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1VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO SCATTERING BYUNBOUNDED ROUGH SURFACESSIMON N. CHANDLER-WILDE† AND JOHANNES ELSCHNER‡Abstra
t. We 
onsider the problem of s
attering of time harmoni
 a
ousti
 waves by an unbounded sound soft surfa
ewhi
h is assumed to lie within a �nite distan
e of some plane. The paper is 
on
erned with the study of an equivalent variationalformulation of this problem set in a s
ale of weighted Sobolev spa
es. We prove well-posedness of this variational formulation inan energy spa
e with weights whi
h extends previous results in the unweighted setting (Chandler-Wilde & Monk, SIAM J MathAnal 37 (2005), 598-618) to more general inhomogeneous terms in the Helmholtz equation. In parti
ular, in the two-dimensional
ase, our approa
h 
overs the problem of plane wave in
iden
e, whereas in the 3D 
ase in
ident spheri
al and 
ylindri
al waves
an be treated. As a further appli
ation of our results we analyse a �nite se
tion type approximation, whereby the variationalproblem posed on an in�nite layer is approximated by a variational problem on a bounded region.1. Introdu
tion. This paper is 
on
erned with the analysis of problems of s
attering by unboundedsurfa
es, in parti
ular with what are termed rough surfa
e s
attering problems in the engineering literature.By the phrase rough surfa
e, we will denote throughout a surfa
e whi
h is a (usually non-lo
al) perturbationof an in�nite plane surfa
e su
h that the surfa
e lies within a �nite distan
e of the original plane. Roughsurfa
e s
attering problems in this sense arise frequently in appli
ations, for example in modeling a
ousti
 andele
tromagneti
 wave propagation over outdoor ground and sea surfa
es, and have been studied extensivelyin the physi
s and engineering literature from the points of view of developing e�e
tive numeri
al algorithmsor asymptoti
 or statisti
al approximation methods (see e.g. Ogilvy [30℄, Voronovi
h [39℄, Saillard & Sentena
[32℄, Warni
k & Chew [40℄, DeSanto [18℄, and Elfouhaily and Guerin [19℄).Despite this extensive pra
ti
al interest, relatively little mathemati
al analysis of these problems hasbeen 
arried out. In parti
ular, only in the last four years have the �rst results been obtained establishingwell-posedness for three-dimensional rough surfa
e s
attering problems, using integral equation methods (seeChandler-Wilde, Heinemeyer & Potthast [13, 14℄, Thomas [36℄) or variational formulations (see Chandler-Wilde, Monk & Thomas [11, 15℄, Thomas [36℄). The variational approa
h proposed in [11℄ for the soundsoft a
ousti
 problem leads to expli
it bounds on the solution in terms of the data and applies to a rathergeneral 
lass of non-smooth unbounded surfa
es. The approa
h in [11℄ is extended to more general a
ousti
s
attering problems in [36℄, in
luding problems of s
attering by impedan
e surfa
es and by inhomogeneouslayers (and see [15℄).In 
ontrast to the general 
ase of a non-lo
ally perturbed plane surfa
e, there is already a vast literatureon the variational approa
h applied to periodi
 di�ra
tive stru
tures (di�ra
tion gratings) or to lo
allyperturbed plane s
atterers; see, e.g., Kirs
h [25℄, Bonnet-Bendhia & Starling [6℄, Els
hner & S
hmidt [20℄,Bao & Dobson [5℄, Els
hner, Hinder, Penzel & S
hmidt [21℄, Ammari, Bao & Wood [1℄, and Els
hner &Yamamoto [22℄. The assumption made in all of these papers leads to a variational problem over a boundedregion, so that 
ompa
t imbedding arguments 
an be applied and the sesquilinear form that arises satis�es aGårding inequality whi
h simpli�es the mathemati
al arguments 
onsiderably 
ompared to the 
ases studiedin [11℄, [15℄ and [36℄.In this paper we will rigorously analyze time harmoni
 a
ousti
 s
attering, seeking to solve the Helmholtzequation with wave number k > 0,
∆u+ k2u = g ,in the perturbed half-plane or half-spa
e D ⊂ Rn, n = 2, 3. The s
attering surfa
e Γ := ∂D is assumed to liewithin a �nite distan
e of some plane; for example it may be the graph of an arbitrary bounded 
ontinuous
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fun
tion. While the methods we use and results we derive 
an be adapted to other boundary 
onditions, tokeep things spe
i�
 and to make use of earlier results [11, 15℄, we will restri
t our attention to the simplest
ase when a homogeneous Diri
hlet boundary 
ondition u = 0 holds on Γ. The problem formulation is
ompleted by a suitable radiation 
ondition, expressing that the wave s
attered by the surfa
e must radiateaway from the surfa
e.This paper is 
losest in its results to Chandler-Wilde & Monk [11℄, who studied the same Diri
hlets
attering problem. Following [11℄, we introdu
e an equivalent variational formulation of this problem setin an in�nite layer S0 of �nite thi
kness between the surfa
e Γ and some plane Γ0 lying above that surfa
eon whi
h the solution is required to satisfy a non-lo
al boundary 
ondition involving the exa
t Diri
hletto Neumann map T . This 
ondition is often used in a formal manner in the rough surfa
e s
atteringliterature (e.g. [18℄), that, above the rough surfa
e Γ and the support of g, the solution 
an be representedin integral form as a superposition of upward traveling and evanes
ent plane waves. This radiation 
onditionis equivalent to the upward propagating radiation 
ondition proposed for two-dimensional rough surfa
es
attering problems in [10℄, and has re
ently been analyzed 
arefully in the 2D 
ase by Arens and Hohage[4℄. Arens and Hohage also propose a further equivalent radiation 
ondition (a `pole 
ondition').In Se
tions 2 and 3 we formulate the boundary value problem and its variational formulation pre
isely,and give the details about our assumptions on D and about the radiation 
ondition we impose. Se
tion 3 isalso devoted to new 
ontinuity properties of the DtN map T in weighted Sobolev spa
es on Γ0.In Se
tion 4 we study the well-posedness of the variational formulation in an energy spa
e with weightswhi
h de
ay or in
rease polynomially as a fun
tion of radial distan
e within the layer S0. Our main result,Theorem 4.1, is to show, for a range of in
reasing and de
reasing weights, that the problem is well-posedin the weighted spa
e setting if and only if it is well-posed in the unweighted spa
e setting. This resultdepends on te
hni
al estimates of the 
ommutator of the DtN map T and the operation



where en denotes the unit ve
tor in dire
tion xn. Condition (2.2) is satis�ed if Γ is the graph of a 
ontinuousfun
tion, but also allows more general domains.We now introdu
e weighted L2 and Sobolev spa
es. For ̺ ∈ R, l ∈ N and a domain G ⊂ Rn, de�ne theHilbert spa
es
L2

%(G) := (1 + x2)−%/2L2(G) , H l
%(G) := (1 + x2)−%/2H l(G) ,equipped with the 
orresponding 
anoni
al norm and s
alar produ
t. The spa
e Vh,% is then de�ned, for

h ≥ 0, as the 
losure of {u|Sh
: u ∈ C∞

0 (D)} in the norm
‖u‖Vh,̺

= ‖u‖H1
̺(Sh) =

(
∫

Sh

(

∣

∣(1 + x2)%/2u
∣

∣

2
+
∣

∣∇((1 + x2)%/2u)|2





Remark 2.2. We note (and this is important in our later appli
ations) that there is a degree of arbi-trariness in our radiation 
onditions (2.4) and (2.5). By this we mean that one 
ould repla
e xn in (2.4) by
xn − c, for any c > 0 (in fa
t for any c ∈ R su
h that supp g ⊂ S̄c and Uc ⊂ D); the 
orresponding 
hangeto (2.5) would be to repla
e



3. The Diri
hlet to Neumann Map and Variational Formulation. We now 
onsider a variationalformulation in weighted Sobolev spa
es of the above boundary value problem, whi
h involves the Diri
hlet-to-Neumann operator on the arti�
al boundary Γ0. As in [11℄ for ̺ = 0, there exist 
ontinuous tra
eoperators
γ− : V% → H1/2

% (Γ0) , γ+ : H1
%(U0\Ūh) → H1/2

% (Γ0) , h > 0 .Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by giv



Note that this sesquilinear form is well-de�ned and 
ontinuous on V% × V−% for |̺| < 1 as a 
onsequen
e ofLemma 3.3 with s = 1/2.The variational formulation (V). Given g ∈ L2
%(S0), |̺| < 1, �nd u ∈ V% su
h that

B(u, v) = −(g, v) , ∀v ∈ V−% . (3.4)As in [11℄, the equivalen
e of (BVP) and (V) follows from the following weighted version of Lemma 3.2in that paper.Lemma 3.4. Let |̺| < 1.(i) If (2.4) holds with u0 ∈ H1/2
% (Γ0), then u ∈ H1

%(U0\ ¯



Proof for ̺ 6= 0. Introdu
e equivalent norms ‖u‖L2
̺

= ‖(a2 + x2)%/2u‖L2 with parameter a > 0 and modifythe norm (2.3) in V% 
orrespondingly. We will 
hoose a > 0 su�
iently large, and set, for u ∈ V%, ϕ ∈ V−%,
v = (a2 + x2)%/2u ∈ V0 , ψ = (a2 + x2)−%/2ϕ ∈ V0 .Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) , (4.1)where K = K1 +K2 with
K1(v, ψ) = (∇(a2 + x2)−%/2v,∇(a2 + x2)%/2ψ) − (∇v,∇ψ)

= (v∇(a2 + x2)−%/2, ψ∇(a2 + x2)%/2 + (∇v, ψ(a2 + x2)−%/2∇(a2 + x2)%/2)

+ (v(a2 + x2)%/2∇(a2 + x2)−%/2,∇ψ)

(4.2)and
K2(v, ψ) =

∫

Γ0

{

(a2 + x2)%/2ψ̄ T



and sin
e (
f. [11℄)
‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,(4.5) implies that

|K2(v, ψ)| ≤ c(̺)√
ka

|||v|||V0|||ψ|||V0 .Thus we have, for ka ≥ 1 and |̺| < 1,
|K0(v, ψ)| ≤

( |̺|
2ka

(

1 +
|̺|
2ka

)

+
c(̺)√
ka

)

|||v|||V0|||ψ|||V0 ≤ |̺| + c(̺)√
ka

|||v|||V0|||ψ|||V0 ,so that ‖K0‖ ≤ (|̺| + c(̺))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2from [11, Thm. 4.1℄ and using (4.6), we obtain the norm estimate

‖B−1
% ‖ ≤ 2γ, (4.7)provided that

‖K0‖ ≤ (|̺| + c(̺))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,whi
h holds for a ≥ 4γ2(|̺| + c(̺))2/k. Sin
e (V) written in operator form is the equation B%u = g̃, where
g̃ ∈ V ∗

−% is de�ned by g̃(v) = (g, v), v ∈ V−%, this implies that the solution u of (V) satis�es
|||u|||V̺ ≤ 2γ|||g̃|||V ∗

−̺
≤ 2γk−1|||g|||L2

̺(S0), (4.8)provided ka ≥ max(1, 4γ2(|̺| + c(̺))2).5. Appli
ations.5.1. Plane Wave In
iden
e, Di�ra
tion Gratings, and Other S
attering Problems. As anappli
ation of Theorem 4.1, the problem of plane wave in
iden
e in the 2D 
ase (n = 2) 
an be treated.That is, it 
an be shown, in appropriate fun
tion spa
es, that the s
attering problem for plane wave in
iden
ehas exa
tly one solution in 2D (for a brief dis
ussion of what goes wrong in the 3D 
ase, see Remark 5.5below, and see Remark 5.6 for details of 3D s
attering problems whi
h 
an be ta
kled by Theorem 4.1). Thein
ident plane wave has the form
vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,where θ is the angle of in
iden
e, with |θ| < π/2. In this problem we look for the total �eld v = vsc + vin,

vsc being the unknown s
attered �eld, su
h that
(∆ + k2)v = 0 in D , v = 0 on Γ , (5.1)and vsc satis�es an appropriate radiation 
ondition.This 2D rough surfa
e s
attering problem with plane wave in
iden
e has been treated before, by integralequation methods, in [17℄ where it is shown that there exists exa
tly one solution v ∈ C2(D) ∩ C(D̄) su
hthat v is bounded in Sh, for every h > 0, and vsc satis�es the radiation 
ondition in the form (2.5) (termedthe upwards propagating radiation 
ondition (UPRC) in [17℄). However, the proof in [17℄ is only for the 
asewhere ∂D is the graph of a su�
iently smooth (C1,1) fun
tion (this, or at least a restri
tion to Lyapunovsurfa
es, is an essential restri
tion due to the 
ompa
tness arguments in the exist.2801 0 Tlrestri
tien



this se
tion we



and su
h that vsc := v − vin satis�es the Rayleigh expansion radiation 
ondition, that
vsc(x) =

∑

m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0, (5.3)where the um are 
omplex 
onstants, αm := sin θ + 2πm/(kA), and
βm :=

{ √

1 − α2
m, |αm| ≤ 1,

i
√

α2
m − 1, |αm| > 1.It is shown in [22℄ that (DGPW) has exa
tly one solution in the 
ase that ∂D is the graph of an (A-periodi
) Lips
hitz fun
tion, by extending well-known arguments (see e.g. [25℄), whi
h apply in the 
asewhen ∂D is the graph of a smooth fun
tion, to the non-smooth Lips
hitz 
ase. The following 
orollary ofTheorem 5.1 extends that result further to the mu
h more general 
ase where ∂D is only required to satisfy(2.1), (2.2), and (5.2).Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exa
tly one solution, and this is theunique solution of (PW).Proof. Suppose that v



Proof. It is almost immediate from the observations immediately above the theorem that if v satis�es(PWSC) then u, de�ned by (5.5), satis�es the above boundary value problem. The only di�
ulty is to showthe radiation 
ondition. To see this we note that vsc satis�es the radiation 
ondition (2.5), from whi
h itfollows (see [9℄ and 
f. Remark 2.2) that vsc satis�es (2.5) with Γ0 repla
ed with Γc, for all c > 0, in parti
ularwith c = −b. Sin
e u = vsc in Uc it is immediate that v satis�es (2.5) with Γ0 repla
ed by Γ−b, whi
h isequivalent (see Remark 2.2) to (2.4) with x2 repla
ed by x2 + b.We next observe that it follows from Theorem 4.1 that the boundary value problem for u has exa
tlyone solution (u satis�es exa
tly a boundary value problem of the form of Se
tion 2 after verti
al translationof the axes by a distan
e |b|). The theorem is thus proved if we 
an show that this solution satis�es that
u|Sh

∈ V∞
h , for every h > 0, and the bound |||u|Sh

|||V ∞

h
≤



where G ∈ V ∗
−% is de�ned by

G(w) =

∫

Γ0

γ−w̄

(

∂vin

∂x2
+ Tγ−v

in

)

ds(x) , w ∈ V−% . (5.8)The restri
tion to the range ̺ < −1/2 arises sin
e vin ∈ V% for ̺ < −1/2 but not for ̺ = 1/2. Having solvedthis variational problem to determine v|S0 , v is determined throughout D through (2.5) satis�ed by vsc. Of
ourse this variational formulation is well-posed, by Theorem 4.1.Remark 5.5. The above results show that the problem of plane wave in
iden
e is well posed in the 2D
ase. In the 3D 
ase it seems to us likely that a solution to the problem of plane wave in
iden
e does notexist for every 
hoi
e of domain D satisfying (2.1) and (2.2). Certainly, the methods of argument above donot extend to the 3D 
ase, for, in the 3D 
ase, gP in Theorem 5.3 is in L2
%(D) only for ̺ < −1, and Ggiven by (5.8) is in V ∗

−% only for ̺ < −1, so that Theorem 4.1 does not apply. Further, even the formulationof the 3D plane wave problem appears problemati
 in 3D. Pre
isely, just as the radiation 
ondition (2.4)does not extend to a bounded linear fun
tional on H1/2
% (Γ0) for ̺ < −1, it does not extend to a boundedlinear fun
tional on L∞(Γ0) (whi
h would require that the integral in (2.5) be absolutely 
onvergent for every

u0 ∈ L∞(Γ0), whi
h is true in 2D but not in 3D, as a 
onsequen
e of the asymptoti
s (2.8)). Thus it iswh



where the 
onstants A and B are 
hosen to ensure that ṽin ∈ C1(R3) (again this is possible provided
ǫ is 
hosen su�
iently small). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gC, where gC(x) := Ak2,

√

x2
1 + (x3 −H)2 < ǫ, gC(x) := 0, otherwise. We observe that gS is 
ompa
tly supported so that gS ∈ L2

%(D)for every ̺ ∈ R. Further, it is an easy 
al
ulation to see that gC ∈ L2
%(D) for ̺ < −1/2,



expli
itly V (R)
% denotes the 
ompletion of {u|

S
(R)
0

: u ∈ C∞
0 (D(R))} in the norm

‖u‖
V

(R)
̺

=

(

∫

S
(R)
0

(

∣

∣(1 + x2)%/2u
∣

∣

2
+
∣

∣∇((1 + x2)%/2u)|2
)

dx

)1/2

. (5.12)We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
̺

, ̺ ∈ R, are equivalent sin
e S(R)
0 isbounded, so that, as linear spa
es, for ̺ ∈ R, V (R)

% = V (R) := V
(R)
0 . The approximating variational problemis the following: �nd u(R) ∈ V (R) su
h that

B(R)(u(R), v) = −(g, v) , ∀v ∈ V (R) . (5.13)Here B(R) is the 
ontinuous sesquilinear form on V (R) ×V (R) de�ned by (3.3) with D repla
ed by D(R), i.e.de�ned by
B(R)(u, v) :=

∫

S
(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫

Γ
(R)
0

γ−v̄ T γ−u ds(x) , (5.14)where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this 
ase).Making the observation that we 
an view V

(R)
% as a 
losed subspa
e of V% (the elements of V (R)

% be
omeelements of V% if we extend them by zero from S
(R)
0 to S0), the analysis of the error in approximating u by

u(R) follows the usual pattern for analysing the Galerkin method for variational problems via a generalizedCéa's lemma. Pre
isely, if ũ ∈ V (R) ⊂ V%, then, for v ∈ V (R), applying (5.11),
B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v) − (g, v) .Subtra
ting this equation from (5.13) we see that
B(R)(ũ− u(R), v) = B(ũ− u, v) , ∀v ∈ V (R) . (5.15)Now re
all from Se
tion 4 that B% : V% → V ∗

−% is our notation for the bounded linear operator




onstants dependent only on ̺ and |b|,
‖ũ− u‖V̺1

= ‖(1 − χR)u‖V̺1

≤ c2

(

∫

S̃R
0

(1 + x2)%1



Theorem 6.1. For ka ≥ 1 and |̺| < 1, the 
ommutator Ca de�ned in (6.3) has norm ≤ c(̺)
√

k/a on
L2(Rm).It is enough to 
onsider ̺ ∈ (0, 1) sin
e the 
ase of negative ̺ then follows by duality (with respe
t tothe s
alar produ
t on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1



with b% := F (1 + x2)−%/2. Here the integral in (6.14) is well de�ned sin
e Fu is rapidly de
reasing and
b% ∈ L1(Rm) for ̺ > 0 (see the next lemma), and we have used the relation F (1 + x2)−%/2v = b% ∗ Fv for afun
tion v of rapid de
ay, with ∗ denoting 
onvolution.Lemma 6.4. For any ̺ > 0, the fun
tions b% and |ξ| ∇ξb% are rapidly de
reasing as |ξ| → ∞ and belongto L1(Rm). For the proof of this, we refer to [29, Chap. 8.1℄; see also [34, Chap. 5.3℄.Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥

∥

∥

∥

∫

Rm

|b%(ξ − η)| |ξ − η| sup
R



where ϕ is a smooth fun
tion with somewhat larger support and ϕψ = ψ.Let �rst m = 1. Then (6.20) follows for ̺ ∈





By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates
‖m(xn, ξ) v‖H̺(Rm) ≤ c(h, ̺)‖v‖H̺(Rm) , v ∈ C∞

0 (Rm) , xn ∈ (0, h) , (6.29)where m(xn, ξ) = exp(−xnt(ξ)). Consider a de
omposition t = t(0) + t(1) as in (6.5), with a = 1, t(0) = χt,
t(1) = (1−χ)t and a 
ut-o� fun
tion χ vanishing near |ξ| = k, so that t(0) is a smooth symbol. We



REFERENCES[1℄ H. Ammari, G. Bao, A.W. Wood, Analysis of the ele
tromagneti
 s
attering from a 
avity, Japan J. Indust. Appl. Math.19 (2002), pp. 301�310.[2℄ T. Arens, S. N. Chandler-Wilde, K. Haseloh, Solvability and spe
tral properties of integral equations on the real line: I.weighted spa
es of 
ontinuous fun
tions, J. Math. Anal. Appl. 272 (2002), pp. 276�302.[3℄ T. Arens, S. N. Chandler-Wilde, K. Haseloh, Solvability and spe
tral properties of integral equations on the real line. II.
L

p-spa
es and appli
ations, J. Integral Equations Appl. 15 (2003), pp. 1�35.[4℄ T. Arens, T. Hohage, On radiation 
onditions for rough surfa
e s
attering problems, IMA J. Appl. Math. 70 (2005),pp. 839�847.[5℄ G. Bao, D.C. Dobson, On the s
attering by a biperiodi
 stru
ture, Pro
. Amer. Math. So
. 128 (2000), pp. 2715�2723.[6℄ A.S. Bonnet-Bendhia, P. Starling, Guided waves by ele
tromagneti
 gratings and non-uniqueness examples for the di�ra
-tion problem, Math. Methods Appl. S
i. 17 (1994), pp. 305�338.[7℄ M. Cessenat, Mathemati
al Methods in Ele
tromagnetism, World S
ienti�
, Singapore, 1996.[8℄ S. N. Chandler-Wilde, Boundary value problems for the Helmholtz equation in a half-plane, in Pro
. 3rd Int. Conf. onMathemati
al and Numeri
al Aspe
ts of Wave Propagation, G. Cohen, ed., SIAM, Philadelphia, 1995, pp. 188�197.[9℄ S. N. Chandler-Wilde, B. Zhang, Ele
tromagneti
 s
attering by an inhomogeneous 
ondu
ting or diele
tri
 layer on aperfe
tly 
ondu
ting plate. Pro
. R. So
. Lond. A454 (1998), pp. 519�542.[10℄ S. N. Chandler-Wilde, B. Zhang, A uniqueness result for s
attering by in�nite rough surfa
es, SIAM J. Appl.. Math. 58(1998), pp. 1774�1790.[11℄ S.N. Chandler-Wilde, P. Monk, Existen
e, uniqueness and variational methods for s
attering by unbounded rough surfa
es,SIAM J. Math. Anal. 37 (2005), pp. 598�618.[12℄ S.N. Chandler-Wilde, P. Monk, The PML for rough surfa
e s
attering, Appl. Numer. Math. 59 (2009), pp. 2131�2154.[13℄ S.N. Chandler-Wilde, E. Heinemeyer, R. Potthast, A well-posed integral equation formulation for three-dimensional roughsurfa
e s
attering, Pro
. R. So
. A 462 (2006), pp. 3683�3705.[14℄ S.N. Chandler-Wilde, E. Heinemeyer, R. Potthast, A
ousti
 s
attering by mildly rough unbounded surfa
es in threedimensions, SIAM J. Appl. Math. 66 (2006), pp. 1002�1026.[15℄ S.N. Chandler-Wilde, P. Monk, M. Thomas, The mathemati
s of s
attering by unbounded, rough, inhomogeneous layers,J. Comp. Appl. Math. 204 (2007), pp. 549�559.[16℄ S. N. Chandler-Wilde, M. Rahman, C. R. Ross, A fast two-grid and �nite se
tion method for a 
lass of integral equations onthe real line with appli
ation to an a
ousti
 s
attering problem in the half-plane, Numer. Math. 93 (2002), pp. 1�51.[17℄ S. N. Chandler-Wilde, C. R. Ross, B. Zhang, S
attering by in�nite one-dimensional rough surfa
es. Pro
. R. So
. Lond.A455, (1999), pp. 3767�3787.[18℄ J.A. DeSanto, S
attering by rough surfa
es, In R. Pike and P. Sabatier, editors, S
attering and Inverse S
attering in Pureand Applied S
ien
e, pp. 15�36, A
ademi
 Press, 2002.[19℄ T. M. Elfouhaily, C. A. Guerin, A 
riti
al survey of approximate s
attering wave theories from random rough surfa
es,Waves Random Media 14, (2004) pp. R1�R40.[20℄ J. Els
hner, G. S
hmidt, Di�ra
tion in periodi
 stru
tures and optimal design of binary gratings I. Dire
t problems andgradient formulas,. Math. Methods Appl. S
i. 21 (1998), pp. 1297�1342.[21℄ J. Els
hner, R. Hinder, F. Penzel, G. S
hmidt, Existen
e, uniqueness and regularity for solutions of the 
oni
al di�ra
tionproblem, Math. Models and Methods in Appl. S
i. 10 (2000), pp. 317�341.[22℄ J. Els
hner, M. Yamamoto, An inverse problem in periodi
 di�ra
tive opti
s: re
onstru
tion of Lips
hitz grating pro�les,Appl. Anal. 81 (2002), 1307�1328.[23℄ K. O. Haseloh, Se
ond Kind Integral Equations on the Real Line: Solvability and Numeri
al Analysis in Weighted Spa
es,PhD Thesis, Univeristät Hannover, Germany, 2004.[24℄ E. Heinemeyer, M. Lindner, R. Potthast, Convergen
e and numeri
s of a multi-se
tion method for s
attering by three-dimensional rough surfa
es, SIAM J. Numer. Anal. 46 (2008), 1780�1798.[25℄ A. Kirs
h, Di�ra
tion by periodi
 stru
tures, In L. Päivärinta et al, editors, Pro
. Lapland Conf. In J. v

HCon
0.031 9.4800[(Prä9W
([n
0.031 9.4tion)Tj
42.8395 0 Td
(b)Tj
4.43984 0 .)Tj
9.5996D3190numeri
al



[40℄ K.F. Warni
k, W.C. Chew, Numeri
al simulation methods for rough surfa
e s
attering, Waves Random Media 11 (2001),pp. R1�R30.

23




