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Abstract

A numerical algorithm for constructing a state feedback for a controllable sta-
ble linear system is presented and tested. Main attention is given to maximizing
the distance to instability such that the system remains stable. Two methods
are considered, namely robust eigenstructure assignment and singular value as-
signment. Examples are looked at to illustrate the theoretical results discussed.
A comparison between these two methods is considered and conclusions drawn

from the numerical results.
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Not tion

Symbols Meaning

A e R state matrix

B e R input matrix

C e Rr*n output matrix

K e Rm™*" state feedback matrix

F e rrx» output feedback matrix

X e R matrix of eigenvectors

N null space

U the set of unstable matrices
A+BK € R*» state closed loop matrix
A+4+BFC € R output closed loop matrix

A e R diagonal matrix of eigenvalues ()
x € Rt state vector

u e Rmxd control vector

y € Rp<! output vector

v € Rmx! input vector

A (%) jth eigenvalues of *

ra(X) condition number of X

o: (%) ith largest singular value of *
T min(¥) minimum singular value of *
Tmaz(™) maximum singular value of *
| || the 2-norm of *



The aim of this project is to construct a numerical algorithm for finding a state
feedback, for a linear time-invariant control system, which will increase the dis-
tance to instability and keep the eigenvalues stable.

Before we consider this work in more detail, it is necessary to give some basic
definitions.

A control system may be defined as an arrangement of physical components

connected or related in such a manner as to command or regulate itself or another



the room. For example, changes in the outside temperature or the opening and
closing of doors. A closed loop system is one in which the control action depends
on the output in some way. The use of thermostats in order to control the heating
system of a room or a house is a well known example of a closed loop system.

Both of these systems are given in the following figures.

Controlling Inputs Outputs
. System |~
Device

Figure 1.1: An open loop system

Reference Inputs

Controlling Inputs Outputs
. System
Device

Feedback

Figure 1.2: A closed loop system

In practical control problems, analysis starts with the formulation of a mathe-
matical model of the physical system under investigation. This is done in chapter
2, and there the problem is formulated and the conditions given for the system

to be controllable and observable.



In chapter 3 we look at the method of eigenstructure assignment. This method
is used most commonly and is known to produce good results. In this method
we are given a set of eigenvalues that we wish to assign and a feedback is sought
that will assign these eigenvalues to our system. A numerical algorithm is given
for finding a state feedback. Some examples are also given of finding a state
feedback. It is known that if we assign the eigenvalues robustly we get a good
distance to instability.

In chapter 4 we consider the method of singular value assignment. Here we
have some fixed singular values and we wish to assign the remaining singular
values. A numerical algorithm is given with some examples. In this chapter we
look at finding a state feedback, since algorithms are available that assign singular
values in this case. The area of finding an output feedback is not discussed as it
is a recent area of research. It is not known what happens to the eigenvalues if
we try to increase our distance to instability.

In chapter 5 we look at the distance to instability. A definition is given as well
as some theory. We see that the distance to instability depends on the minimum
singular value and so the method of singular value assignment would be a good
way of increasing this singular value.

In chapter 6 the numerical algorithm for increasing the distance to instability
is discussed. We look at some examples where we use this algorithm. We then use
robust eigenstructure assignment to find a state feedback and compare whether

this method give a better distance to instability than the algorithm discussed.
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Figure 2.1 shows a simple closed loop feedback control system which is em-
ployed in order to achieve or maintain a prescribed behaviour (ie stability). The
controller examines the difference between the output of the process and the in-
put and so employs a function to control the system. The equations describing

the system in Figure 2.1 are

&‘&

—A ()+B () (2.1)

where,

nx1 is the system state vector,

mx1 s the system input vector,

PX1 s the system output vector,

A "X s the state matrix,
B "X s the input matrix,
C PX7 ig the output matrix.

Both the matrices B and C are assumed to be of full rank. If A, B and C are

constant then our system is known to be ; otherwise it is

Additionally we have the feedback

where,

F "XP is the constant gain matrix and

" is a reference input.



Then equation (2.1) becomes :

mxXn












We have now looked at conditions that are needed for a system to have either
a controller or an observer, that is, the system to be completely controllable
or completely observable. In the next chapter we define the problem for pole

assignment and singular value assignment.

2.4 Motivation for Pole and Singular Value As-

signment

Now we look at the motivation behind pole assignment and we examine the use
of a feedback in a particular way to achieve some property. A general time-

continuous system can be described by the differential problem

dx

where the matrix A is of dimension n x n and is constant.

Equation (2.9) has the following solution:
x(1) = exp(At)xg (2.10)
If we expand the exponential term and take norms, we have

lexp(AD[I< 330 eap( Re(A)1)| Zis] (2.11)

k=1j=1
where,
Re(Ar) denotes the real part of the eigenvalues of A,
q is the number of distinct eigenvalues,

ay, 1s the order of the largest Jordan block associated with the eigenvalues of A
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plan to use will assign eigenvalues or poles to precise locations and is commonly
known as pole placement. So the motivation behind pole assignment is to find
a feedback matrix which makes the system stable by moving the eigenvalues to
new locations.

We now look at the motivation behind singular value assignment. It is as-
sumed that we have a stable matrix A in the sense that all the eigenvalues of A
have negative real parts. We consider the set of matrices & which have at least

one eigenvalue on the imaginary axis and so are unstable. Then the distance from

A to set U is defined to be:
B(A)= min [|E|[|A+ E e U]
EeC’ﬂX’ﬂ

This is a measure of how nearly unstable’ is the stable matrix A (ie the distance
to instability). So we need to find a feedback such that we maximise the distance
between our closed loop matrix and the set of the set of unstable matrices. In a
later chapter we see that the distance to instability is related to singular values
and so the motivation behind singular value assignment is that we wish to find a
feedback such the distance to instability is as large as possible. More details on
how this is done will be discussed in a later chapter. In either case we require
that our new system matrix is stable. Before we look at these methods, we need

to give some basic matrix theory.

2.5 Basic Matrix Theory

In this section we describe two basic decompositions of a matrix. Throughout

this dissertation we make extensive use of the singular value decomposition(SVD)

12



and the QR decomposition of a matrix M "xm - In the usual notation the SVD

is given by:

where U and V aren n and m  m orthogonal matrices, respectively, and X
is a rank(M)  rank(M) diagonal matrix with positive diagonal entries. Also we

refer to the orthogonal reduction of M to diagonal form:

¥ 0
MV =
as an SVD of M because we always need it in this form.
The ; are the singular values of and the vectors ; ; are the th

and the th , respectively. It is easy to see

t t

nxXn nxXm



Ch pter 3

Robust Eigenstructure

Assignment

3.1 Introduction

In this chapter we look at a way of assigning eigenvalues and eigenvectors by
state feedback in the linear time invariant system described by the equations

(2.1)-(2.2). There are two approaches for doing this:
e by Linear State Feedback.
e by Output Feedback.

In the following section we discuss how we assign eigenvalues and eigenvectors
by linear state feedback. We could find a feedback by output feedback but this

is not discussed here.

14



The state feedback pole assignment problem in control system design is essentially
an inverse eigenvalue problem; that is, we assign eigenvalues and find the system
which has these assigned eigenvalues. A desirable property of any system design
is that the poles should be insensitive to perturbations in the coefficients matrices
of the system equations. There are many way of assigning eigenvalues discussed
in earlier papers [4, 11] but in this section we look for ways of obtaining a robust
solution that is ’

We now consider the completely controllable, time invariant, linear, multi-

variate system (2.1)-(2.2). In this section = the identity matrix. The



The state feedback pole assignment problem for system (2.1) can be formu-

lated as:

;=12

(Given the Problem 3.1 can we find a solution to this?. Conditions for a

solution to exist are well known and the following theorem is well established.






where () is the condition number of the matrix =[ 1 2 n)

Bearing in mind what we have just discussed, we can now reformulate Problem

3.3 such that we have a pole assignment problem to solve. It can be stated
as follows:
A
(+ ) = A (3 4)
A 1 2 n
We could take this measure to be | = v Where =11 , ] 1s the

vector of the condition numbers (ie. the condition number ; defined above)
corresponding to the selected matrix  of eigenvectors. Alternatively, we could

take the measure of robustness to be 5 = 3( ), the condition number of the



U(AX  XA) =0, (3.5)

Z
B — [Uo, Ul] 5 (36)
0
U - [Uo, Ul] ]X’
K =770 (XAX™"  A). (3.7)

See ref [6]
The assumption that B is of full rank implies the existence of the decompo-

sition (3.6). From (3.4), K must satisfy

BK = XAX™' A (3.8)

and pre-multiplication by U’ then gives the two equations

= o A T ) (39)
0= (A 7" ) (310)

from which (3.5) and (3.7) follow directly, since  is invertible from our condition
that  is nonsingular.

We observe that the decomposition of B in (3.6) is in fact a QR decomposition
in which  is an upper triangular matrix. Alternatively we could take the de-
composition to be the Singular Value Decomposition in which we have =Y 1

where ¥ = (1 2 ) 18 a positive matrix and  is orthogonal.
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Now we have looked at some of the theory behind the assigning of eigenvalues

and eigenvectors, we present an algorithm that will do this.

3.3 Numerical Algorithm

We now consider the practical implementation of the theory discussed in the
previous section for the linear state feedback design. The following algorithm can
be found in [6]. The procedure consists of three basic steps :

oStep 1:

Compute the decomposition of matriz B by either using SVD or QR, to find the
matrices Uy, Uy and Z , and construct the orthonormal bases, comprised of the
columns of the matrices S, S’j} for the null space S; =N[U,"(A — \;I)] and its
complement Sj forh; e Ay =1,2,...,n.

Standard library software is available to compute the decomposition of B using
either SVD or QR. We see that QR is less expensive to compute than SVD but
doesn’t give as much information as SVD does about the system.

We consider two methods to find the orthonormal bases S; and S’j;

Case 1(SVD):

We determine the singular value decomposition of U;*(A — A; 1) in the form:
U (A= M) = Z[0,0)[8;, 5] (3.11)

Then the columns of 5; and S’j give the required orthonormal bases.
Case 2(QR):

We determine the QR decomposition of (U;'(A — )\j]))t partitioned as the

20






oStep 4:
All of the above steps can be carried out using the system MATLAB [7]. This

system uses standard library routines from software packages such as LINPACK

and EISPACK.

3.4 Examples

In this section we look at some examples which have been collected from the
literature [6] for which the numerical procedures in the earlier sections have been
used. In two of the examples a linear state feedback control has been used.

Example 1: Chemical Reactor [6]

n=4m=>2
1.380  —0.0277 6.715 —5.676 0 0
—0.5814  —4.290 0 0.6750 5.679 0
A — B =
1.067 4.273 —6.654 5.893 1.136 —3.146
0.0480 4.273 1.343 —2.104 1.136 0

ETG(A)=(1.991, 6.351 x107%, —5.057, —8.6666)

This system can be seen to be unstable (ie. Re();) > 0) and a feedback
gain matrix is required to stabilize the system. We therefore assign the following
eigenvalues A=(—0.2, —0.5, —5.0566, —8.6659). If the procedure of Section 3.3
is carried out to find a state linear feedback control of the form u= Kx, we get

the following feedback gain matrix (using Method 2/3 in Step 2 [6]):

22



0.10277 —0.63333 —0.11872 0.14632

K=

0.83615 0.52704 —0.25775 0.54269

The conditioning of the results are given in the following table [6]:

(a) sol. after two sweeps (b) sol. at convergence
Method flell. #2X) llel, 150, | el #(X) liel, [IK]l, Sweeps
0 1.82 3.43 3.28 147 - - - - -
1 1.79 3.38 327 144 | 1.76 3.32  3.23  1.40 106
2/3 236 456 371 1.16 | 237 454 3.68 1.17 6

Table 3.1 Conditioning

The last column in the table is the number of sweeps needed for convergence.
From the table the magnitude of the gain matrix using Method 2/3 is | K||,=1.17
and the condition number of the matrix of eigenvectors is k(X )=4.54. The matrix

which has these assigned eigenvalues is:

1.38 —0.20770 6.715 —5.6760
0.0022062 —7.8867 —0.67420 1.5059
A+BK=
—1.4468 1.8955 —5.9780  4.3519
0.16474 3.5535 1.2081  —1.9378

The condition number of X is not too large so we conclude that we have fond
a well-conditioned solution. If Method 0, is used the best result is obtained after
one sweep; if Method one is used, then we have convergence within 106 sweeps
compared with 6 when Method 2/3 is used. Although Method 1 gives a better

condition number for X which is 3.32, we use a lot of sweeps to achieve this. The

23



maximum condition number ||c||_ using method 2/3 is increased slightly as is
the magnitude of ||, of the gains.

We now go on and look at a different example which comes from the area of
aircraft control. We wish to move the eigenvalues such that they are all real.

Example 2: Aircraft control [6]

n=4m=
0 1 0 0 0 0 0
0.00014 —2.04 —-1.95 0.013 —5.33 0.0065 —0.27
A — B =
—0.00025 1 —1.32 —0.024 —0.16 —0.012 —0.25
—0.56 0 0.36 —0.28 0 0.11 0.086

EIG(A)=(-3.12 x107%, —2.46 x107", —1.68 & 1.351)

This time we assign the eigenvalues A=(—1, -2, -3, —4), and so we want all
the eigenvalues to be real. Again, if Method 2/3 is used, then we get a state
feedback matrix which has || K||=28.255 after two sweeps and has converged at
this point. With the other methods we get the same sort of results with the
condition number of K ranging from 25-30. The errors introduced are due to
rounding error . More details about this example can be found in [6].

In the examples we have illustrated the method of eigenstructure assignment.
In the next chapter we look at the method of singular value assignment. The
theory is discussed and then the numerical algorithm is stated to achieve this. In
all of the examples either the system given is unstable or we just wish to move

the eigenvalues to obtain different system behaviour.
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Ch pter

Singul r V lue Assignment

In this chapter we again consider the time invariant continuous dynamical system
of the form (2.1)-(2.2) with state feedback (3.1). The closed loop system takes
the form (3.2).

The closed loop matrix A + BK gives us the response of the system and
therefore we have to choose K to obtain the required behaviour. In this chapter we
are interested in assigning singular values which give the system certain properties
(i.e. to make the matrix A+ BK as well-conditioned as possible or, equivalently,
to make the distance to instability as large as possible). The method presented is
a numerically stable method. To obtain the feedback matrix we apply a method

which employs a number of orthogonal matrix decompositions.

4.1 Preliminary Theory

Again our system has to be completely controllable. The following theorem gives
us the basic tool and provides a ’canonical form ’ for our system, which can be

obtained in a numerically stable way. The theorem is a modification of the theory
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presented in [2].

Theorem 4.1 Let A € R, B € R"™™ and let rank(B)=m < n. Then there

exists orthogonal matrices Q,U,V such that

2 0 0 0
QA U= A21 A22 0 QB V= ZB
0 0 0 0

where X1, Xp are [ X [ and m x m diagonal matrices respectively with positive

diagonal entries and Aay is a matriz with full column rank. The partitioning in

QAU and BV is conformable.

Proof. Let
. Yp
PBV=
0
be an SVD of the matrix B . Now let
0 ]n—m A
P= P
I, 0
Then we obtain
0 Ay
PBV= , PA=
ZB A2
with a compatible partitioning. Let
¥ 0
WAl le
0 0

be an SVD of A, where ¥ is an [ x [ diagonal matrix with positive entries. Then

26



Ay Ay
where [A217A22] is a compatible partitioning of A,Z;. Let Z; be an orthogonal

matrix which does a 'column compression’
Agy Zy=[A2,0]

on 12122, such that A,y has full column rank. This matrix could, for example, be
derived from an QR decomposition of 12132

Then from the above matrices we get the desired transformation as :

I, 0 0 Y, 0 Y, 0 0
I, 0
0 0 1, 0 0 = Ay Axp O
) 0 Z
0 I,..., 0 Ay Ay 0 0 0
and
I, 0 0 0
W 0
0 0 I, PBV= 1y,
0 I,
0 I,,.., O 0
A, B
Y, 0 0
A21 [A2270] ZB

27









Zy such that AQQZQ:[AQQ,O] where Agg is of full rank. This is achieved by the

Q-R decomposition of Al,.

eStep 5:
Then let
I 0 0
W 0 ) I, 0
=10 0 I, PP, U=Z;
0 I, 0 Z,
0 ]n—l—m 0
eStep 6:

Now we have to choose our assigned singular values. We choose them to be such

that Yo=diag(o141, ..., 0,) where 01(X1) < 0j(X3) < o01(Xq),5=1+1,..,n
oStep T:
We now find the feedback matriz K such that A+BK has these assigned singular

values. Let K = [K1, K,] where

. .
Ky =—-Yp" Ay,

[%2 — ZB_I(ZQ — [AQQ,O])

and set K=VKU?.

4.3 Examples

Example 1

In this section we consider the following numerical example:

42 1.2 10
A=l 2 12 08 B=10 o0
1.2 0.8 0.5663 0 1

30



max(A)=5.462,  ,.;,(A)=0.003108, 5(A)=1757.
The matrix A can been seen to be fairly ill conditioned. We therefore want
to design a K that will modify this system such that the matrix becomes well
conditioned. When the numerical algorithm of Section 4.2 is applied, we get the

state feedback matrix:

25996 32883 27685

K =
08547 25265 11601
and
14004 12884 15685
A+BK= 2 12 08

max min 2



and

0 1 0 0

—0.0239 0 0.9993 —0.0283
A+BK=

0.7121 0 0.0369 0.7010

—0.7015 0 0.0034 0.7125

The singular values of this closed loop matrix A + BK are then o) = 0, = 03 =
o4 = 1. Again this matrix is well conditioned with condition number equal to
one.

We now look at the distance to instability and how singular value assignment

can be used to widen the distance to instability.
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Ch pter 5

Dist nce to Inst bility

It we consider a matrix A that is stable in the sense that all its eigenvalues lie
in the open left half plane, then the distance to instability is a measure of "how
stable’ matrix A is. In this chapter we describe a bisection method which enables
us to find this distance.

Suppose that A € C"*" has no eigenvalues on the imaginary axis. Let
U C €™ be the set of matrices with at least one eigenvalue on the imaginary

axis. The distance from A to U/ is defined to be:
B(A)= min [|E|[|A+ E e U]
BeCnxn

Theorem 5.1 [3]

B(A) = min(opmin(A — iwl)

wER

Proof See [3] for reference.
If matrix A is stable, let B be the closest unstable matrix to A (i.e. B is
unstable and minimizes ||A — C|| over all unstable C.) Then B has an eigenvalue

on the imaginary axis with the same imaginary part as some of the eigenvalues

33



of A, then one may conclude that,
|A— Bl = Lnellr%l(amm(A —wl)).

where 0,,;,(A — twl) is the smallest singular value of A — wI (i.e. the distance
from A to B an unstable matrix). O.

So for any real w, an upper bound on 3(A) is
B(A) < opin(A — iwl)

In the next section we describe a bisection method which will enable us to

find this distance.

5.1 Bisection Method

It we are given ¢ > 0 and A € R"™", then we may define the 2n x 2n matrix

H=H(o) by:
A —ol,
H=H(o)= \
ol, —AH
where I, denotes the n by n identity matrix and A represents the complex

transpose.

The following theorem shows how the eigenvalues of H(o) distinguish the cases

o > B(A) from o < B(A).

Theorem 5.2 H(o) has an eigenvalue whose real part is zero if and only if o >

plA).
Proof Can be found in [3] O.
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Suppose that « is a lower bound and + is an upper bound on F(A). The
bounds can be improved by choosing a number o that lies between « and v and
checking to see if H(o) has any eigenvalue with a zero real part. The following
algorithm gives an estimate of the distance to instability, S(A) to within a factor
of ten. Also this algorithm uses the naive upper bound 3(A) < 1/2||A + AX||
found in [3].

Bisection Algorithm.

oStep 1:

Input A € U™ and a tolerance 7 > 0
oStep 2:

Finding o and ~

a=0, y=1/2|(A+ A")]|
WHILE ~ > 10MAX(r,a)

o=\/7TMAX(T,a)

IF H(o) has an eigenvalue with zero real part THEN ~ = 0 ELSE a = ¢

oStep 3

Output o« € R and v € R such that either v \ 10 < o < B(A) < v or 0=«
< pB(A) <~ < 107,

With the choice of 7 = 1/2(107%||A + A¥]|), then at most we require three bisec-
tion steps.

Now we require to know the value of w which gives the smallest singular value,
as it 1s this that we are trying to maximise. There are two way of doing this:
either by plotting w against o,,;,(A — iwl) for some range of w or by simply
modifying the bisection algorithm.
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Modified Bisection Algorithm

oStep 1:

Input A € U™, ( and a tolerance T > 0.
oStep 2:

Finding o and ~

a=0, y=1/2|(A+ A")]|
WHILE + > (MAX(7, )

o=\/YMAX(1, )

IF H(o) has an eigenvalue with zero real part THEN ~ = 0 ELSE a = ¢

oStep 3:
Finding w:
Take the singular value &=~
Calculate the eigenvalues of H(6) and find the eigenvalues A=twi which have
real part which is zero.
Calculate 0,,;,(A — iwl) for each w and take w for which ¢,,;,(A —iwl) = 6.
oStep 4:
Output o« € R and v € R such that either v \ ( < a < B(A) < v or 0=«
<BA) <~y <(r,andw and &

In the modified algorithm we again take the tolerance 7 to be as before, but
this time ( is taken to be less than 10 as we want the error on $(A) to be quite
small. Then our estimate of the minimum singular value will be as accurate as

possible, and our estimate of w will be close to the real value of w.
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5.2 Examples

In the examples to follow we use the modified bisection algorithm of Section 5.1
to calculate the distance to instability and then find the corresponding value of
w.

Example 1[10]

o o0 0 0 0 0 -6 =*

Note in this example *=—1x107°
The eigenvalues are —107°, —10, —107° & 27, —107° 4 44, and —107° £ 67 and
can be seen to be distinct.

From the modified algorithm we get a value of 0.29738124 x107° for 3(A)
with w =43.99 and (=1.00001. This is verified by plotting and can been seen in

Figure 5.1.
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A? B7 C? 77 T? a? H(O-)'

In this step we calculate the minimum singular values and the corresponding w.

o= AMAX(7,«a) A, H(o)

A wjl Omin(A  tw;l) Omin(A  w;l) & w; = w

In this step we aim to find the state feedback  which increases the distance to

instability.

21 [ 22 0] XB

21 Ixl [ 91 0] n—I{xn—I

41



+1

—
~~
hg|
—
~—
.
~~
ng|
[}
~—
—
~~
hg|
—
~—
Il

The following examples were computed using the MATLAB package. The pro-

grams are given in Appendix 1. In each example we apply the numerical algorithm

described in Section 6.1.
[6]
0 1 0 0
0 00014 204 195 0013

0 00025 1 132 0024



When the algorithm of Section 6.1 is applied we get the state feedback:

0.15786 —0.6184 —0.2843  0.2045

K =1 10597 —35707 0.8932  11.837

—3.0017 4.5672 —5.2887 —3.59913

where the singular values of A+BK are 0, = 1,1 = 1,2, 3, 4.

The results are as follows:

§ B*) w Aj(%)

A 0.010912 0 -0.031, -0.2473, —1.6809 £ 1.35042

A4+ BK | 0.53813 | £0.85 | —0.535 + 0.84437,0.9106 + 0.4312¢

Table 6.1 Example 1

As we can see from the Table 6.1 we have managed to increase our distance to
instability, but the eigenvalues have moved from eigenvalues which were stable to
eigenvalues that are unstable. We observe that ||K||=13.8512. Let see if we get
the same sort of results with another example.

Example 2[6]

0 1 0 0
) —10.940  —6.4894 1.5838  0.023645
. —1.5163 0.16176 ~ —0.51425 0.042692 |
—0.44748 —0.087530  0.20686  —2.9964
0 0
—0.172  0.0000745
—0.0238 —0.0000778

0 0.00369
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When the algorithm is applied we get the state feedback matrix:

—0.5785 —0.3689  0.085  0.001585
K =10% x
1.20939  0.29728 —0.6476 9.47286
where the singular values of A4+BK are o = 1.54989,0, = 1,03 = 0.5 and
oy = 0.466129.

The results for this example are:

§ B*) w Aj(¥)

A 0463111 | 0 —1, -2, =3, —1

A+BK | 1.265059 | £0.90 | 2.86922, -1.299946.47732: -3.3044

Table 6.2 Example 2

We see from Table 6.2 that we have increased the distance to instability but
again the eigenvalues have moved. In this example we find || K||=9.5767 x 10%. If
all we wanted was to maximise the distance to instability and were not worried
about the eigenvalues this, would be fine. Unfortunately we require the distance to
instability to be increased and our eigenvalues to remain stable. We now consider
A+ aBK, instead of A + BK, and find the value of a where the eigenvalues
change from a stable set to an unstable set. In the examples to follow we wish to

find this a. In all of the examples a € [0, 1].
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[6]

1.38 0.20770  6.715
N 0.0022062 7.8867 0.67420
. 1 4468 1 8955 5 9780
016474 3 5535 1 2081

We get the state feedback matrix,

06616 14225

21271 10166

5.676 0 0
1.5059 5679 0
4 3519 1136 3146
19378 1136 0
07077 07158

27255 093764

when the algorithm of Section 6.1 is applied. The closed loop matrix  +

1 =93212

has the singular values

2:85

s=T5and 4 =4926141

The results are shown in the following table:
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unstable at 0.08. In all of the cases we notice that when the eigenvalues go from
a real pair to a complex pair the condition number increases and then decreases.
When our eigenvalues become unstable then our distance to instability decreases
to zero and increases soon afterwards. If a different set of assigned singular values

were assigned, as in the next example, we observed the same behaviour as in the



The matrices A and B of Example 1 in Section 6.2 are used. The following









min singular value

0.25

0.2

o
=
ol

o
=

0.05

O | | | | | | | | |
0 001 002 003 004 005 006 0.07 0.08 0.09 0.1

min singular val against alpha

alpha

Figure 6.3: Example 5
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Conclusions

In this dissertation we have described an algorithm that aims to construct a
state feedback to maximize the distance to instability. The method is based on a
numerically stable approach. This method however turns out not to be a good one
if we want to increase the distance to instability as well as keeping the eigenvalues
stable. We see from the numerical results that in fact we have an optimum value
where the distance to instability is increased as well as the eigenvalues staying
stable, although this value tends to be lower than the distance observed by the
algorithm. Unfortunately there is no time in this dissertation to construct an
algorithm that will find the optimum state feedback and so opens up a new area
of research. If on the other hand we obtain this feedback by robust eigenstructure
assignment then we can guarantee that we have a stable set of eigenvalues and

have increased the distance to instability.
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Appendix 1

rogr ms in M tl b Not tion

Throughout this dissertation the following programs were used to generate

the results. The programs were written using the MATLAB package [7].

Plotl.m

Eigplot.m

Byersl.m

Singl.m

)
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