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Abstract

An adaptive method based on recursive subdivision of unstructured elements
for the solution of conservation laws is presented. The refinement of cells is
based on regular subdivision into four children as indicated by a gradient-
detector and is carried out “Just-In-Time” before the actual computation on
that element takes place. In addition to spatial refinement, temporal refine-
ment is carried out in conjunction with “lock-step” time-stepping to guaran-
tee the availability of the proper states at the correct times across the mesh
on all scales. The approach uses standard slope-limited finite volume meth-
ods of MUSCL-Hancock type with slight modifications to cater for different
levels of subdivision in adjacent elements. We present some background to
AMR and the finite volume framework, the algorithm itself and conclude
with numerical examples of linear and non-linear scalar conservation laws in
two dimensions.
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Chapter 1

Introduction

This paper describes an adaptive finite volume scheme for computing solu-
tions to hyperbolic conservation laws on unstructured (triangular) meshes
in two dimensions. Solutions to this class of problems have a number of
features which distinguish them from other types of partial differential equa-
tions (PDEs) — for example elliptic problems. Hyperbolic PDEs often fea-
ture shocks and other forms of non-stationary discontinuities in some parts of
their domain, whereas other regions are very smooth and easily discretised.



consequentially Lou et al.’s [13]) somewhere in the middle.
By contrast, the method we describe leans very much towards the dy-

namic end of the imaginary scale and even modifies the mesh geometry
during the computational phase. Thus, the distinction between adaption
/ refinement and traditional computation is no longer given — we refer to
this refinement strategy as “Just-In-Time”1. Furthermore, the whole domain
is (at least conceptually) covered by a single mesh instead of multiple overlaid
meshes at differing resolutions.



Chapter 2

Background

2.1 Adaptive Mesh Refinement

2.1.1 Philosophy

Recently, methods incorporating adaptive mesh refinement (AMR) have be-
come recognised as a reliable and efficient means to compute numerical so-
lutions to large-scale problems involving (non-linear) hyperbolic partial dif-
ferential equations. The main idea behind AMR is to concentrate the com-
putational effort where it is needed most — e.g. using a high resolution near
“interesting” features of the solution and a lower resolution for its smooth
regions.

This is somewhat analogous to using mesh generation for steady-state
problems (most often in conjunction with finite elements). The better the
mesh is adapted to the geometry and features of the problem, the more



2.1.2 Implementations

Most implementations of adaptive mesh refinement (e.g. [6] or [18]) are based
on the very general approach developed by Berger and Oliger [4]. Their
algorithm works on recursively embedded regular cartesian grids, although
some restrictions apply as to how this embedding can be done; usually rotated
grids with half the step-size are used.

The outline of their algorithm is as follows (see Figure 2.1 for an illustra-
tion):

1. Calculate the solution on the current grid.

2. Estimate the error for all points in the current grid and mark the ones
that exceed a predefined threshold. Also check that the resolution of
the current mesh is still needed.

3. Cluster the flagged points into new grids such that the unnecessarily
refined area is kept to a minimum — but without creating too many



2.1.3 Consequences

From the previous description of the algorithm, we can make a out a few
problematic consequences of those above steps, which will be relevant in the
later comparison of our approach.

2.1.3.1 “Buffer Zones”

Unless error-estimation and the subsequent refinement are carried out every
time-step on every grid, the clustering algorithm needs to leave a “buffer
zone” around every refined grid as some solution features — which are only
properly resolved on the fine mesh — may move out of the refined region
in between those time-steps. The optimal size of this zone depends on the
problem and is difficult to estimate a priori.

If this “buffer zone” is small, only few points are unnecessarily refined
— thus making the computation of the solution on the refined mesh more
efficient — but the expensive regridding step has to be done more often to
catch any features leaving the high-resolution mesh. If on the other hand the
“buffer zone” is large, then the computation can become the bottleneck as
too many points are refined speculatively. But that in turn makes it possible
to do the regridding less often.

2.1.3.2 Clustering

The process of taking a point cloud and grouping these efficiently — accord-





The following sections gives a brief overview of finite volume methods
and is partly based on the material from [17]. For simplicity, u is treated as
a scalar quantity but the key points of the discussion hold true for the case
of u being a vector quantity as well. The biggest difference lies in how the
solution to the Riemann-problem is computed (see for example van Leer [10]
or Roe [15]).

2.2.1 Derivation

Consider the following two-dimensional homogeneous conservation law:

∂

∂t
u(x, y, t) +

∂

∂x
f(u(x, y, t)) +

∂

∂y
g(u(x, y, t)) = 0. (2.1)

If we now proceed to integrate Equation 2.1 over the discrete volume Ω with
boundary



1.
N⋃

j=0



A

B

Figure 2.3: Conventions for the flux computation across edge AB (as seen
from the shaded element).

the numerical flux is at the mid-point of each edge as that guarantees that
Equation 2.3 holds true.

For example, the standard upwind flux — which is the one used by our
implementation — across edge AB (as shown in Figure 2.3) takes the form

~f ∗
AB · ~nAB =

~fAB(uL) · ~nAB if ~λAB · ~nAB ≥ 0

~fAB(uR) · ~nAB otherwise
(2.4)

for the locally frozen wave-speed

~λAB =


~f(uR)− ~f(u



Nonetheless they can be dealt with in exactly the same manner as for non-
adaptive methods, see for example van Leer [10] or LeVeque [12] for good
discussions of the problem.

2.2.5 Higher-Order Accuracy

Much effort has been invested to achieve better than first-order accuracy with
finite volume methods. The first hurdle is Godunov’s Theorem, which states
that non-oscillatory constant coefficient schemes can be at most first-order
accurate. This has been overcome by the introduction of non-linear schemes
such as MUSCL, ENO or Flux Corrected Transport (FCT).

One of the more popular ones is van Leer’s MUSCL [9] approach, which
stands for “Monotonic Upstream-Centered Scheme for Conservation Laws”.
It belongs to the class of Godunov-type methods, a class of non-oscillatory
finite volume schemes that incorporate the (exact or approximate) solution
to Riemann’s initial-value problem (or a generalisation thereof). Instead of



Equation 2.6 is satisfied if u′ is of the form

u′ = u + ~r · ~L

for ~r being a vector from the centroid of Ωj and a gradient operator ~L. Most
approaches follow Batten et al.’s [3] recommendation to construct a gradient
plane through three nearby centroids A, B and C with normal vector

~n = (PA − PB) × (PC − PB), with Pi =

 xi

yi

ui


and the subsequent gradient operator

~∇(4ABC) =



[
−nx / nu

−ny / nu

]
if nu > ε[

0

0

]
otherwise

. (2.7)

A

B

C
0

Figure 2.5: Naming Convention for the Limiting Procedure.

The gradient operator defined by Equation 2.7 is not yet limited and as





2. Set
~LMLG = ~Li such that |~Li| = max

0≤k≤3
|~Lk|.

From this formulation, it is easy to see that the MLG-limiter is slightly
more than four times as expensive as the LCD-limiter.

2.2.5.3 Projected LCD (PLCD)

The most recent of the three limiters which have been applied in the con-
text of this paper is Hubbard’s [7] Projected LCD-limiter, which relies on
the construction of the “Maximum Principle” (MP) region. This region is
created from a set of inequalities — precisely one for each edge of the ele-
ment — around the centroid of the cell. All points lying within this region
satify the local maximum principle which in turn guarantees that no over-
or undershoots can occur in the linear reconstruction.

1. Construct the unlimited gradient operator

~L = ~∇(4ABC).

2. If ~L does not need to be limited, set

~LPLCD = ~L.

3. Otherwise construct the MP region defined by

min(uk, u0) ≤ u0 + ~r0k · ~L ≤ max(uk, u0)

⇔ min(uk − u0, 0) ≤ ~r0k · ~L ≤ max(uk − u0, 0)

for each edge k, and

4. Project ~L onto the closest point of the MP region so that

~LPLCD = proj
MP

(~L).

Although the numerical construction of the MP region is not as expen-
sive in terms of operation count, it is certainly more complicated than pro-
gramming the MLG-limiter, which is nearly trivial if built onto a working
implementation of the LCD-limiter.
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Chapter 3

Using Subdivision for
Refinement

The proposed algorithm is based on an ordinary unstructured low-resolution
mesh which we will refer to as the “top-level” or “base” mesh. Such meshes
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for all edges of the element.
This serves as a reminder that refinement is a necessary step of the algo-

rithm (to maintain accuracy) whereas derefinement is an optional step. This
becomes an important consideration when dealing with implicit subdivisions
in Section 3.4.4.

3.4 The Algorithm

This section describes the steps carried out for an adaptive computation
using our subdivision method. This process is governed by three user-defined
parameters (in addition to the other problem-dependent data such as the
mesh, the top-level time-step ∆T , the particular fluxes used — which in
turn describe the equation to be solved, and so on):

1. εr — The sensitivity of the gradient detector to refinement.

2. εd — The insensitivity of the gradient detector for derefinement.

3. N — The maximum level of subdivision carried out on the mesh.

Because we do not want to unnecessarily refine and derefine the same
elements over and over again, it is a requirement that εr is strictly less than
εd. As a rough guideline εd ≈ 2εr.

3.4.1 Set-Up

These tasks are only executed once before the computational loop and as
such are not quite as sensitive to optimisation as some of the other steps
that are carried out thousands of times for each time-step.

3.4.1.1 Top-Level Mesh

The first requirement is a top-level mesh on which the subsequent adaptive
mesh refinement can be carried out. This base mesh is never modified (al-
though it “acquires” many children) and its vertices never move. This mesh



same time-step. In spite of all adaptivity, the base mesh also has to provide
enough initial resolution so that that the gradient detector will be able to
properly estimate where the mesh — due to the initial conditions — needs
subdivision.

3.4.1.2 Initial Conditions

The next step is to populate this mesh with initial conditions. These are
given as a function of x and y in the form u(x, y, 0). As the values within
each cell are area / volume averages, they cannot simply be sampled at the
centroid of the cell. To compute these volume averages analytically, one
would have calculate the area under an arbitrary triangular element placed
on top of the initial conditions. This is far from impossible but very much
dependent on the shape and storage of the initial data.

To facilitate conditions of a more general nature, we have adopted a
stochastic approach which samples the initial conditions at a fixed number
of (pseudo-)random points within the triangle and then averages these sam-
ples to give an estimate of the proper average. The points in the triangle
are generated in barycentric coordinates to guarantee a normal distribution
as presented by Turk [19] while the pseudo-random number sequences are



During the subdivision process the proper nesting has to be enforced so
that neighbours in the computational mesh will only differ by at most one
level of subdivision. This necessitates what we call implicit subdivisions (see
Section 3.4.4) which come from nesting rather than computational accuracy
requirements (i.e. the gradient detector).

Figure 3.3: A low-resolution base mesh and the same mesh adapted to the
initial condition of the rotating slotted cylinder problem with 5 levels of
subdivision.

3.4.2 Advancing Time





resolution — and thus might be updated at a different frequency than the
current cell.



Thus we need to (at least) halve the time-step for each additional level of
refinement, i.e.

∆t(M) = 2−M∆T,

where ∆T is the time-step used on the top-level mesh.
The formulation of Equation 3.2 implies that for the update of a par-

ticular cell one needs to access the states in the neighbouring cells. These
neighbouring cells — due to our nesting requirement — may be of a higher
(by one level), lower (again by one level) or of the same resolution. The
time-stepping of each level therefore has to be done with great care so that
the neighbouring elements from an adjacent level are also evolved to the
proper point in time. We refer to this as “lock-step” time-stepping and its
pyramid-structure is depicted in Figure 3.5.

level
��

time //

0.0
/.-,()*+1

// 1.0

0.0
��

OO



subdivision. We keep a list for each level of refinement that contains the
triangles of that level of subdivision. This allows us to efficiently iterate over
all the elements in a level without having to traverse the whole quad-tree
data structure. These lists are incrementally updated to reflect promotions
across levels as more and more elements are subdivided. The only time the
lists are reconstructed from scratch is after a derefinement operation has been
completed.

The only obstacle to the direct application of Equation 3.2 is the possibly
different resolution of the neighbours used for the numerical fluxes. The three
possibilities are depicted schematically in Figure 3.6.

a) b) c)

Figure 3.6: Flux Computation for a) a neighbour of the same resolution,
b) neighbours of higher resolution and c) a neighbour of lower resolution.
No other cases can occur because of the nesting requirement which does not
allow the level of subdivision of neighbours to differ by more than one.

3.4.3.1 Edge Fluxes

a) This is the only trivial case as it is identical to the application of a
finite volume scheme on a regular unstructured mesh. Therefore one
can directly compute the flux through edge k of element 0 as

~f ∗
k (u

n+1/2
0 + ~r0k · ~Ln

0 , u
n+1/2
k + ~rk0 · ~Ln

k) · ~nk. (3.4)

b) The second case is treated as if edge k were two edges, k1 and k2, with
half the original length each. In Figure 3.6b, k1 would separate states
uL and uR1 whereas k2 would separate uL and uR2. This of course makes
changes to the limiting procedure necessary as the gradient operator
L0 is not evaluated at r0k (the midpoint of edge k) anymore but rather
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at r0k1 and r0k2 . The numerical flux can then be written as

~f ∗
k1

(u
n+1/2
0 + ~r0k1 · ~Ln

0 , u
n+1/2
k + ~rk10 · ~Ln

k1
) · ~nk1

+ ~f ∗
k2

(u
n+1/2
0 + ~r0k2 · ~Ln

0 , u
n+1/2
k + ~rk20 · ~Ln

k2
) · ~nk2 .

(3.5)

Because these fluxes are written in terms of the “new” normal vectors
nk1 and nk2 , no averaging has to be done because the normal vectors
are scaled by the length of the respective interface.

c) This situation is in some sense the inverse of case b) and as such,
special care has to be taken while constructing and limiting the gradient
operator Lk



resolution) “buffer zones” to cope with events until the next remeshing step
takes place.

3.4.3.2 Changes to Gradient Operators

As alluded to in the previous section, the gradient operators need to be
modified so that the points where the fluxes are computed — which are not
restricted to the midpoint of the edges anymore — are properly limited.
These changes are two-fold. On the one hand, it is necessary to decide how
the unlimited gradient operator is constructed, given that there may be more
than three neighbouring states. And on the other hand, we need to make
sure that these are properly limited at the points where they are evaluated.

The only difficulty in the construction of the unlimited gradient operator
~∇(4ABC) occurs when any of the neighbours have a higher resolution than



a) b)

Figure 3.7: a) An accuracy based subdivision becomes necessary for the cur-
rent (shaded) triangle at the indicated edge and b) makes an implicit subdi-
vision (1) necessary which has to be completed before the original refinement
(2) can take place.

2. Allocate space for the children and generate their vertices.

3. Compute the states in the children. This is done by evaluating the
usual gradient operator of the parent at the children’s centroids. This
ensures proper conservation and retains more information than simply
duplicating the constant parent state to all children. As the gradient
operator is not necessarily correctly limited at the children’s centroids
this may cause under- or overshoots to appear. But these violations
of the maximum principle are unlikely in practice as the children’s
centroids are rather close to the parent’s centroid and therefore only
incur small changes from the constant state.

4. Lastly, compute (in the case of the newly generated children) or update
(for all neighbours of the parent) the connectivity information so that
all neighbour-pointers now refer to the more finely resolved children
instead of their parent.

After this process is completed, the parent effectively becomes dormant as
no more computations are carried out on it; it is only needed in the hierarchy
to provide information about its children.

It is essential that Step 1 takes place first so that all the implicit subdivi-
sions take place before the real ones. If, for example, the normal subdivision
labelled (2) in Figure 3.7 were to be executed first, then the mesh would end
up in an invalid state because the refinement levels of two adjacent triangles
would differ by two.
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Chapter 4

Results

To verify the validity of our approach, the proposed adaptive scheme has been
implemented in the C++ programming language, whose object-oriented ap-
proach seems to be favoured by many implementations of AMR (for example
Hornung and Trangenstein [6]) over the more traditional FORTRAN. The code
used to obtain these results allows for arbitrary unstructured meshes with
no-flux or periodic boundary conditions. The problem specification and the
associated fluxes are kept separate from the algorithm in order to facilitate
its use for different types of computations.

The computation of errors in the L1 norm against known solutions is
somewhat problematic on unstructured meshes. The approach we have
adopted is to interpolate from the irregular AMR mesh to a regularly spaced
grid and compute the norm from there. This introduces an additional inter-
polation error to those estimates; but as the size of the regular mesh increases,
the interpolation error tends to 0. On a regular grid with N points we thus
compute the L1 error as

1

N

∑
i,j

|ui,j − uexact(xi, yj)|.

4.1 Linear Advection

Problems of this type are rarely solved in practice as the analytic solution is
known for most advection profiles. Nevertheless, they are a valuable and well-
understood tool used for testing and comparing different numerical schemes.
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4.1.1 Estimating Order of Accuracy

A similar set-up to Batten et al. [3] has been used to estimate the order of
accuracy of our scheme. The estimate is computed by solving

ut + ux + uy = 0

(i.e. linear advection with wave-speed (1, 1)T) with the initial data

u(x, y, 0) = sin(2πx) sin(2πy).

on a mesh consisting of right-angle triangles on the region [0, 1] × [0, 1] with
different levels of refinement and then comparing the respective L1-errors.

The given problem is not well-suited to adaptive computation



The contour plots in Figure 4.2 and 4.3 support the L1-results. Both the
MLG- and the LCD-limited solutions exhibit grid based distortion, although
it is far less pronounced with the MLG-limiter. The PLCD-limiter does very
well — the peaks have nearly the same magnitude as the highly compressive
MLG-scheme and no distortion is evident. This matches the observations
made by Batten et al. [3] and Hubbard [7].

0.2 0.4 0.6 0.8
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Figure 4.2: Contours of the exact (left) double sine wave function and the
MLG-solution. The MLG-solution shows a directional bias which leads to a
subtle distortion in the lower-left quadrants vs the upper-right ones.

0.2 0.4 0.6 0.8

Figure 4.3: Contours of the PLCD-solution (left) and the LCD-solution. Note
the smooth profile of the PLCD-limiter in contrast to the heavily distorted
LCD-solution.

34



4.1.2 Rotating Slotted Cylinder

Zalesak [21] first presented the slotted cylinder in 1979 and it is regarded as
one of the hardest benchmarks for advection schemes. The version used here
is scaled and shifted but otherwise identical. The problem is to solve

ut +

(
y − 1

2

)
ux −

(
x − 1

2

)
uy = 0 (4.1)

with initial condition

u(x, y, 0) =

{
1 if r > 0.15 ∨ (|x − 0.5| ≤ 0.025 ∧ y − 0.5 ≤ 0.1)

0 otherwise

for r =
√

(x − 0.5)2 + (y − 0.5)2. Equation 4.1 describes a clock-wise rota-
tion of the whole region about the point (0.5, 0.5)T. A whole revolution of
the region is completed at t = π so that the solution is periodic with period
π. This also means that the exact solution at t = π is equal to the initial
data.

The problem is solved in the region [0, 1] × [0, 1] with no-flux boundary
conditions on a top-level mesh with 48 equilateral triangles as seen in Figure
3.3. The time-step used is ∆t = 0.05 which upon initial observation is
outside the stability-region defined by Equation 3.3. This is no cause for
concern though as the advection-vector can safely be set to ~0 for r ≥ 0.3
where u(x, y, t) is identically zero. This extends the stable region to ∆t ≤
0.063927. For the results in Figure 4.4 a refinement threshold of εr = 0.025
and a derefinement limit of εd = 0.05 were used in conjunction with five
levels of refinement.

4.1.2.1 Quality of Solution

As one can see from the L1-errors in Figure 4.4 the limiters play a crucial
role: All of them1 limit correctly across the adaptive mesh; no oscillations
are present in the solution, which would certainly not be the case with more
traditional second order methods used on regular grids such as Lax-Wendroff,
Warming & Beam or — to a lesser extent — Fromm. If the limiting is re-
moved for any of the linear reconstructions then the solution grows unbound-
edly within a single top-level time-step due to the sharp discontinuities in
the initial data.



Figure 4.4: Graphs of the “Rotating Slotted Cylinder” problem at



From the first-order scheme to the MLG-operator each successive limiter
halves the error in this example, resulting in a ten times more accurate
solution with the MLG limiter than the first-order scheme. This stresses
the importance of a good reconstruction- / limiting-procedure over “raw”
resolution. Nevertheless, the MLG-limiter seems to introduce a very slight
distortion to the top-right of the slot and to the bottom-right “tip”. This
minuscule distortion is also evident in higher-resolution computations with
further subdivisions.

The Projected LCD-slope is slightly more diffusive than the Maximum
Limited Gradient — the edges of the “discontinuity” are now spread out over
four of the most-refined triangles in contrast to three on the MLG-limited
computation. But the projected limiter is less susceptible to grid based
distortion as the solution looks perfectly symmetric.

The widely used Limited Central Difference-approach is even more dif-
fusive but it manages preserves most of the original shape — although the
top of the cylinder is now smoothly rounded instead of flat and the slot is
beginning to close (or at least rise).

The solution produced by the first-order scheme is nearly unrecognisable.
It is not immediately apparent which side of the cylinder had the slot em-
bedded in it and which had not. Many triangles are refined due to the overly
diffusive nature of the method.

4.1.2.2 Impact of Limiters

But accuracy is not the only reason for which it is important to choose a
good reconstruction- / limiting-scheme. The compressiveness of the limiter
directly influences the cost of the adaptive computation. If the scheme used
is too dispersive, the discontinuities get spread out over a larger area which
then needs more refined triangles.

This is very well illustrated by Figure 4.5 which depicts the cost of each
top-level time-step (similar to the measure defined in Section 4.2.1 but only
for a single top-level time-step instead of the whole computation). The cost
for the Maximum Limited Gradient-limiter stays nearly constant during the
whole computation, which means that the information in the solution is well
retained and that the derefinement removes about as many “old” elements
as new ones are being refined.

The PLCD-solution is not quite as efficient as it causes slightly more
elements to be subdivided at a an additional cost of about 28% for each
time-step near the end of the computation. The number of elements only
seems to increase at a very low rate however.

Both the first-order upwind update and the LCD-scheme are not a very
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Figure 4.5: The workload / cost per top-level time-step during the 5-level
solution of the rotating slotted cylinder.

good choice for adaptive computations in general and problems that contain
discontinuities in particular. The use of the first-order method makes the
whole computation (i.e. the area under the respective graph) more than
twice as expensive as with the most compressive limiter. Nonetheless, they
are an important foundation on which to formulate more accurate methods
— the MLG-operator for example uses the steepest of four different LCD-
gradients.

Taken together, this implies that — particularly in the context of adaptive
methods — a more expensive but less diffusive limiter may well offset the
higher cost of its construction during a whole computation. If one takes the
cost of the computation of the Limited Central Difference as a base-line, then
the MLG-operator is slightly more than four times as expensive to construct
while the PLCD-limiter needs about two to three times as much. We have
found it essential to cache limited gradient-operators for each triangle to
avoid their recomputation as they are needed at least four times — once for
the computation in the current triangle and then once for each neighbour’s
computation.



meshes or solve existing problems with higher accuracy. It is an important





solution on there. The adaptive computation has to be used as the “baseline-
cost” to compare against because it is hard to predict the cost a priori due
to the variable number of cells.

4.2.1 Estimating Cost

The cost of the AMR computation is defined to be

CAMR =

⌈
T

∆t

⌉
·
∑

all tris

2M

where T is the final time and M represents the level of subdivision of each
triangle. For this particular example, T = π and ∆t = 0.063927 so that
CAMR



4.2.2 Resulting Errors

Using Equation 4.6 to estimate an equal cost fixed mesh gives Ne ≈ 6700.
This number of elements has a cost of 4909548 ticks due to the various
approximations used. The actual number of elements has consequently been
fixed at Ne = 5376 for which CFXD = 3404863 ticks with a time-step of
∆t = 0.00496.
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Figure 4.7: Magnification of the results of the AMR and fixed mesh compu-
tations at t = π for approximately equal cost.

The adaptive computation has an L1 error of 0.0043 whereas the fixed
mesh results in an L1 error of 0.0158. This means that the AMR method is
nearly four times more accurate (according to the L1 norm) for this particular
problem and for a similar amount of computational resources consumed. The
comparison is not entirely on equal grounds though as the cost of subdivisions
and derefinement are ignored for the AMR scheme. These are not particularly
large but hard to quantify in terms of the above-mentioned cost-metric and
have thus been omitted.

4.3 Nonlinear Problems

The solution of nonlinear hyperbolic partial differential equations is probably
one of the largest application areas for finite volume methods.
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4.3.1 Burger’s Equation

The numerical solution of Burger’s equation is considerably more difficult
than the previous advection problems. Suddenly, one is confronted with
shocks appearing and disappearing, smooth initial data turning into discon-
tinuities and other difficulties. But it is also these features that make the
presented adaptive method worthwhile.

The inviscid Burger’s equation in two dimensions is defined as

ut + uux + uuy = 0 (4.7)

which implies that

f(u) = g(u) =
1

2
u2

when Equation 4.7 is written as

ut + f(u)x + g(u)y = 0

to match the definition of a conservation law in Equation 2.1.
The method itself stays exactly the same compared to earlier applications

— the only thing that needs to be adapted is the numerical fluxes in the prob-
lem description. These need to be defined carefully to ensure conservation
and thus correct shock speeds.

Equation 4.7 is solved on the region [0, 1] × [0, 1] with ∆t = 0.05 on the
previously used equilateral triangle mesh with five levels of subdivision and
the initial data

u(x, y, 0) =


1
2

if x < 1
2

and y < 1
2

−1
2

if x > 1
2

and y > 1
2

1
4

otherwise

. (4.8)

This is the same initial data as used by Berger and Oliger [4], although
we apply different — namely periodic — boundary conditions. Also, the
properly limited schemes implemented do not need numerical work-arounds
such as adding artificial viscosity to dampen oscillations that were employed
by them.

Due to the different boundary conditions used, no analytic solution to
compare against was available. Much progress has been made in recent
years in the classification and analytic solution of two-dimensional Riemann-
problems (for example Wagner’s paper [20]), but work remains to be done
until those solutions are easier to construct. In this particular example it
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was possible to verify that the general shape of the solution is correct. The
shocks and expansion-waves also seem to move with the correct speeds from
previous experience in the one-dimensional case.

As seen in Figure 4.8, the adaptive scheme with the MLG-operator gives
very good resolution of shock-fronts and chooses appropriate resolutions for
features at all levels: constant states use very little computational resources
as one would expect and expansion-wave gradients are properly resolved with-
out being overly fine. The other limiters (not shown) do surprisingly well
considering the difficult nature of the problem, although the expansion fans
seem to be slightly elongated when using the first-order scheme and (to a
lesser degree) the LCD-limiter. The stronger dispersion in those limiters is
the most likely cause for that.
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Figure 4.9: The workload / cost per top-level time-step during the 5-level
solution of Burger’s equation. The whole computation took less than 30
seconds on the author’s machine for the MLG-case.

The “adaptive” cost advantage shows up in a slightly different form. The
initial data given in Equation 4.8 has four plateaus separated by disconti-
nuities. The final solution at t = 2 only contains two distinct states and
therefore contains much fewer highly refined edges where those states meet.

From the computing cost displayed in Figure 4.9 it is immediately appar-
ent that the computation speeds up drastically towards the end. The time
needed per time-step near the end of the computation is reduced to nearly a
quarter of the time used during its early phase. This results in a noticeable
shortening of the computation-time after the 50%-mark. The different lim-
iters have a comparable cost to before; although there is not much separating
the MLG-operator from the PLCD-gradient this time around.
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In regard to the solution of this problem, Berger and Oliger [4] have re-
marked that “this problem is a hard test for mesh refinement because such a
large fraction of the region is refined.” Due the ability of our subdivision-
based refinement to allow for locally higher resolution without affecting the
rest of the mesh (other than through implicit subdivisions of course), a weak-
ness of traditional adaptive mesh refinement has been turned into an advan-
tage.
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Chapter 5

Conclusions

An adaptive algorithm for the efficient solution of hyperbolic conservation
laws on unstructured meshes has been introduced. The proposed scheme
is formulated in terms of standard finite volume methods on triangular el-
ements, although some extensions have been made to allow for inter-level
updates with those methods which involve polygons with more than three
edges. The simple quad-tree data-structure is essential to the performance of
the algorithm as it facilitates the atomic operations such as subdivision into
four children, derefinement and neighbour queries on which the method relies.
It also restricts neighbouring triangles to have a refinement-difference of at
most one level which ensures that there are no abrupt changes in resolution.
Another advantage of using subdivision of elements is that no monitoring
or adjustment of individual element’s anisotropy is necessary if the original
top-level mesh is well-formed (e.g. a Delaunay triangulation). Furthermore,
the introduction of “Just-In-Time” refinement makes it possible to defer any
decisions about the resolution at which computations are to be done until
they are actually about to happen. This is achieved by very fine-grained
adaptivity: The “adaptiveness” of the scheme is not something that is done
every now and then between traditional computations — it is an integral
part of the algorithm.

The mesh refinement method was implemented in two dimensions with
a variety of [9] slope-limiters and has been successfully used to solve both
traditional linear problems as well as non-linear ones. These numerical ex-
periments have shown the superior efficiency of the scheme compared to
computations on fixed meshes. They have also demonstrated the necessity of
high-quality finite volume methods of at least second order accuracy for ef-



the diffusive behaviour of any scheme is lessened by the use of our method
compared to fixed mesh computations. We have found Batten et al.’s [3]
Maximum Limited Gradient to be very good at resolving discontinuities or
shock fronts — although it is not immune to mesh distortion — and Hub-
bard’s [7] Projected LCD-operator excels on continuous problems and shows
no dependency on the underlying mesh geometry.

5.1 Further Work

There are quite a few distinct areas which may prompt further research.
Foremost would be the extension to non-linear systems of equations — for
example using Roe’s approximate Riemann-solver [15] in conjunction with
the proper averages. There are already quite a few reformulations of “pop-
ular” PDEs into conservation form for genuinely higher-dimensional finite
volume methods on unstructured grids, [7] for example shows how they can
be applied to the Shallow Water equations. This should be fairly straight-
forward to do as our adaptive method does rely on largely unmodified finite
volume schemes.

The extension of the scheme to three dimensions is another interesting
subject, although we do not foresee any new topological difficulties in the
process. The main changes would be to replace triangles with tetrahedra
and to modify the subdivision and data-structures accordingly.

It may very well be worthwhile to replace our rather crude threshold-based
gradient detector with something more sophisticated as the linear reconstruc-
tion of the second-order schemes allows us to compute accurate solutions for
linear data without the need for much refinement. The work of Barth and
Larson [2] on error estimates for finite volume methods may be relevant in
that regard.

The behaviour of different gradient-operators for particular types of data
prompts the question whether it may be appropriate to use different operators
at different levels of refinement or for exceeding different thresholds in the
gradient-detector. One could for example apply the PLCD-limiter on the
children of a triangle if the refinement was a “close call” (i.e. relatively
smooth states) and use the MLG-operator if the region was determined to
contain discontinuities — while still maintaining proper conservation.
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