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VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO SCATTERING BY
UNBOUNDED ROUGH SURFACES

SIMON N. CHANDLER-WILDE! AND JOHANNES ELSCHNER}?

Abstract. We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface
which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational
formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in
an energy space with weights which extends previous results in the unweighted setting (Chandler-Wilde & Monk, STAM J Math
Anal 37 (2005), 598-618) to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional
case, our approach covers the problem of plane wave incidence, whereas in the 3D case incident spherical and cylindrical waves
can be treated. As a further application of our results we analyse a finite section type approximation, whereby the variational
problem posed on an infinite layer is approximated by a variational problem on a bounded region.

1. Introduction. This paper is concerned with the analysis of problems of scattering by unbounded
surfaces, in particular with what are termed rough surface scattering problems in the engineering literature.
By the phrase rough surface, we will denote throughout a surface which is a (usually non-local) perturbation
of an infinite plane surface such that the surface lies within a finite distance of the original plane. Rough
surface scattering problems in this sense arise frequently in applications, for example in modeling acoustic and
electromagnetic wave propagation over outdoor ground and sea surfaces, and have been studied extensively
in the physics and engineering literature from the points of view of developing effective numerical algorithms
or asymptotic or statistical approximation methods (see e.g. Ogilvy 30], Voronovich 39], Saillard & Sentenac
32], Warnick & Chew 40], DeSanto 18], and Elfouhaily and Guerin 19]).

Despite this extensive practical interest, relatively little mathematical analysis of these problems has
been carried out. In particular, only in the last four years have the first results been obtained establishing
well-posedness for three-dimensional rough surface scattering problems, using integral equation methods (see
Chandler-Wilde, Heinemeyer & Potthast 13, 14], Thomas 36]) or variational formulations (see Chandler-
Wilde, Monk & Thomas 11, 15|, Thomas 36]). The variational approach proposed in 11] for the sound
soft acoustic problem leads to explicit bounds on the solution in terms of the data and applies to a rather
general class of non-smooth unbounded surfaces. The approach in 11] is extended to more general acoustic
scattering problems in 36], including problems of scattering by impedance surfaces and by inhomogeneous
layers (and see 15]).

In contrast to the general case of a non-locally perturbed plane surface, there is already a vast literature
on the variational approach applied to periodic diffractive structures (diffraction gratings) or to locally
perturbed plane scatterers; see, e.g., Kirsch 25|, Bonnet-Bendhia & Starling 6], Elschner & Schmidt 20],
Bao & Dobson 5|, Elschner, Hinder, Penzel & Schmidt 21|, Ammari, Bao & Wood 1], and Elschner &
Yamamoto 22|. The assumption made in all of these papers leads to a variational problem over a bounded
region, so that compact imbedding arguments can be applied and the sesquilinear form that arises satisfies a
Garding inequality which simplifies the mathematical arguments considerably compared to the cases studied
in 11], 15] and 36].

In this paper we will rigorously analyze time harmonic acoustic scattering, seeking to solve the Helmholtz
equation with wave number k > 0,

Au-+Kiu—=g,

in the perturbed half-plane or half-space D C R", n = 2, 2. The scattering surface I' -= dD is assumed to lie
within a finite distance of some plane; for example it may be the graph of an arbitrary bounded continuous
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function. While the methods we use and results we derive can be adapted to other boundary conditions, to
keep things specific and to make use of earlier results 11, 15], we will restrict our attention to the simplest
case when a homogeneous Dirichlet boundary condition u = @ holds on I'. The problem formulation is
completed by a suitable radiation condition, expressing that the wave scattered by the surface must radiate
away from the surface.

This paper is closest in its results to Chandler-Wilde & Monk 11], who studied the same Dirichlet
scattering problem. Following 11], we introduce an equivalent variational formulation of this problem set
in an infinite layer Sy of finite thickness between the surface I' and some plane I'y lying above that surface
on which the solution is required to satisfy a non-local boundary condition involving the exact Dirichlet
to Neumann map T. This condition is often used in a formal manner in the rough surface scattering
literature (e.g. 18]), that, above the rough surface I' and the support of g, the solution can be represented
in integral form as a superposition of upward traveling and evanescent plane waves. This radiation condition
is equivalent to the upward propagating radiation condition proposed for two-dimensional rough surface
scattering problems in 10], and has recently been analyzed carefully in the 2D case by Arens and Hohage
4]. Arens and Hohage also propose a further equivalent radiation condition (a ‘pole condition’).

In Sections 2 and 3 we formulate the boundary value problem and its variational formulation precisely,
and give the details about our assumptions on D and about the radiation condition we impose. Section 3 is
also devoted to new continuity properties of the DtN map T in weighted Sobolev spaces on T'y.

In Section 4 we study the well-posedness of the variational formulation in an energy space with weights
which decay or increase polynomially as a function of radial distance within the layer Sp. Our main result,
Theorem 4.1, is to show, for a range of increasing and decreasing weights, that the problem is well-posed
in the weighted space setting if and only if it is well-posed in the unweighted space setting. This result
depends on technical estimates of the commutator of the DtN map T and the operation



where ep denotes the unit vector in direction Xn. Condition (2.2) is satisfied if T" is the graph of a continuous
function, but also allows more general domains.

We now introduce weighted L? and Sobolev spaces. For € R, | € N and a domain G C R", define the
Hilbert spaces

L%(G) = (1 +x*)” ?L*(G), H'(G) =@ +x*)~ ”?H'(G),

equipped with the corresponding canonical norm and scalar product. The space Vp, is then defined, for
h > 0, as the closure of {u]s, - u € C§*(D)} in the norm

2
[Ullv,,, = Ullnis,) = (/S (](l +x%) 2ul” + V(@ + %) u))?
h






REMARK 2.2. i@ note (and this is important in our later applications) that there is a degree of arbi-
trariness in our radiation conditions (2.4) and (2.5). By this we mean that one could replace Xn in (2.4) by
Xn — C, for any ¢ > O (in fact for any ¢ € R such that suppg C S¢ and Ue C D); the corresponding change
to (2.5) would be to replace



3. The Dirichlet to Neumann Map and Variational Formulation. We now consider a variational
formulation in weighted Sobolev spaces of the above boundary value problem, which involves the Dirichlet-
to-Neumann operator on the artifical boundary I'y. As in 11] for = 0, there exist continuous trace
operators

y— -V — HY2(Ty), yi - HY(Ug\Un) — HY2(Ty), h>.

Moreover, if ug € C3°(I'y) and u is given by giv



Note that this sesquilinear form is well-defined and continuous on V. x V_ for | | < as a consequence of
Lemma 3.3 with s =1/2.

The variational formulation (V). Given g € L%(Sp), | | <1, find u € V such that
B(u,v) =—(g,v), WeV_ . (3.4)
As in 11], the equivalence of (BVP) and (V) follows from the following weighted version of Lemma 3.2
in that paper.
LEMMA 3.4. Let| | <I.
(i) If (2.4) holds with uy € HY*(Ty), then u € H(Up\



Proof for  # 8. Introduce equivalent norms [|u[_2 = [|(a* +x*) /2ul|_2 with parameter a > 8 and modify
the norm (2.3) in V correspondingly. We will choose a > @ sufficiently large, and set, forueV , ¢ € V_ |

v=(@%+x?) 2ueVy, w=(a2+x})" 2pecV,.
Then we obtain from (3.3)
B(u,¢) =B(v,4) + K(v,y), (4.1)
where K = K; + Ky with
Ki(v, ) = (V(@2 +x2)~ “2v,V(a% + x2) 72y) — (Vv, V)
= (vW(@ +x*)~ 2, pv(a® +x) 72 + (Vv,p(a® +x*)” 2v(a? + x?) 7?) (4.2)
+ (v(@2+x?) ?v(a + x%)” 72, vy)

and

Kalv.t) = [ {@ ) 2y

e



and since (cf. [11])

||Y—V||L2(io) <K T2ly-Vlnyz ey < KTy,

(4.5) implies that

o

~—

|K2(Vqu)| < |V|Vo|qJ|Vo :

i

a

Thus we have, for ka>1 and | | <1,

Ko 0)1 < (gt (14 o)+ S ) Mholtlvo = 2 eluve

so that || Kol < (] | +¢( ))/vVka. Taking the bound
1B <y =1+ VoKk(k+1)?
from [11, Thm. 4.1] and using (4.6), we obtain the norm estimate
IB7H] < 2y, (4.7)

provided that
Jka 1 1
IKoll < (I [+c())/Vka< oy = 51801l

which holds for a > 4y%(] | +c( ))?/k. Since (V) written in operator form is the equation B u = @, where
g € V_ s defined by §(v) = (9,Vv), v € V_ , this implies that the solution u of (V) satisfies

lulv, <2ylglv-, < 2yk™gliz(so)s (4.8)
provided ka > a-(1,4y2(] | +c( ))?).
5. Applications.

5.1. Plane Wave Incidence, Diffraction Gratings, and Other Scattering Problems. As an
application of Theorem 4.1, the problem of plane wave incidence in the 2D case (n = 2) can be treated.
That is, it can be shown, in appropriate function spaces, that the scattering problem for plane wave incidence
has exactly one solution in 2D (for a brief discussion of what goes wrong in the 3D case, see Remark 5.5
below, and see Remark 5.6 for details of 3D scattering problems which can be tackled by Theorem 4.1). The
incident plane wave has the form

ViNg) = arp(ik sv Bx; — eosBXs ),

where 8 is the angle of incidence, with |8] < m/2. In this problem we look for the total field v = vS¢ 4 vIn,
VvS€ being the unknown scattered field, such that

(A+k*)v—=0inD, v=0onT, (5.1)

VSC

and satisfies an appropriate radiation condition.

This 2D rough surface scattering problem with plane wave incidence has been treated before, by integral
equation methods, in 17] where it is shown that there exists exactly one solution v € C*(D) N C(D) such
that v is bounded in Sp, for every h > 0, and vs° satisfies the radiation condition in the form (2.5) (termed
the upwards propagating radiation condition (UPRC) in 17]). However, the proof in 17] is only for the case
where @D is the graph of a sufficiently smooth (C!'!) function (this, or at least a restriction to Lyapunov
surfaces, is an essential restriction due to the compactness arguments in the exist:@8@idiien



this section we



and such that vS¢ -—= v — vi" satisfies the Rayleigh expansion radiation condition, that

Vi) = : Um ##p(iK amX; + BmX2 ),  # € Uy, (5.3)
m Z

where the Uy, are complex constants, Om j: sh 8 + 2mm/(kA), and

12
B VI —0oZ, |oam| <1,

i/oZ, —1, |Om|>1.

It is shown in 22| that (DGPW) has exactly one solution in the case that D is the graph of an (A-
periodic) Lipschitz function, by extending well-known arguments (see e.g. 25]), which apply in the case

when 0D is the graph of a smooth function, to the non-smooth Lipschitz case. The following corollary of

Theorem 5.1 extends that result further to the much more general case where dD is only required to satisfy
(2.1), (2.2), and (5.2).

COROLLARY 5.2. Suppose that (5.2) holds. Then (DGPd) has exactly one solution, and this is the
unique solution of (Pid).

Proof. Suppose that v



Proof. 1t is almost immediate from the observations immediately above the theorem that if v satisfies
(PWSC) then u, defined by (5.5), satisfies the above boundary value problem. The only difficulty is to show
the radiation condition. To see this we note that v3¢ satisfies the radiation condition (2.5), from which it
follows (see 9] and cf. Remark 2.2) that vS¢ satisfies (2.5) with I'g replaced with I'¢, for all ¢ > 0, in particular
with ¢ = —b. Since u = v5¢ in U it is immediate that v satisfies (2.5) with T’y replaced by I'—p, which is
equivalent (see Remark 2.2) to (2.4) with Xy replaced by Xz + b.

We next observe that it follows from Theorem 4.1 that the boundary value problem for u has exactly
one solution (U satisfies exactly a boundary value problem of the form of Section 2 after vertical translation
of the axes by a distance |b|). The theorem is thus proved if we can show that this solution satisfies that
uls, € Vy?, for every h >0, and the bound |uls, v~ <



where G € V_ is defined by

G(w) = /'o AR <%\;‘: +Ty_vi”> dsgr), weVv_ . (5.8)

The restriction to the range < —I )Q arises since VI €V for < —1/2 but not for —=1/2. Having solved
this variational problem to determine V|s,, V is determined throughout D through (2.5) satisfied by v3¢. Of
course this variational formulation is well-posed, by Theorem 4.1.

REMARK 5.5. The above results show that the problem of plane wave incidence is well posed in the 2D
case. In the 3D case it seems to us likely that a solution to the problem of plane wave incidence does not
exist for every choice of domain D satisfying (2.1) and (2.2). Certainly, the methods of argument above do
not extend to the 3D case, for, in the 3D case, gp in Theorem 5.3 is in L%(D) only for < —I, and G
given by (5.8) is in V_ only for < —I, so that Theorem 4.1 does not apply. Further, even the formulation
of the 3D plane wave problem appears problematic in 3D. Precisely, just as the radiation condition (2.4)
does not extend to a bounded linear functional on Hllz(ro) for < —1, it does not extend to a bounded
linear functional on L°°(Tg) (which would require that the integral in (2.5) be absolutely convergent for every
Up € L*(To), which is true in 2D but not in 3D, as a consequence of the asymptotics (2.8)). Thus it is



where the constants A and B are chosen to ensure tﬁat vin ¢ Cl(R‘i (again this is possible provided
is chosen sufficiently small). Then V" € HZ (R % with (A +Kk>)VI" = gc, where gch’) = AK?,

X3+ (X 3= H)2< | gc#) =0, otherwise. e observe that gs is compactly supported so that gs € L?(D)
for every € R. Further, it is an easy calculation to see that gc € L2(D) for < —1/2,



explicitly V () denotes the completion of {U|S(()R) “u € CP(DM)} in the norm

172
ully g = </5(R) <!(1 +x2) P2ul* V(1 + ) /2u)|2>dw> . (5.12)

We remark, as is easily seen from Lemma 2.1, that the norms || - |, @z, € R, are equivalent since S(()R) is
bounded, so that, as linear spaces, for € R,V R _v®R) .= VO(R). The approximating variational problem
is the following: find u(® € V (®) such that

BRW® v)=—(g,v), WweVv®, (5.13)

Here B(R) is the continuous sesquilinear form on V(R x V (R) defined by (3.3) with D replaced by D®) ie.
defined by

B®(u,v) = /( )(Vu - Vv — k*uv) @~ +/( Y-V Ty—udsg), (5.14)
SoR 'oR

where F((JR) = SSR) N T (see Remark 3.6 for the interpretation of y— in this case).

R)

Making the observation that we can view V'’ as a closed subspace of V (the elements of V ®) become

elements of V if we extend them by zero from S(()R) to Sp), the analysis of the error in approximating u by
u® follows the usual pattern for analysing the Galerkin method for variational problems via a generalized
Céa’s lemma. Precisely, if 0 € V(R c V | then, for v e V®  applying (5.11)

B®(a,v) =B(0,v) =B —u,v) —(g,V).
Subtracting this equation from (5.13) we see that
BR (@ —u®,v)=B@@-u,v), weVvV®, (5.15)

Now recall from Section 4 that B -V — V_ is our notation for the bounded linear operator



constants dependent only on and |b],

[0 =ullv,, =@ = Xr)ullv,,

< cy </ 1 +x3) 2
s¢



THEOREM 6.1. For ka > 1 and | | <1, the commutator C4 defined in (6.3) has norm < c( )y/k/a on
L2(R™M).

It is enough to consider € (0,1) since the case of negative then follows by duality (with respect to
the scalar product on LZ(R™)). We split the symbol ta as

ta =@ + 10 = () ta(8) + (1



with b = F(I + x?)~ /2. Here the integral in (6.14) is well defined since Fu is rapidly decreasing and
b € L'(R™) for > @ (see the next lemma), and we have used the relation F (I +x2)~ 2v =b *Fv for a
function Vv of rapid decay, with * denoting convolution.

LEMMA 6.4. For any >0, the functions b and |§| Veb are rapidly decreasing as |§| — oo and belong
to LL(R™). For the proof of this, we refer to 29, Chap. 8.1]; see also 34, Chap. 5.3|.

Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

INFul e < H/ b & mllE -l sw



where ¢ is a smooth function with somewhat larger support and oY = .

Let first m =1. Then (6.20) follows for €






By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates
1M, &) Vllvie oy < (0, )V ogey s v E CPER™),  xo € (0,h), (6.29)

where M(Xn, &) = #-p(—Xnt(§)). Consider a decomposition t = t(® +t() as in (6.5), with a =1, t(®) = xt,
t() = (1 —x)t and a cut-off function X vanishing near |&| = k, so that t(®) is a smooth symbol. We
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