line is dictated by its surrounding conditions and

thus as the conditions change so too does the position of the grounding line.

The complexity of glacier dynamics is such that a purely analytical approach to

modelling the grounding line is impossible. This gives rise to a distinct need for

the use of numerical approximations to simulate the behaviour of the glacier. The

use of computers and programming software is integral to this. The dynamics of

grounding lines in glaciers has been closely examined in a variety of computational

models where results are often inconsistent [2], with occasionally spurious projections



methods of treating the coupling between the sheet and shelf and what continuity

conditions are applied at the grounding line. Many models only examine the ice

dynamics of the grounded ice sheet without the coupling of the 
oating ice shelf [11].

Hindmarsh, 1996 [3] suggests that it is possible to model the grounding line dynamics

without any coupling between the sheet and the associated shelf. However, there are

other models that examine the grounded ice sheet with the inclusion of coupling

between the sheet and the ice shelf. The coupling can either involve full mechanical

coupling betwen sheet and shelf using an ice stream model or a semi-coupling where

only the ice 
ux through the grounding line is considered. This dissertation aims

at examining the ice sheet with the inclusion of semi-coupling between the ice sheet

and ice shelf.

Another contribution to the inconsistencies of the various models is their sensi-

tivity to the resolution and the robustness of the numerical implementation. There

are a number of methods that use �xed grid techniques. These have a rigid unmov-

ing structure and are by far the simplist to implement and best understood. These

methods often stongly depend on the grid size, as features may exhibit sharp changes

that can only be truly represented with a grid �ne enough to capture them. The

grounding line in particular is a feature that requires a �ne resolution for reliable

results. This, however, is computationally costly. An alternative method to gain

higher resolution without the extensive computational cost is to consider adaptive

mesh techniques. These techniques apply a �ner mesh around the grounding line

and allow a coarser resolution elsewhere, thus saving computational time. A third

approach uses a moving mesh technique which allows the grid points (including the

position of the grounding line) to be moved. Moving mesh techniques are considered

more robust and reliable, as the grounding line is part of the solution and no inter-

polations are required [5]. The survey paper of Vieli and Payne [11] goes into detail

of how the results di�er between various numerical models with di�erent numerical

properties and we will make frequent references to this paper to compare our results.

1.3 The Governing Equations

Ice can be treated as an extremely viscous 
uid, which generally deforms under its

own weight over a period of time, subject to mass gain and loss at the surface of

the glacier due to snowfall or melting [7]. Generally the amount of accumulation (or

snow) at the upper part of the glacier is greater than the amount of ablation (loss of

mass through melting), and so the mass of this region is expected to increase over

time. Further down the glacier near the shelf, the rate of accumulation is less than

the rate of ablation and so the mass is expected to decrease in this region. If it is

3



assumed that the ice spreads unidirectionally then ice will spread over the glacier as

ice is pushed from the sheet towards the shelf. The total 
ux of ice between the sheet

and the shelf is what we want to model in order to gain an idea about the behaviour

of the grounding line.

It is convenient to make several assumptions in order to simplify the physical

model. The key assumptions are as follows:

� The model uses the Shallow Ice Approximation, as de�ned below

� The bed is 
at with no isostasy, (i.e. the ice sheet is not elevated or lowered in

order to meet equilibrium with the Earths crust after change in mass.)

� Temperature and density are constant

� There is no basal sliding

The mass balance equation in the shallow ice approximation is taken to be [11]:

ht + ( hu)x = m: (1)

in the time dependent region 0� x � b(t), where x = 0 is the �xed boundary at

the ice divide (the top of the glacier),b(t) is the moving boundary at the shelf front,

h(x; t) is the height of the ice sheet,u(x; t) is the di�usive velocity, and m(x) is the

accumulation rate. The accumulation term represents the combination of mass gain

from snow and mass loss from ablation.

The boundary conditions for this problem are that there is no 
ux at the �xed

boundary x = 0 and so u = 0 at this point and also there is zero total 
ux at the

moving boundary b(t). At the moving boundary x = b(t) using Glen's 
ow law and

the assumption of unidirectional 
ow the di�usive velocity u satis�es [11]

@u

@x

�
�
�
�
b(t)

= A

�
1
4
�ig

�
1� �i

�w

� n�
hn (2)

whereh = h(b(t)) and A is a constant known as the rate factor and is taken from

Glen's 
ow law. Although the rate factor is dependent on the temperature of the ice

(and in practice has a large impact in the speed of the ice 
ow), for the simpli�ed

model used in this dissertation we have taken it to be constant, its value being chosen

as the value used in the EISMINT suite of test problems [11].

As the di�usive velocity u(x; t) behaves very di�erently in the sheet and the shelf

we split the problem into two sub-problems. Leta(t) be the time dependent position

of the grounding line, where 0� a(t) � b(t). Then x 2 [0; a(t)] is the ice sheet region

and x 2 [a(t); b(t)] is the ice shelf region.
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1.3.1 The Ice Sheet

Using the physics of ice in the ice sheet region 0� x � a



Figure 2: Illustration of Glacier

thickness of the ice below sea level to be equal to the sea level at the grounding line

and so

l � �i
�w
ha = 0

whereha is the the ice thickness at the grounding line. We can then calculate sea

level by

l =
�i
�w
ha:

In this wn0 16t-





In section 2 we investigate the behaviour of the di�usive velocityu in the sheet

and shelf separately without the accumulation termm. We go on to discuss the

numerical approximations used for both the sheet and shelf in section 2.3.

We then combine in section 3 the sheet and shelf calculations and the coupling be-

tween them. At this point an approach using conservation of mass fractions (CMF)

is introduced. The mass fractions induce a deformation velocityv, which is generated

by the di�usive velocity u and the coupling between the sheet and the shelf. This

deformation velocity is then used to move the mesh. We are then able to recover the

ice thickness algebraically using the local conservation principle. As this approach

cannot be carried through analytically we need to �nd feasible ways to do it numeri-

cally. The numerical approximations for the deformation velocities and the recovery

of the ice height using �nite di�erences are also given in section 3. In section 4 we

add the source term and outline the e�ect this has on the basic theory including the

numerical algorithm.

In section 5 we discuss the non-dimensionalisation of the equations. In section 6

we use a test problem to investigate the signi�cance of the viscosity of the ice and

discuss a steady state solution. We go on to demonstrate the convergence of the

moving mesh method used in this dissertation. We then go on to talk about the

sensitivity of the model to various rates of accumulation in section 7.

In section 8 we introduce an elevation to the glacier bed. We discuss how this

a�ects the model and also how the stability of the method is a�ected with varying

gradients in the elevation. In section 9 we discuss the in
uence that changes in sea

level has on the grounding line and �nally in section 10 we investigate the in
uence

that the rate factor A has on the evolution of the glacier.

Throughout sections 7 to 10 we compare results where appropriate, with the

EISMINT test cases and the results in the Vieli and Payne survey paper [11].

To conclude we give a brief summary of our �ndings and discuss further work on

improvements and generalisations.
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2 Ice Di�usion Only



leading to the alternative form of the nonlinear equation (9)

ht = c

 

h

�
@h7=3

@x

� 3
!

x

(11)

for the change in thicknessh in the ice sheet. It is equation (11) we have to solve for

h in (0; a(t)) subject to the given boundary conditions.

2.2 Ice Shelf

The ice shelf covers the regiona(t) � x � b!



a moving mesh model. One of the ideas behind a moving mesh grid is to allow

the grounding line to be followed continuously [11]. This approach is considered

advantageous from a numerical point of view since the grounding line is part of the

solution and no interpolation is needed [5]. Fixed grid models generally employ some

interpolation, as the grounding line could be situated between two �xed grid points.

In the survey paper of Vieli and Payne [11] it was found that �xed grid models are

more dependent on numerical details such as grid size and so are not as robust as

moving grid models [11]. The numerical scheme used in this dissertation adopts one

particular moving mesh approach, which incorporates conserved mass fractions to

move the mesh.

The domain [0; b(t)] is divided into N intervals such that the initial spacing is

constant, i.e. � x = b(0)=N . As we are dealing with two separate domains we will

use a subscripts 1 to denote the sheet and 2 for the shelf (e.g.N1 for the sheet

and N2 for the shelf, whereN1 + N2 = N ). We will initially take equal intervals

� x1 = a(0)=N1 for the ice sheet and �x2 = ( b(0) � a(0))=N2 for the ice shelf,

such that x(j) = j� x1 for j = (0 ; :::; N1) is the distance along the ice sheet and

x(j) = j� x2 for j = (N1; :::; N2) is the distance along the ice shelf. Subsequentially

the intervals � x1 and � x2 will vary with time.

The di�usive velocity is approximated using �nite di�erence schemes.

2.3.1 Ice Sheet

For the ice sheet a centred �nite di�erence scheme is used at the interior points,

uj = c

�
(hj+1 )7=3 � (hj� 1)7=3

xj+1 � xj� 1

� 3

: (15)

for j = 1 ; :::; N1 � 1. At j = 0 we use the fact that dh
dx

= 0 and so h1 = h� 1 which

implies that u0 = 0. At the boundary x = a(t) a downwind scheme is used..

2.3.2 Ice Shelf

For the ice shelf we have two di�erent approximations, �rstly the approximation for

a constant � which gives us the linear elliptic equation given in (12) to solve, and

secondly the approximation for a varying viscosity which gives the non-linear elliptic

equation given in equation (14).

We approximate equation (12) using centred di�erences as follows:

2hj+1 =2

�
uj +1 � uj

xj +1 � xj

�
� 2hj� 1=2

�
uj � uj � 1

xj � xj � 1

�

xj+1 =2 � xj� 1=2
= � � 1�g hj

sj+1 =2 � sj� 1=2

xj+1 =2 � xj� 1=2
(16)
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j = N1 + 1 ; :::N2 � 1. We use the midpoint average for half valuesh and s to get

(hj+1 + hj)
�
uj+1 � uj
xj+1 � xj

�
� (hj + hj� 1)

�
uj � uj� 1

xj � xj� 1

�
= � � 1�g hj

sj+1 � sj� 1

2
(17)

and so

hj + hj� 1

xj � xj� 1
uj� 1�

�
hj+1 + hj
xj+1 � xj

+
hj + hj� 1

xj � xj� 1

�
uj +

hj+1 + hj
xj+1 � xj

uj+1 = � � 1�g hj
sj+1 � sj� 1

2
(18)

This can be written as a system of linear equations.

At the boundary j = N1, u0 is given. For the boundary atx = b instead of a

centred di�erence approximation we use a backward di�erence approximation

2hj

�
@u

@x

�

N

� 2(hN + hN � 1)
�
uN � uN � 1

xN � xN � 1

�
= � � 1�ghN

sN � sN � 1

2
(19)

and use the boundary condition given in equation (2).

Thus the system of equation is given as

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�
h2+ h1
x2 � x1

+ h1+ h0
x1 � x0

�
h2+ h1
x2 � x1

� � � 0
h2+ h1
x2 � x1

�
�
h3+ h2
x3 � x2

+ h2+ h1
x2 � x1

�
h3+ h2
x3 � x2

0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

...
. . . . . .

...
... hN � 1+ hN � 2

xN � 1 � xN � 2
�

�
hN + hN � 1

xN � xN � 1
+ hN � 1+ hN � 2

xN � 1 � xN � 2

�
hN + hN � 1

xN � xN � 1

0 0 hN + hN � 1

xN � xN � 1

hN + hN � 1

xN � xN � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

u1

u2
...
...
...
...
...
...

uN

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� � 1�gh1
s2 � s0

2 � h1+ h0
x1 � x0

u0

� � 1�gh2
s3 � s1

2
...
...
...
...
...

� � 1�ghN
sN � sN � 1

2 � 2A
�

1
4�ig

�
1� �i

�w

�� 3
h4
N

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(20)

This is a tridiagonal system which we can solve for the di�usive shelf velocitiesu

using Gaussian elimination.
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For the non-linear elliptic equation with varying viscosity we employ a di�erent

method to approximate the di�usive velocity u. For this we will use Picard iteration.

This is a simple �rst order iteration method. Given the equation

2
@

@x

"

h

�
@u

@x

� 1=3
#

= A1=3�g h
@s

@x

from section 2.2, a �nite di�erence scheme will give us the following approximation

2hj+1 =2

�
uj +1 � uj

xj +1 � xj

� 1=3
� 2hj� 1=2

�
uj � uj � 1

xj � xj � 1

� 1=3

xj+1 =2 � xj� 1=2
= A1=3�g hj

sj+1 =2 � sj� 1=2

xj+1 =2 � xj� 1=2
(21)

We are able to use the midpoint average for half valuesh and s to get

(hj+1 + hj)
�
uj+1 � uj
xj+1 � xj

� 1=3

� (hj + hj� 1)
�
uj � uj� 1

xj � xj� 1

� 1=3

= A1=3�g hj
sj+1 � sj� 1

2
(22)

Souj satis�es the nonlinear system

(hj+1 + hj)
�
uj+1 � uj
xj+1 � xj

� 1=3

� (hj + hj� 1)
�
uj � uj� 1

xj � xj� 1

� 1=3

�A1=3�g hj
sj+1 � sj� 1

2
= 0

(23)

for j = N1 + 1 ; :::; N2 � 1.

For the boundary at j = N2 instead of a centred di�erence approximation we will

use a backwards di�erence approximation

hj

�
@u

@x

� 1=3

b

� (hj + hj� 1)
�
uj � uj� 1

xj � xj� 1

� 1=3

� A1=3�g hj
sj+1 � sj� 1

2
= 0 (24)

and apply the boundary condition described in equation (2). Atx = a(t) we will also

use the given di�usive velocityu. We now have the following system of non linear

equations

F(u) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

(h2 + h1)
�

u 2 � u 1
x 2 � x 1

� 1=3
� (h2 + ha )

�
u 1 � u a
x 1 � x a

� 1=3
� A1=3 �g h 1

s2 � sa



method,

unew = uold � F(uold)

we can �nd the di�usive velocity of the ice shelf provided that the iterations converge.



moving mesh methods where a purely geometrical criterion is often employed. In such

methods the moving domainx 2 [0; b(t)] is mapped to a �xed domain� 2 [0;1] by

the transformation � = x
b(t) ; � = t. Using the chain rule to di�erentiate h(�; � ) with

respect to� and � transforms (1) into

@h

@t
� �

b(� )
@b(� )
@�

+
@(hu)
@�

= m (31)

Note that this approach adds another term to the left hand side that is not a total

derivative with respect to� and therefore the equation is no longer in divergent form.

This feature can lead to unphysical e�ects in the method, such as not being mass

conserving whenm = 0.

15





system is one. Observe thatc1(0; a) = 1 and c2(a; b) = 1. When held constant these

mass ratios can be used to induce modi�ed velocities.

3.2 Deformation Velocities

We shall move the pointsx(t) such that the mass fractions in equation (34) will

remain constant over time, which we can do even with a non-zero 
ux between the

ice sheet and shelf.

Whereas in equation (27) we could have written
Rx(t)

0 h1(x; t)dx = c(0; x), we now

have, from equation (34), that
Rx(t)

0 h1dx = �1c(0; x) and so

d

dt

Z x(t)

0
h1dx = _�1c1(0; x) (35)

and similarly
d

dt

Z b(t)

x(t)
h2dx = _�2c2(x; b): (36)

Using Leibnitz Rule, we �nd that

d

dt

Z x(t)

0
h1dx =

Z x(t)

0

@h1

@t
dx + [ hv]x(t)

0 (37)

where v = dx
dt

is the modi�ed velocity which is induced by the mass fractions. We

can substitute for @h1
@t

from the mass balance equation (8) to get

d

dt

Z x(t)

0
h1dx =

Z x(t)

0
(�(h1u1)x + ( h1v1)x) dx

= [ h1(�u1 + v1)]x(t)
0

= h1(x)(�u1(x) + v1(x)) (38)

sincev1(0) = u1(0) = 0. Hence

h1(x)(�u1(x) + v1(x)) = _�1c1(0; x)

giving

v1(x) = u1(x) +
_�1c1(0; x)
h1(x)

(39)

by equation (35).

Similarly

17



d

dt

Z b(t)

x(t)
h2dx =

Z b(t)

x(t)
(�(h2u2)x + ( h2v2)x) dx

= [ h2(�u2 + v2)]b(t)x(t)

d

dt

Z b(t)

x(t)
h2dx = h2(b)(�u2(b) + v2(b)) � h2(x)(�u2(x) + v2(x)) : (40)

Hence

h2(b)(�u2(b) + v2(b)) � h2(x)(�u2(x) + v2(x)) = _�2c2(x; b)

by equation (36). As we have zero 
ux at the boundaryx = b, then h2(b)(�u2(b) +

v2(b)) = 0 ; 8h2(b) and sov2(b) = u2(b). Therefore

v2(x) = u2(x) �
_�2c2(x; b)
h2(x)

: (41)

Putting x = a into equations (39) and (41) gives us that_�1 = ha(�ua + va) = � _�2



3.3.1 Time Stepping

Once we have the approximationva substituted into equations (42) and (43) we

get the velocities of the moving points. We now move each grid point with its

corresponding velocity, doing this in the same way as in section 3.3 equation (26).

However instead ofuj, we now usevj. Since�1 and �2 vary over time we must also

�nd their new values after each time step. As in equation (26) these are calculated

using the explict Euler scheme as follows:

�n+1
1 = �n1 + � t _�1; �n+1

2 = �n2 + � t _�2 (44)

3.3.2 Recovering h

All that is left is to calculate the new ice heights. From equation (34) we can deduce

that:

1
�1

Z xj +1

xj � 1

h1dx = c1;j+1 � c1;j� 1 and
1
�2

Z xj +1

xj � 1

h2dx = c2;j� 1 � c2;j+1

Note that for the ice shelfcj gets smaller as we progress along the shelf and so we

subtract cj+1 from cj� 1 to achieve the same e�ect as for the ice sheet. Using the new

values of�1 and �2 found in section 3.3.1 we �nd the new mass of ice betweenxj� 1

and xj+1 by
Z xj +1

xj � 1

h1dx = �1[c1;j+1 � c1;j� 1] and
Z xj +1

xj � 1

h2dx = �2[c2;j� 1 � c2;j+1 ] (45)

Approximating the integrals by the midpoint rule again we can retrieve the new

values for the ice heights as follows:

hj =
�1(c1;j+1 � c1;j� 1)
xj+1 � xj� 1

; hj =
�2(c2;j� 1 � c2;j+1 )
xj+1 � xj� 1

(46)



2. Calculate the mass fractionsc1(0; xj) for j 2 [0; ::; N1



4 Adding the Source Term

Up until now we have only considered the problem where the accumulation is zero.

This is unrealistic as we would usually expect either snow or melting to change

the total mass. To incorporate this we will now reintroduce the accumulation term

m(x) back into the equations and investigate how this will a�ect the algorithm. The

function m is independent of time and will initially be taken as a constant to simulate



v1(x) = u1(x) +
(ha(�ua + va) +

Ra(t)
0 mdx)c1(0; x) �

Rx(t)
0 mdx

h1(x)
(54)

v2(x) = u2(x) +
(ha(�ua + va) �

Rb(t)
a(t) mdx)c2(0; x) +

Rb(t)
x(t) mdx

h2(x)
(55)

The grounding line migration rate is now the same as in equation 6 reproduced

here for convenience,

va =
�w
�i

@f
@t

+ @(hu)
@x
�m(x)

@h
@x
� �w

�i

@f
@x

:

Letting a denote the grid point for the grounding line we can approximate the mi-

gration rate by

va =
�w
�i

fn � fn � 1

� t + (hu)a+1 � (hu)a� 1

xa+1 � xa� 1
�ma

ha+1 � aa� 1

xa+1 � xa� 1
� �w

�i

fa+1 � fa� 1

xa+1 � xa� 1

:

where the super�xesn and n� 1 represent the time levels.

Note that we update the grid points positions,�1 and �2 in the same way as in

section 3 using the explicit Euler method in equations (26) and (44). All that is left

is to recover the new ice heights from the mass constants as in equation (46). For

convenience we will summarise the algorithm for the added accumulation term:

1. Compute�1 and �2 in the inital pro�le by integrating h with respect tox between

(0; a(t)) and (a(t); b(t)) respectively.

2. Calculate the mass fractionsc1(0; xj) for j 2 [0; ::; N1] and c2(xj; b) for j 2
[N1; ::; N2] by integrating h with respect to x between (0; xj) for j 2 [0; ::; N1]

and (xj2 ; b(t)) for j 2 [N1; ::; N2] respectively.

For each time step:

3. Calculate the deformation velocities using equations (54) and (55).

4. Move the grid nodes with the calculated velocities using the explicit Euler

method.

5. Find the new values for�1 and �2 using the expicit Euler method.

6. Use the new values of�1 and �2 to �nd the new values for the mass fractions

using equation (45).

7. Retrieve the new values of the ice heighthj from equation (46) using the mid-

point rule and the new mass fractions.
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5 Non-Dimensionalisation

In order to compare with real data we proceed to make this model non-dimensional.

Non-diminsionalisation is accomplished by dividing each variable by a constant scal-

ing parameter. Suppose we scaleh, u, x, t, and m so that

h� =
h

[h]
; x� =

x

[x]
; t� =

t

[t]
; u� =

u

[u]
; m� =

m

[m]

where the square brackets indicate the corresponding scaling parameter and the

super�x � represents the scaled variable.

From equation (1) we �nd that the scaled shallow ice equation becomes

[h]
[t]
hxx� +

[h]
[x]

[u](h� u� )x� = [m]m� :

For balance to be maintained within equation (1) we must have

[h]
[t]

=
[h]
[x]

[u] = [m]; so [t] =
[x]
[u]
; and [m] =

[h]
[x]

[u]

5.1 Sheet

Using the di�usive velocity equation for the sheet given in section 2.1 as

u = c

�
@h7=3

@x

� 3

we obtain the scaled ice di�usion velocityu�

[u]u� = �[c]
[h]7

[x]3
c�

�
@(h� )7=3

@x�

� 3

where

c� =
c

[c]

Again we must ensure that both sides are balanced and so

[u] = [ c]
[h]7

[x]3
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5.2 Shelf

In the shelf we have a di�erential equation for ice di�usion velocity repeated here for

convenience,

�2(�hux)x = �ghsx:

In the case where� is variable, given as� = A� 1=3(ux)� 2=3, the di�usive velocity in

the ice shelf satis�es

�2(h(ux)1=3)x = A1=3�g h(sx): (56)

The constant c used in the sheet calculations is given by

c =
�

3
7

� 3 2A�3g3

5

Using this in equation (56) gives

�2(h(ux)1=3)x =

 �
7
3

� 3 5c
2

! 1=3

h sx:

Therefore the scaled expression for the shelf velocity is given by

�2

3

3 53

h suu cm
[]0 d 05 1TJ/F21 7.9701 Tf 4.553 -13Td [(3)]TJ
ET1 7.9701 Tf 6.662 -1.794 Td [(x)]TJ/F17 11.9542 Tf 5.265 1.794  cm
[]0 d 05 1TJ/F21  4.234 0 Td [0 -711.:3

5-326(in)-327(the)-326(sheet)Td [(u)]TJ/F2]9552 Tf 6.725 -17.74.55[()]TJ/F18 7.9701 Tf 4.234 0 Td [(3)]TJ/F17 11.9552 Tf 4.732 -4.936 Td [())]TJ/F21 7.9701 Tf 4.553 -1.794 Td [(x)]T 7.970120 11.9552 Tf 4.55[(x)]TJ/Fus-327(the)-326(sheet)Td793 



6 A 1D Test Case

Following the EISMINT test case [11] we consider a glacier where both the ice sheet

and ice shelf have an initial length of 50km. We also need an initial pro�le for the

ice thickness; this has been chosen to be

h = (1 � 0:75x2)3=7; x 2 (0;1) (57)

which is similar to the initial pro�le chosen in [4]. Table 1 shows a summary of the

parameters used in the model.

Value Physical Parameter
n = 3



Running the model with zero accumulation exhibits negligible change to the ini-

tial conditions, with the change to the grounding line position becoming less than

0:1ma� 1 within 2 years. We might ask why the larger mass of the ice at the ice

divide does not distribute itself along the domain over time. A glacier 
ows in the

direction of decreasing surface elevation. As the shelf is buoyed by the ocean the

surface elevation changes only marginally and so the 
ow is relatively small.

The inability of this model to reach a non-arbitary steady state is worrying as this

is signi�cantly di�erent to the results found in previous studies. The potential cause

of this inability to reach steady state is choosing a constant accumulation across the

glacier. Since the method conserves mass, a constant source term will not allow a

steady state solution as there is no 
ux of mass out of the system. This implies that

instead of the constant accumulation term given in the Vieli and Payne [11] paper it

is better to represent the accumulation with a linear equation. We will let


(1� �x)

represent the accumulation pro�le, where
 is a parameter used to control the scale of

the accumulation and� determines where the source term changes from accumulation

to ablation. If we choose
 and � such that

Z b(t)

0
mdx = 0 :3ma� 1

then we �nd the initial ice pro�le meets the requirements of a steady state described

in the MISMIP [5] papers with negligible change to the initial conditions (i.e. the

change in grounding line position is less than 0:1ma� 1 and the change in ice thickness

is less than 1ma� 1).

6.2 Viscosity

We are interested in the e�ect of simplifying the model, so viscosity is left as a

constant. We ran the model with
Rb(t)

0 m(x)dx = 0 :5ma� 1 for varying N for 5000

years. Note that for a net accumulation of 0:5ma� 1 we have chosen
 = 0 :0002

and � = 3
2 . The approximations set out in the equations (20) and (25) have been

used, one in the case of constant viscosity and the other using varying viscosity.

The results are displayed in table 2 and table 3, with the relative di�erences shown

in table 4. The di�erence in grounding line position (GLP) between the the two

methods is very small, although it becomes slightly larger with increased resolution.

Also the change in shelf front position di�ers between the two methods, the shelf

front receding with the varying viscosity and advancing with the constant viscosity,
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although the di�erence decreases with an increased resolution.

N � t GLP Shelf Front h at GLP
11 0.01 50.249357 100.0000008 914.502872
21 0.25 50.400903 100.0000007 915.532212
41 0.0625 50.429636 100.0000008 915.721627
81 0.015625 50.432728 100.0000008 915.740688

Table 2: Table of Values for Constant Viscosity

N � t GLP (km) Shelf Front (km) h at GLP (m)
11 0.01 50.252652 99.998139 914.511045
21 0.25 50.404234 99.998295 915.539494
41 0.0625 50.433251 99.998381 915.728938
81 0.015625 50.436981 99.998427 915.748842

Table 3: Table of Values for Varying Viscosity

N � t GLP Shelf Front h at GLP
11 0.01 0.0065575% 0.0018616% 0.0008936%
21 0.0025 0.0066089% 0.0017057% 0.0007952%
41 0.000625 0.0071676% 0.0016193% 0.0007983%
81 0.00015625 0.0084320% 0.0015739% 0.0008904%

Table 4: Table of Relative Di�erences between Varying and Constant Viscosity

Although the di�erences are very small, constant viscosity is regarded as too

crude an assumption to make and, as incorporating the varying viscosity is relatively

simple, all future experiments viscosity will be taken as the variable case,

� = A� 1=3

�
@u

@x

� � 2=3

:

6.3 Convergence

To decide if this numerical scheme is a useful tool in predicting the evolution of

grounding lines we must show that the method is convergent. The position of the

grounding line for a series of increasing values ofN and a decreasing series of values

of � t has been recorded in table 5. To maintain stability �t has been chosen such

that � t / N � 2. Variable viscosity has been included and the accumulation rate has

been taken to be
Rb(t)

0 m(x)dx = 0 :5ma� 1. The �nal time has been set relatively low

at 2500 years. This has been chosen because running the model for long time periods

with a very �ne resolution is computationally costly.

We now need to calculate the errors. As we do not have an exact solution or

any comparable raw data the value for the grounding line position with the �nest
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N � t Position of Grounding Line Ice Height
11 0.01 50.014602 913.835880
21 0.25 50.178554 914.982169
41 0.0625 50.215269 915.234004
81 0.015625 50.222920 915.285344
161 0.00390625 50.224352 915.293350
321 0.0009765625 50.224840 915.293729

Table 5: Table of Values



value are �ne enough to closely resemble to the 'exact' solution, this would imply

that this value is misleading.

6.4 Velocity

The velocity of each grid point for two accumulation pro�les has been plotted in �gure

3. The solid lines show the velocity for a positive net accumulation of
Rb(t)



size and also a strong tendency for the grounding line to advance. In contrast to this

there is no bias for the grounding line to advance or retreat for the moving mesh

techniques of the Vieli and Payne paper. In addition, the di�erence in grounding

line position between di�erent numbers of grid nodes is much smaller for the moving

mesh methods.

For our model there is some dependency of grounding line position on the number

of grid points, however this is smaller than the initial � x. Table 6 shows us that there

is less than half a percent di�erence in grounding line position between a coarser grid

and a �ner grid, which amounts to approximately 200m. This is less than the initial

grid spacing and therefore in the resolution of the model. This shows us that the

dependency on the number of grid points is small.

Table 5 shows that the change in grounding line position increases with increased

N . This is contrary to the results of the Vieli and Payne survey paper [11]. Another

di�erence between the moving mesh method of this dissertation and the ones used in

the Vieli and Payne paper is that the tendency of the grounding line is dictated by

the sign of the accumulation. For a positive net accumulation the grounding line will

advance and for a negative accumulation the grounding line will recede. Whereas

the grounding line in the Vieli and Payne paper models will recede for small positive

values of accumulation.



7 Changes to the Accumulation Rate

For a positive net accumulation we expect the grounding line to advance and for a

negative net accumulation we expect the grounding line to recede. For an increased

magnitude in accumulation we would expect to see an increase in the change of

grounding line position. The ice thickness pro�les for di�erent accumulation rates

are shown in �gure 4. Note that
 = 0 :0002 and� is given various values with� = 3
2

corresponding to a net accumulation of 0:5ma� 1, � = 19
10 corresponding to a net

accumulation of 0:1ma� 1, � = 21
10 corresponding to a net accumulation of�0:1ma� 1

and � = 5
2 corresponding to a net accumulation of�0:5ma� 1. The �nal time is

15ka. There are 21 horizontal grid points for these plots and �t has been taken to

be 0:0025.

Figure 4: Ice thickness pro�le after 15000 years for di�erent values of� . The crosses mark the
grounding line position.

The expectations of the changes to the grounding line position with di�erent

accumulation rates have been met here. There is one key di�erence between the

moving mesh method of this dissertation and those discribed in the Vieli and Payne

survey paper. There are some cases in the Vieli and Payne paper that for even a

positive accumulation there is still a retreat in the grounding line position. This is

counter intuitive as a positive accumulation would indicate that there is mass gain.

If the mass increases around the grounding line then it would require more water to

bouy the mass of the ice. If the sea level remains constant then there will not be

enough water to bouy the ice just ahead of the grounding line and so the 
otation

criterion will no longer be met. Thus the grounding line will advance. The fact that
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8 Introducing a Tilt

Up until now we have only discussed a glacier with a 
at bed but in reality this

is not the case. In order to make the model more realistic we now incorporate an

elevation to the ice bed. This will change the way in which we treat the di�usive

velocity set out earlier in equation (3). We previously stated that, in the sheets = h



that the grounding line positions in moving mesh models are independent of basal

slope. With such a varying �eld of conclusions and results it is still uncertain how

the basal slope should a�ect the grounding line position.

We are interested in observing the impact of bed elevation on the migration of the

grounding line for this moving mesh model. The model has been run for each glacier

pro�le from �gure 6 for a �nal time of 15000 years with
Rb(t)

0 m(x)dx = 0 :5ma� 1.

and with
Rb(t)

0 m(x)dx = �0:5ma� 1. There are 21 grid points, anddt = 0 :0025.

There is less than a 200m di�erence in grounding line position between the basal

slopes for either an advance or a retreat. For the upsloping bed the grounding line

will advance more compared to the 
at and downsloping bed and retreat the least.

The downsloping bed will retreat by the largest amount but advance by the smallest

amount compared to the 
at and upsloping bed.

There doesn't appear to be any change in tendency of grid point evolution with

the varying beds and the di�erence in grounding line position for di�erent basal

slopes is smaller than the initial grid size and so within the accuracy of the model,

indicating that the model is independent of basal topography. This agrees with the

results found in the Vieli and Payne survey paper [11] and the results of Hindmarsh

[3].





�gure 8. When the grounding line advances the ice thickness decreases, however for

an upsloping bed we still see that the 
ux has the largest magnitude. Again, this

indicates that the 
ux is dominated by the large velocity at the grounding line.

The reason for the larger 
uxes for the upsloping bed is due to the large grounding

line velocities. Thefx term now incorporatesbx in the new formula (59) for ground-

ing line migration (59). For an upsloping bed this has the opposite sign to the

downward sloping bed, the result of which is that the denominator of the grounding

line migration equation is now much smaller and hence the grounding line migration

is much larger.

The grounding line position has been plotted in �gure 9 for all three basal slopes

using the new grounding line migration rate. The �nal time is 15000 years, there are

21 grid points, and � t = 0 :



(a) Downward Slope

(b) Flat Bed

(c) Upward Slope

Figure 6: Di�erent Ice Bed Pro�les
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Figure 7: Flux at the Grounding Line for each basal slope with
Rb( t )

0 mdx = �0:5ma� 1

Figure 8: Flux at the Grounding Line for each basal slope with
Rb( t )

0 mdx = 0 :5ma� 1
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(a) Advancing Glacier

(b) Receding Glacier

Figure 9: The grounding line position over 15000 years for di�erent basal slopes
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(a) Downward Slope

(b) Flat Bed

(c) Upward Slope

Figure 10: Comparison of the change in grounding line postion between the new and old equation



9 Changes to Sea Level

We allow the sea level to change by 5% over 1000 years, which amounts to a change

of approxiately 60m. For this experiment there are 21 grid nodes and �t is set to

0:000625, the net accumulation is set to
Rb(t)

0 m(x)dx = 0 :3ma� 1, which allows the

initial pro�le to remain in approximate steady state. For a sea level rise of 5% the

grounding line recedes by approximately 8:5km. For a 5% decrease in sea level the

grounding line advances by appoximately 7:5km. This is a much larger change than

that described by the moving mesh models in the Vieli and Payne survey paper, where

the grounding line position recedes by approximately 2km for a of sea level rise of

125m and advances by 1:5km for a decrease of sea level of 125m. The grounding line

migration of this method is also larger than the migration of the �xed grid methods of

the Vieli and Payne paper. These di�erences could be attributed to the di�erence in

the initial pro�le. For this dissertation we chose the sea level such that the 
otation

criterion was met at the mid point of the glacier. This is counter-intuitive as sea level

determines the position of the grouning line and not vice versa. We chose this way

as we wanted to replicate the conditions in the EISMINT experiments. Instead, if

we allow the sea level to be 500m and obtain the expected position of the grounding

line using the 
otation criterion, we �nd that the resulting values for the migration

of the grounding line are very di�erent. Allowing the same changes to sea level as

before gives an advance of less than 1km

:5km



factor had very little e�ect on the grounding line dynamics although the absolute

values in grounding line change were larger [11]. For the moving mesh method of

this dissertation a higher rate factor makes very little change to the grounding line.

In an advancing glacier the di�erence in grounding line position is marginally larger

for a higher rate factor. For a receding glacier the change in grounding line position

is marginally smaller for the higher rate factor.

This indicates that this model is not very sensitive to the ice rheology; similar to

the Vieli and Payne paper. This indicates that errors in the modelled ice temperature

will not strongly a�ect the results.
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11 Conclusion and Discussion

Accurate and e�cient modelling of the grounding line in glaciology is crucial in order

to make reliable forcasts of the fate of the Cryosphere. Changes to grounded ice in

the Cryosphere will greatly impact upon the Earth's climate system. Recent rates

of receding ice sheets has prompted an increase in the desire to properly understand

the dynamics of these glaciers. The modelling of glacier dynamics has experienced

considerable development in recent years. However the results thus far have been

inconsistent.

One common feature in many recent studies, such as the MISMIP [5] and Vieli

and Payne [11] survey papers is that moving mesh models are often more reliable



� Section 3.3.3 outlined an algorithm for the method so far.

� We then went on to discuss how we recover the new ice heights using mid-point

approximations, made possible by the conserved mass fractions method.

� We reintroduced the accumulation term in section 4 and discussed how this

a�ected the algorithm in section 3.3.3.

� In section 5 we discussed the necessity of non-dimensionalisation for application

to real data and how we facilitated this necessity in the method.

� Section 6.1 investigated the steady state solution and found that our model

achieves a near steady state, whereht is su�ciently small, when the accumula-

tion term is su�ciently small.

� Section 6.2 investigated how the viscosity� a�ected the model and found that

the di�erence between varying and constant viscosity is relatively small, however

it does alter the tendency of the shelf front to advance or recede. Despite the

very small di�erence in varying viscosity and constant viscosity, incorporating

the varying viscosity is relatively easy and so it is preferable to include it, as

constant viscosity is too crude an assumption to make.

� We tested for convergence in section 6.3 and showed that our method is conver-

gent and approximately second order.

� We examined the dependency of the model on the number of nodes in section

6.5. We found that the method is reliable with a coarse resolution, as the method

is not stongly reliant on the number of nodes. This demonstrated a robustness

typical of moving mesh models.

� Section 7 investigated how changes to the accumulation a�ected the evolution of

the glacier. We found that changes to the accumulation rate caused the glacier

to evolve in a way that we would expect. For example, a positive accumulation

caused the grounding line to advance and a negative accumulation caused the

grounding line to recede. For a net accumulation of zero the grounding line

position hardly changed. We also found that changes to the glacier incurred

by changes in the accumulation were reversable. We found that the model is

strongly dependent on the chosen accumulation rate, which is problematic as

modelling the accumulation and ablation measurements can be inaccurate and



that the CMF moving mesh method is stable for all basal slopes. However the

the grounding line migration is dependent on basal topography.

� Section 9 investigated how the model reacts to changes to in sea level and found

that changes in sea level a�ected the grounding line position in a way we would

expect. For example a rise in sea level caused the grounding line to recede and a

decrease in sea level caused the grounding line to advance. We also found that

changes to the grounding line position incurred by changes in sea level were

reversable.

� Finally, section 10 investigated how changes to Rate FactorA a�ected the model

and the sensitivity of the model to ice temperature. We found that the model

was not highly dependent on the rate factor and therefore insensitive to the

modelled ice temperature.

The main aims of this dissertation have been to investigate the e�ciency of the

CMF moving mesh approach at modelling the migration of the grounding line and

investigate how the behaviour of this model correlates with other schemes. We found

that the model is convergent and we have been able to make favourable comparisons

to the moving mesh models discussed in the Vieli and Payne survey paper [11],

however our model does exhibit several distinct di�erences.



to include these factors may change the results.

To conclude, this dissertation is unique in the sense that we have used a moving

mesh method based on conserved mass fractions with the addition of semi-coupling

between the sheet and shelf. Dale Partridge [4] used the same moving mesh method

for a grounded ice sheet without the addition of the semi-coupling between the sheet

and the shelf. To have an increasing ice height for a receding glacier on an upward

slope, an amendment to the 
otation criterion described in the Vieli and Payne paper

[11] needed to be made. This amendment allowed the ice height to increase as the

glacier receded along an upward slope. This is required so that the 
otation criterion

is continued to be met, however the experiments in the Vieli and Payne paper did

not exhibit this behaviour. Despite this change in the behaviour of the ice height

we still found that the retreat of the grounding line was stable for an upsloping

bed, contradicting the results of Hindmarsh [3] and [7]. However the grounding line

dynamics are more dependent on the basal topography than suggested in the Vieli

and Payne paper [11].

In addition we have found that the tendency of the grounding line to advance or

recede is dictated by the sign of the net accumulation. This is in contrast to the

Vieli and Payne paper [11] where a small positive accumulation led to a receding

grounding line. This is potentially caused by the moving mesh models in the Vieli

and Payne paper not being locally mass conserving.

11.1 Further Work

11.1.1 Full Stokes Equations

Many numerical models make use of the shallow ice approximations. These approxi-

mations use vertical averaging to simplify the full Stokes' equations. There have been

relatively few attempts to model the ice dynamics with the full Stokes' equations,

but one example of a model using the full Stokes' equations occurs in the MISMIP

paper. It was found there that the results of the full Stokes' equations yielded much

larger changes to the grounding line position. This model is however computation-

ally costly and modelling the grounding line with the use of full Stokes' equations

includes the question of available computer resources.

11.1.2 Higher-Dimensions
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