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1 Abstract

Richards’ equation describing soil water ow is a highly nonlinear PDE and

as such can only be solved numerically except for a small number of special

conditions. Two schemes were considered here; the Crank Nicolson scheme

with a nonlinear solver and a conservation-based moving mesh scheme. Four

realistic scenarios were chosen to test the the schemes; i) a shallow moving

water table, (ii) unsaturated in�ltration on dry soil, (iii) ponded in�ltration

on dry soil, and (iv) in�ltration into layered soil. The schemes were found to

work well, with the ponded in�ltration being the most challenging in terms

of size of timestep required. Unstable ows were briey considered where

in�ltrating water is held up momentarily. A mechanism for explaining this

waiting time is described.
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2 Introduction

The aim of this project was to implement a robust �xed mesh scheme and a

conservative-based moving mesh (MM) scheme for solving Richards’equation

(RE) for four realistic and challenging boundary conditions: (i) a shallow,

moving water table, (ii) unsaturated in�ltration, (iii) ponded in�ltration,

and (iv) in�ltration into layered soil. Two soils were simulated which were

chosen to be near the two ends of the textural spectrum; sandy and clayey

soils. The �xed mesh scheme is the nonlinear Crank Nicolson (CNi) scheme

which is a semi-implicit method requiring an iterative preocedure. Fixed

mesh implicit schemes have been used extensively in the literature [4] for

solving RE and more recently have incorporated time adaption schemes

[5]. The performance of the CNi scheme and the requirement of adaptive

timestepping is investigated here. The MM scheme investigated here is not

a common form of the adaptive mesh schemes used for solving RE. Most

adaptive mesh schemes are concerned with reducing truncation errors and

increasing model e�ciency [6]. The advantage of the MM scheme is the in-
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�-based, and mixed, are given.

In Chapter 3, the schemes are described. The derivation of the CNi

scheme starts with the explicit scheme and progresses to the linear Crank-

Nicolson scheme (with K



3 Background theory - soil
physics

3.1 Soil Structure

Soil is a solid lattice made up of mineral and organic fractions. The mineral

fraction generally makes up the majority by volume and consists of particles

of diameters varying from clay (> 2 �m) to coarse sand (up to 2 mm). The

relative proportion of these particle sizes and organic matter (which acts as

a glue to bond particles togther to form aggregates) largely determines the

range of pore sizes present in the soil. It is this distribution of pore sizes

that greatly inuences water storage and movement.

Water can be present in soils in its three phases, but most often in the

liquid and gaseous phases only. Water movement in soil is mainly due to
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3.2 Soil water - de�nitions

There are two main concepts related to describing the amount or state of

water in soils; (i) volumetric water content, � (m3m�3







3.5. WATER FLOW IN SOILS - DARCY’S LAW 11

3.5 Water ow in soils - Darcy’s Law

The movement of water occurs in soil when gradients of  develop from

inputs/removal of water from precipitation/evaporation at the soil surface

or root uptake in the soil pro�le. Water ows from regions of high to low

values of  and is described by Darcy’s Law:

q = �K
�
@ 

@z
+ 1

�
(3.4)

where q is the ow rate (ms�1), K is the hydraulic conductivity (ms�1),

and z is usually the depth below the soil surface (m). The hydraulic conduc-

tivity is a highly non-linear function of � (or  ) and is di�cult to measure

particularly at lower �. However, K is found to be strongly connected to

the SMC. Because of this, the expression for K is derived directly from

expressions for the SMC, e.g. from equation (3.2):

K = Ks

�
�

�s

�n1

or K = Ks

�
 e
 

�n2

(3.5)

where n1 = 2b+ 3 and n2 = 2 + 3=b, and b is from equation (3.2).

3.6 Derivation of Richards’ equation

The mass continuity equation

@q

@z
=
@�

@t
(3.6)

is combined with Darcy’s Law (equation 3.4) to obtain Richards’ equation

(RE)
@�

@t
= � @

@z

�
K

�
@ 

@z
� 1

��
: (3.7)
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conserved is the physical quantity �, the gradient being expressed in terms

of  , and K is a function of �. Other forms of RE are the �-based and

 -based versions shown below:

@�

@t
= � @

@z

�
K

�
D
@�

@z
� 1

��
C
@ 

@t
= � @

@z

�
K

�
@ 

@z
� 1

��
(3.8)

where D = @ =@� and C = @�=@ from applying the product rule. The

above forms of RE have been used extensively in the literature. The mixed

and �-based forms are best for conservation of mass, parrticularly when

sharp moisture gradients are present, and the mixed and  -based forms are

necessary for saturated conditions and layered soil [4]. During saturated

conditions when water is ponding on the soil surface, the value of  at the

surface equals the depth of free water on the surface. This positive potential

cannot be portrayed using � as the driving variable (equation 3.8a). For

layered soil,  and not � is the continuous variable down the soil pro�le.

3.7 Boundary conditions

For one dimensional vertical ow, only top and bottom boundary conditions

exist as depicted in the schematic below (Figure 3.3). The top boundary

or soil surface is exposed to the highly variable atmospheric conditions so

can change rapidly. For the most part, the top boundary has a ux of

water passing through it either downward from in�ltration as liquid water

or upward from evaporation in the vapour phase. If ponding does occur,

when the precipitation rate is greater than the maximum in�ltration rate

(see later in next chapter),  = h where h is the depth of water on the soil

surface. When considering solving RE, the top boundary is predominantly
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a Neumann or ux bounday condition, but for some soil types and environ-

mental conditions, a Dirichlet boundary condition can occur. The bottom

boundary is often deep enough such that the  gradient is considered to be

zero, or for a shallow water table, the value of � or  being equal to that

at saturation.

Figure 3.3: Schematic showing the vertical nature of water ows [1]





4 Numerical schemes for
solving Richards’ equation

Since the 1970’s, inceasingly complex numerical schemes have been devel-

oped to solve RE. The highly non-linear nature of RE requires that numer-

ical rather than exact solutions be sought. Due to the complex nature of

real soils and environmental conditons, improvements to numerical schemes

to increase the e�ciency, stability and accuracy is ongoing. The schemes

can be broadly grouped into schemes with �xed meshes (FM) and those

with adaptive meshes (AM). The former are generally simpler to design

and implement with the latter a relatively new concept. Only �nite dif-

ference methods are investigated here since only one dimensional ows are

considered. Techniques such as �nite elements do not have appreciable

advantages over �nite di�erences in one dimension. This brief review on

numerical schemes follows that of [5] who produced quite an extensive re-

view on numerical solutions to RE. The �xed mesh methods used are a

Crank-Nicolson linear scheme and a fully implicit nonlinear scheme using

iterative methods such as Picard or Newton-Raphson [4]. These two meth-

ods are explored in more detail in the next section. A later improvement to

these schemes was to add in an adaptive time-step procedure. Two main

methods exist for varying the time step, h [6]; (i) empirical - based on the

number of iterations per time step, and (ii) error-based where estimates of

15
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EQUATION

the truncation error are obtained and the time step adjusted accordingly.

In addition, the order of the time stepping scheme can be varied. The AM

techniques can be grouped into three types; (i) moving mesh points, (ii)

adding/subtracting mesh points, and (iii) increasing the order. Often a

combination of the above techniques is used. As with the �xed mesh meth-

ods, adaptive time stepping can be included, producing some complex but

robust schemes [5]. The main advantage of AM over FM schemes is the

combination of increased accuracy and stability as well as e�ciency. The

FM schemes can be made more accurate by decreasing the distance between

mesh points (�z) and the time step, but this decreases the e�ciency. With

AM, h (and �z) can be decreased only when required, which can be for

relatively small periods of time. Larger-405(�)]TJ/F22 11M02.678 0 Td [(sE2e2(sc31.9552 Tf 11.578 (ds) [((and)-405(�)]TJ/c31.9552 Tf 11(requ�)]TJ/c001)]em)1(2n)]TJ Td [h(dec)27(bharge0/c00s)-285(the)aharge0/c50andMd.443 -21.669 Td [(AM,oe2(b)-27(e)1)]TJ/7e
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4.1 Fixed mesh methods

Often at �eld-scale or larger, variation in the variables  and � occurs mainly

in the vertical dimension since horizontally the surface appears uniform.

For larger scales, the region can be divided up into smaller areas of similar

surface type, each with a one-dimensional ow scheme.

A mesh is �rst inserted on the vertical soil pro�le (z direction) usually

with z = 0 at the soil surface (see �gure 4.1 below). The spacings (�z)

often increase in the positive z direction with �z � 1 cm at z = 0 and

�z � 1 m at the base of the pro�le. These spacings reect the relative

temporal and spatial variation of  and � down the pro�le. The  -based

RE (see previous chapter) is discretised in the following sections since it is

used later in the Results chapter, but the analysis will be very similar for the

other versions of RE. The rest of the chapter is devoted to the description

of various simple numerical schemes for RE which can be represented here

as C t = (K( z � 1))z. The �rst and simplest is the explicit scheme

where the �rst derivative in time ( t) is approximated by the �rst order

forward di�erence and the second order derivative in space approximated

by a second order forward di�erence. The subsequent schemes investigated;

various forms of the Crank-Nicolson scheme and fully implicit schemes, are

based on this explicit discetisation.

Explicit scheme

The basic explicit discretisation of the  -based RE is

C
 n+1
i
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Figure 4.1: Soil pro�le divided into layers with  and � centred on the mesh
points.

where i and n are the space and time indices respectively, �zi = zi � zi�1,

and �zi = 1=2(�zi + �zi�1) (see Figure f41). This scheme is �rst order in

time and second order in space and according to the stability criterion, the

maximum timestep �tmax = 1=2�z2=Kmax. Equation (4.1) can be easily

rearranged to have all the known terms (at nth timestep) on the RHS and

 n+1 on the LHS. Values for  are obtained by advancing through time.

Implementing this in code requires a space loop nested in a time loop.

The boundary conditions must be included. These are discussed below

for the explicit method but equally apply to the subsequent schemes and

can be readily implemented. Both the top and bottom boundaries for the
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Figure 4.2: Schematic showing ponded in�ltration into soil.

where � = 1=2. This scheme is 2nd order in time and space. Note that for

� = 0, equation (4.5) reverts back to the explicit scheme of equation (4.1).

The K terms are evaluated at timestep n so equation (4.5) is still a set of

linear algebraic equations as with the explicit scheme above. However, the

RHS contains n+ 1 terms so some rearranging of equation (4.5) is required

to separate the n (on RHS) and the n+ 1 (on LHS) terms:

ani  
n+1
i�1 + bni  

n+1
i + cni  

n+1
i+1 = rni (4.6)
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where

ani = �
�tKn

i� 1
2

Cn
i �zi�1�zi

(1��)

bni = 1 + (1��)
�tKn

i� 1
2

Cn
i �zi�1�zi

� (1��)
�tKn

i+ 1
2

Cn
i �zi�zi

cni = �
�tKn

i+ 1
2

Cn
i �zi�zi

(1��)

rni =  ni
�

Cn
i �zi

�
Kn
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2
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 ni+1 �  ni

�zi
� 1

�
�Kn

i� 1
2

�
 ni �  ni�1

�zi
� 1

��

�
�tKn

i+ 1
2

Cn
i �zi

+
�tKn

i� 1
2

Cn
i �zi

This can all be written in matrix form:

A = r

where

A =

0BBBBBB@
b0 c0 0 : : : 0

a1 b1 c1
...

0
. . . . . . . . . 0

... aI�1 bI�1 cI�1

0 : : : 0 aI bI

1CCCCCCA
In (A) above, ai,bi, and ci terms make up the lower, middle and upper

diagonals of A respectively. The vector  holds the  n+1
i variables and r

holds the known variables (at time level n) plus boundary conditions. Since

A is tridiagonal (see above) and jbij > jaij
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lated at the previous iteration step. As the iteration proceeds, F ! 0 as

 n+1;p+1 !  n+1;p. The elements of J are calculated at the p iteration level.

J =

0BBBBBBB@

@F0

@ 0

@F0

@ 1
0 : : : 0

@F1

@ 0

@F1

@ 1

@F1

@ 2

...

0
. . . . . . . . . 0

... @FI�1

@ I�2

@FI�1

@ I�1

@FI�1

@ I

0 : : : 0 @FI

@ I�1

@FI

@ I

1CCCCCCCA
The elements of F are calculated at the n and n+ 1=2; p levels.

Fi =  n+1;p
i � ni +

�t�

C
n+ 1

2
;p

i �zi

�
K
n+ 1

2
;p

i+ 1
2

�
 ni+1 �  ni

�zi
� 1

�
�Kn+ 1

2
;p

i� 1
2

�
 ni �  ni�1

�zi
� 1

��

+
(1��)�t

C
n+ 1

2
;p

i �zi

"
K
n+ 1

2
;p

i+ 1
2

 
 n+1;p
i+1 �  n+1;p

i

�zi
� 1

!
�Kn+ 1

2
;p

i� 1
2

 
 n+1;p
i �  n+1;p

i�1

�zi
� 1

!#
(4.10)

The matrix J is diagonally dominant and hence non-singular, so can be

inverted to solve equation 4.9.

4.2 Moving mesh - velocity based

A moving mesh scheme using a velocity-based approach is also applied to the

vertical soil pro�le. This type of scheme is particularly useful where there

are moving boundaries in the physical system. For the soil environment,

two such cases exist: (i) a moving water table at the bottom boundary, and

(ii) ponded in�ltration at the top boundary. The former can occur in areas

such as ood plains or water meadows where the water table (depth below

soil surface) is largely driven by the river levels nearby. The water table

can therefore uctuate relatively quickly. Ponded in�ltration occurs when

the rate of rainfall is greater than the maximum rate of in�ltration for the
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Figure 4.3: Moving mesh scheme illustrated for the three scenarios described
in the text.
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(4.17) becomes:

dzi
dt

=
1

�

(


 �
K
@ 

@z
� 1

�b
� e

!
�
�
K
@ 

@z
� 1

�zi

+ e

)
(4.18)

where da=dt = 0 and db=dt = 0 since there is no imposed boundary veloc-

ities and e is the prescribed boundary condition at a which is set by the

external atmospheric conditions. For scenario (ii), equation (4.17) becomes:

dzi
dt

=
1

�

(
i

 �
K
@ 

@z
� 1

�b
� e+ �b

@b

@t

!
�
�
K
@ 

@z
� 1

�zi(t)

+ e

)
(4.19)

where @b=@t is the velocity of the top of the moving water table and �b is

the value of � at b. Finally for scenario (iii),

dzi
dt

=
1

�

(
i

 �
K
@ 

@z
� 1

�b
� e� �a

@a

@t

!
�
�
K
@ 

@z
� 1

�zi(t)

+ e+ �a
@a

@t

)
(4.20)

The equations (4.18)-(4.20) show how the mesh points move under the

scenarios (i)-(iii). Discretisation of equation (4.18) (equations (4.19) and

(4.20) are similarly discretised but not shown here) is giv9F1585

zt





5 Solutions to Richards’
equation

This chapter mainly focusses on the performances of the nonlinear itera-

tive Crank Nicolson (CNi) and moving mesh (MM) schemes under various

realistic situations:

(i) moving water table near the soil surface

(ii) in�ltration into dry soil; unsaturated and ponded in�ltration

(iii) in�ltration into layered soil

The above cases represent some of the more challenging areas in soil water

ow with respect to model stability and accuracy. The output from the

other schemes described in the previous chapter give similar results to the

CNi scheme provided suitable timesteps are applied. The Newton Raphson

iteration method is mainly considered here with the Picard method giving

virtually identical results but with more iterations required [10]. The sizes

of timestep chosen here is a compromise between accurate solutions and

e�cient use of computer resource. An hourly timestep is chosen whenever

possible as this gives good diurnal resolution and will generally give good

results in most situations [11]. The size of the timestep used in the following

analysis depends on the level of accuracy calculated.

29
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Figure 5.3: Results from �xed mesh schemes with varying water table for
sandy soils.

Figure 5.4: Results from �xed mesh schemes with varying water table for
clayey soils.
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Figure 5.5: Results from moving mesh scheme with varying water table for
sandy soil.

Figure 5.6: Results from moving mesh scheme with varying water table for
clayey soil.
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Table 5.2: % error values in pro�le water between the schemes.

time(hr) zw (m) % error sand % error clay
10 1:71 1:70 1:50
20 1:07 1:60 1:57
30 0:53 1:40 1:60
40 0:47 1:22 1:49
50 0:94 1:18 1:40
100 0:61 1:50 1:74

Figure 5.7: Results from moving mesh scheme showing mesh points moving
with time.

was calculated for the �xed mesh scheme using the following equation:

water balance = (change in pro�le water +
da

dt
�I + q0 + qI)�t = 0 (5.2)

where qI and q0 are the uxes at the boundaries, and da=dt is the velocity of

the water table. It was found that the LHS of equation (5.2) was of the same

magnitude as the individual terms on the RHS. The �xed scheme in this

case did not seem to conserve � whereas this is inherent in the derivation of

the moving mesh scheme. For the �xed mesh schemes, the treatment of the



5.2. INFILTRATION INTO DRY SOIL 35

lower boundary could be improved. Currently the last mesh point (I) moves

with the water table depth a, so that the spacing between mesh points I

and I + 1 can have values between 0 and �z where �z is the original mesh

spacing (and equal to the spacings between the other mesh points).

5.2 In�ltration into dry soil

Rain falling onto dry soil will produce large gradients of water below the

soil surface. Depending on the intensity of the rain and the type of soil,

either unsaturated or saturated (ponded) ow into the soil will result. A

�ne-textured soil (clays) will have more chance of ponded in�ltration since

this soil typically has a much lower saturated hydraulic conductivity than

coarser sandy soils. If the rainfall rate is greater than the maximum in�l-

tration rate for a particular soil, then saturated or ponded in�ltration will

occur. From a modelling perspective, the top boundary condition will be

a ux or Neumann condition for unsaturated in�ltration and a Dirichlet

condition for ponded ow.

Unsaturated in�ltration
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Figure 5.8: Fixed mesh solutions for in�ltration onto sandy soil.

Figure 5.9: Fixed mesh solutions for in�ltration onto clayey soil.
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respectively with �t given as 3600s for each. Figures 5.8 and 5.9 agree well,

with the moving mesh producing slightly faster rate of water in�ltration.

The number of iterations per timestep as well as the mass balance error is

shown in Figures 5.10 and 5.11. In both �gures, the initial values for these

is high coinciding with initially high moisture gradients. The initially high

values quickly decay to low levels as time progresses so an hourly timestep

could be suitable here, especially for the �ner textured soils. Higher rainfall

rates could pose more of a problem which is shown in the next section for

ponded in�ltration. The results for the MM scheme is given in Figures

Figure 5.10: Iterations per timestep and % error for the �xed mesh scheme
(CNi) for sandy soil.

5.12 and 5.13. These show good similarity with the CNi scheme 1(igh)]TJ 0 -l]TJ 09(of)h
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Figure 5.12: Moving mesh solutions for in�ltration onto sandy soil.

Figure 5.13: Moving mesh solutions for in�ltration onto clayey soil.
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Table 5.3: % error values in pro�le water between schemes.

time(hr)
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Figure 5.15: Fixed mesh solutions for ponded in�ltration onto sandy soil.

Figure 5.16: Fixed mesh solutions for ponded in�ltration onto clayey soil.
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Figure 5.17: Iterations per timestep for the CNi scheme for the sandy soil

Figure 5.18: Iterations per timestep for the CNi scheme for the clayey soil
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Figure 5.19: Moving mesh solution for ponded in�ltration onto sandy soil.

Figure 5.20: Moving mesh solution for ponded in�ltration onto clayey soil.
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Figure 5.21: Moving mesh solution for sandy soil showing position of mesh
points with time.

generally have large discontinuities in value down a layered pro�le. Here a

soil with two contrasting soil layers; clay over sand, initially dry, is subjected

to continuous in�ltration at 20 mm hr�1. The clay over sand soil pro�le

was chosen as this situation can cause the wetting front (under moderate

in�ltration rates) to be held up [14]. This causes the moisture gradient at

the clay/sand boundary to become steeper. Unstable ows can result which

culminate in ’�ngered ows’ through the sand. This greatly enhances the

rate of ow of water further down the pro�le which has implications for

leaching of contaminants into the groundwater [15].

The MM scheme for the whole pro�le would not be useful with a sta-

tionary boundary in the middle of the pro�le. So two types of methods were

investigated here, (i) a �xed mesh is inserted on the whole soil pro�le, and

(ii) a moving mesh was placed on the top soil and a �xed mesh on the bot-

tom soil layer. Figure 5.22 shows the results from the �xed mesh method.
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The mass balance error is calculated by comparing the input of water to the

simulated change in pro�le water content (Table 5.4) which shows after an

initial value of 8:9% decreases quickly. This value remained under 1% for

the remainder of the simulation even when the wetting front passed through

the soil pro�le discontinuity. Figure 5.23 shows results from the second

Table 5.4: % Mass balance error for CNi scheme.

time(hr) % error
1 8:9
2 3:0
3 1:1
4 1:1
5 0:9

Figure 5.22: Fixed mesh solution for in�ltration into layered soil; clayey
over sandy soil. Time in hours listed on right

method which is similar to the CNi only method. A considerably smaller

timestep was required for the second method (30 s compared to 3600 s)
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Figure 5.23: Moving mesh solutions for in�ltration into layered soil; clayey
over sandy soil. Time in hours listed on right

since the MM scheme is explicit. The potential for the MM scheme to be

used at the boundary to improve the treatment of the gradients is inves-

tigated further in the next chapter. As water builds up at the boundary

and the moisute gradient increases, the spacing between the mesh points





6 Investigation into waiting
times

Vertical ow only is considered in the following analysis. It has been found

in practice that water in�ltrating into soil at a ’medium’ rate (a rate su�-

ciently below the maximum rate so gravity forces are not dominating, and

high enough so matric forces are not dominating) can cause unstable ows

at the wetting front. This is common in layered soils where a �ne-textured

soil overlies a coarse-textured one. In this case, the advance of water is

held up at the boundary of these two soil types and after some time breaks

through the boundary in ’�ngers’ of ow. This has also been observed

within coarse-textured soils which are initially dry and then subjected to

water in�ltration. In both cases there is a period of time where the wetting

front is stationary followed by water ow through this point, resulting in

’�ngered’ ow. Water ow in soil is governed by Darcy’s Law:

q = �K
�
@ 

@z
+ 1

�
(6.1)

where the hydraulic conductivity (K) is given here as:

K = Ks

�
�

�s

�n
(6.2)

The relationship between water potential ( ) and water content (�) is given

here as: �
 

 e

�
=

�
�

�s

��b

(6.3)
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where  e, �s, b, and n are constants and n = 2 + 3b. If we now consider

equation (6.1) with � only as the independant variable, using the chain rule

and di�erentiating equation (6.3) with respect to �, equation (6.1) becomes:

q = �(A�n�b�1�z +B�n) (6.4)

where A = �bKs e�
b�n
s and B = Ks�

�n. Hence the Darcy velocity (v) is

given by:

v = �(A(�n�b�1)z +B�n�1) (6.5)

For the purposes of investigating this ’waiting’ behaviour of the wetting

front discussed above, the constants in equation (6.5) are set to unity with

b = 2 giving:

v = �(�5)z � �7 (6.6)

and the initial conditions are given by

� =

�
(1� z)� if z � 1;

0 if z > 1

with � = 1, consistent with the boundary condition. The Darcy velocity

v > 0 for z < 1 and v = 0 at z = 1. From equation (6.6) ,for v to

become greater than zero at z = 1, �z must become in�nite at that point.

Figure 6.1 shows the initial conditions with the equivalent of normalised �

and then at some time T where the gradient has increased by decreasing

�. The behaviour of the v when �z ! 1 is now investigated further by

substituting the initial conditions into equation (6.6) giving:

v = 5�(1� z)5��1 � (1� z)7�: (6.7)

As time advances, the value of � will decrease and at z = 1, there are three

possible outcomes for v depending on the value of �:

1. for 5� < 1, v !1
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Figure 6.1: Gradient at the point x = 1 at t=0 and increasing at time t=T
in response to � decreasing from 1 to 0:3.

2. for 5� > 1, v ! 0

3. for 5� = 1, v is �nite

Hence, when the shape of the wetting front changes, � decreases until case

(3) above is reached when v at z = 1 becomes �nite and moves in the

direction of increasing z.

When solving the problem above numerically using a velocity-based

moving mesh technique, the mesh points are required to move according

to the discrete form of equation (6.8):

@z

@t

����
i

� zn+1
i � zni

�t
=
�5
i+ 1

2

� �5
i� 1

2

zi+ 1
2
� zi� 1

2

� �7
i (6.8)

The value of � at mesh point z = 1 (i = I
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I increases and this is shown in Figure 6.2. The mesh points near point I

decrease with time as shown in Figure 6.3 and this is useful in simulating

the large (in�nite in theory) gradient necessary at point I for velocity to

increase appreciably above zero. The numerical solution does therefore

appear to mimic the analytical analysis above.

Figure 6.2: Moving mesh scheme mimicing the waiting time as predicted
from theory.



53

Figure 6.3: Mesh points position with time. The spacings decrease dramat-
ically near point I as the velocity at I noticeably increases.





7 Conclusions and Future work

7.1 Conclusions



56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

resource available will determine the answer. Except for the ponding in�l-
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by either an empirical approach based on the number of iterations

per timestep or using a mechanistic approach which is based on an

estimate of the truncation error at each timestep [17]. This adap-

tive scheme could be simply added with little internal change to CNi

scheme.

(ii) An existing study on the Oxfordshire oodplains (joint project by the

University of Reading and CEH Wallingford) has as one of its ob-

jectives to develop a combined soil water and heat ow model which

is to interface with an existing above-ground water and energy bal-

ance model. The work done here to implement a robust implicit �nite

di�erence scheme for solving Richards’ equation could be further ad-
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