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Abstract

This dissertation considers approximations to the scattering of a train of

small-amplitude harmonic surface waves on water by topography, using the

mild-slope equation and the modified mild-slope equation. The associated

boundary value problem is converted into two real-valued integral equations,

the solutions of which are approximated by variational techniques. The re-

production of existing results over different shaped taluds are considered and

show that this integral equation method is an equally effective solution tech-

nique as existing approximate numerical differential equation techniques. Fi-

nally, a ripple bed example is considered and it is reaffirmed that the modified

mild-slope equation is capable of producing more accurate approximations

over a wider range of topographies than the mild-slope equation.

This dissertation is based on the work of Chamberlain (1993).
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Chapter 1

Introduction

A long-standing problem in water wave theory is the determination of the

influence of bed topography on an incident wave train. This is of consider-

able importance in coastal engineering where the shape of the seabed, and in

some instances man-made obstacles, can dramatically effect wave behaviour

(e.g.predicting wave heights in harbours). These problems involve a combi-

nation of the scattering, diffraction and refraction of waves and are difficult

problems to solve.

This dissertation is concerned with the effect on waves of bed topography.

The situation considered is where two regions of constant depth (not neces-

sarily equal) are joined by a hump occupying a finite region in the seabed.

The linearised equations for modelling such a flow are widely known but

unfortunately there are rarely any existing analytic solutions except in very

simple cases where vertical and/or horizontal boundaries are used. As a re-

sult of this, the mild slope approximation is used in order to generate the



an integral equation to be solved.



Chapter 2

Integral equations

Integral equations occur widely in many areas of applied mathematics. An in-



• whether the equation is homogeneous or inhomogeneous.

The ‘kind’ of an integral equation refers to where the unknown function

appears in the equation. If the unknown function only appears under the

integral sign then the equation is said to be first-kind, whereas if it appears

outside the integral sign as well then it is said to be second kind.

The interval of integration determines whether the integral equation is a

Volterra equation or a Fredholm equation. If the interval of integration is

definite then the equation is said to be a Fredholm equation. If however the

interval of integration is indefinite then the equation is said to be a Volterra

equation.

The equation is said to be singular if the interval of integration is indefinite

or if the integrand is unbounded at any one or more points in the interval



2.2 Integral operators

An example of a second kind, Fredholm integral equation is

χ(x) = f(x) + λ

∫ b

a

k(x, t)χ(t)dt,

where λ is a constant, f(x) is a forcing term and the function k(x, t) is called

the kernel of the function and can be real or complex-valued.



Suppose we are trying to find an approximation to the integral equation

Aχ = f,

where A is defined as

A = (I − λK).



which is equivalent to

N
∑

n=1

(anAψn, ψm) = (f, ψm), (m = 1, ...N). (2.4)

This gives an N × N matrix system which is solved for the coefficients an.

This solution technique is called Galerkin’s method.

2.4 The Petrov-Galerkin method





The standard three-dimensional equations for fluid flow involve the use of

Laplace’s equation in three dimensions in order to solve the problem. How-

ever the modified mild-slope equation seeks to reduce the dimension of the

problem by approximating the dependence of φ on z.

3.2 Derivation of the modified mild-slope equa-

tion

It was stated in the previous section that the fluid we are considering is

deemed incompressible and irrotational. This means that a velocity poten-

tial exists and satisfies Laplace’s equation in three space dimensions. As we

are only attempting to approximate the solution, we can seek a weak solution

ξ ≃ φ of Laplace’s equation in the sense that ∇2ξ is orthogonal to a given

function w. Hence

∫ ∫

D

(
∫ 0

−h

w∇2ξdz

)



where the function h(x, y) is the still water depth at the location (x, y) and

the function φ0(x, y



u2(x, y) =
ksech2(kh)

12(K + sinh(K))3
(K4 + 4K3 sinh(K) − 9 sinh(K) sinh(2K)

+ 3K(K + 2 sinh(K))(cosh2(K) − 2 cosh(K) + 3)).

The abbreviation K = 2kh has been used above.

Equation (3.1) is known as the modified mild-slope equation.

3.3 The mild-slope equation

The mild-slope equation is an alternate approximation to the modified mild-

slope equation. It can be easily obtained from (3.1) above by making the

assumption that the second derivative of h and the square of its first deriva-

tive are negligibly small. This process results with

∇ · (u∇φ0) + k2u = 0 (3.2)

which is the mild-slope equation.

The mild slope equation was the initial approximation used and was de-

rived by Berkhoff (1973,1976). The paper that my dissertation has been

based upon was written at a time when the mild-slope equation was a stan-

dard approximation to the function φ(x, y, z) in the expression for the ve-

locity potential Φ(x, y, z, t). However since this paper has been published,

the modified mild-slope equation has been derived. This was initially de-

rived because many authors had commented that the mild-slope equation

was failing to produce adequate approximations for certain types of topog-

raphy such as ripple beds (where a finite interval of varying depth consists

16



of small-amplitude sinusoidal ripples). This lack of accuracy led to many

authors having to model ripple bed problems by alternate means. In 1995,

Chamberlain and Porter developed the modified mild-slope equation as an al-

ternate approximation technique. It has been found that this approximation

can more accurately predict behaviour over a wider range of topographies.

The methods of solution discussed in the ensuing chapters are equally ap-

plicable to the modified mild-slope equation and the mild slope equation,

the only difference being the inclusion of the extra two terms in the initial

equation.

17



Chapter 4

Formulation of the wave

scattering problem



h(x) =







h0 ∀x ≤ 0

h1 ∀x ≥ l

where h0 and h1 are constant for a given problem and may or may not be

equal. We further assume that h(x) is continuous. The final assumption

we make is that the wave motion is such that the crests are parall



and k0 is the wavenumber corresponding to h0. The primes here denote dif-

ferentiation with respect to x.

W



ζ(x) =







A−eik0x + B−e−ik0x ∀x ≤ 0,
(



ζ ′(l+) = ζ ′(l−) −
u′(l−)ζ(l)

2u(l)
.

This pair of equations tells us that although ζ is continuous at x = 0 and

x = l, its first derivative is not continuous at these locations. Furth



• if A− = 0 then R2 = B+

A+ and



As a result of this, we must choose ζ̂ to satisfy the inhomogeneous equation

subject to the homogeneous forms of (4.5) and (4.6). Hence

ζ̂ ′′ + k2
0 ζ̂ = ρζ.

These conditions would result in the integral equation having a complicated

kernel. However, if we rewrite the boundary conditions as

ζ ′(0) + ik0ζ(0) = 2ik0(c1 + c2ζ(0) + c3ζ(1)) (4.9)

and

ζ ′(l) − ik0ζ(l) = −2ik0e
−ik0l(c4 + c5ζ(0) + c6ζ(l)), (4.10)

the resulting integral equation is of a lot simpler form. Note that if A+ is set

to 0 as it is for the subsequent numerical results, the coefficients c1, ..., c6 are

given by

c1 = 1, c2 = −
iu′(0)

4k0u(0)
, c3 = 0,

c4 = 0, c5 = 0, c6 =

(

iu′(l)

4k0u(l)
−

(k1 0



were to set A− = 0 then the coefficients could be calculated in the same way

but they would be different to the coefficients above.

If we regard the right-hand sides of (4.9) and (4.10) as known then they only

contribute to the function ζ0 and not to ˆ





and

χ2(x) = sin(k0x) +
1

2k0

∫ l

0

sin(k0|x − t|)ρ(t)χ2(t)dt. (4.16)

These equations may be recast as equations on the real, infinite-dimensional

Hilbert space X consisting of the real elements of L2(0, l) by introducing two

self-adjoint operators L and P , which map X into itself, according to

(Lχ)(x) =
1

2k0

∫ l

0

sin(k0|x − t|)χ(t)dt

and

(Pχ)(x) = ρ(x)χ(x).

If we also define f1 and f2 by f1(x) = cos(k0x) and f2(x) = sin(k0x) then χ1

and χ2 are solutions of the two operator equations

Aχ1 = f1 (4.17)

and

Aχ2 = f2 (4.18)

27



in X where A = I−LP . In order to determine the reflection and transmission

coefficients, we need to find approximations to χ1 and χ2 and also to ζ(0)

and ζ(l).

28



Chapter 5

Methods of solution

As already stated, approximations to χ1, χ2, ζ(0) and ζ(l) are required. The

functions χ1 and χ2 can be solved by numerous approximation methods for

inhomogeneous integral equations whereas the approximations to ζ(0) and

ζ(l) are not as straightforward. The following two results are useful in what

follows.

Lemma: Suppose that I − LP is invertible and that χ1 and χ2 are the solu-

tions of (4.15) and (4.16) where L and P are self-adjoint. Then (χ1, Pf2) =

(χ2, Pf1).

Proof:

(χ1, Pf2) = (Pχ1, (I − LP )χ2) = ((I − LP )





b3 =
1

2
(c3 + c6), b4 =

1

2
(c1 + c4e

−2ik0l),

b5 =
1

2
(c2 + c5e

−2ik0l), b6 =
1

2
(c3 + c6e

−2ik0l − e−ik0l).

Also,

I+ = b1 + b2ζ(0) + b3ζ(l)

and

I− = b4 + b5ζ(0) + b6ζ(l).

These equations are not difficult to obtain. The expression for I+ arises from

putting x = 0 into (4.11) whereas putting x = l into (4.11) yields the expres-

sion for I−. Substituting (4.14) into the plus option of (4.13) gives

I+ = i(c1 + c2ζ(0) + c3ζ(l) − I−)B2 + i(c4 + c5ζ(0) + c6ζ(l) − I+)B1 (5.1)

whereas putting (4.14) into the minus option of (4.13) gives

I− = i(c1 + c2ζ(0) + c3ζ(l) − I−)B1 + i(c4 + c5ζ(0) + c6ζ(l) − I+)B2 (5.2)
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The two simultaneous equations come from substituting the already known

expressions for I± into (5.1) and (5.2).

This last result tells us that a knowledge of the inner products A11, A12 and

A22 will allow us to determine the values ζ(0) and ζ(l) via (4.17) and (4.18).

This in turn will allow us to calculate the reflection and transmission coeffi-

cients. However, before we can solve for ζ(0) and ζ(l), we need to determine

approximations to χ1 and χ2.

5.1 Inner product approximations

We attempt to find an approximation to the three inner products Ajk, (j, k =

1, 2) by using variational calculus.

Consider the functional Jjk : X2 → ℜ defined by

Jjk(p, q) = (fj, q) + (p, Pfk) − (Ap, q), j, k = 1, 2.

If we let p = χj + δχj and q = ϕk + δϕk where δχj represents the variation

in the approximation to χj and δϕk represents the variation in the approxi-

mation to



= Jjk(χj, ϕk) + (fj − Aχj, δϕk) + (δχj, Pfk − A∗ϕk)

+ O(||δχj||||δϕk||)

and hence we deduce that Jjk(p, q



Putting these expressions into the expression for Jjk yields

Jjk(χj, ϕk) ≃

N
∑

m=1

b(k)
m (fj, ξ

(k)
m ) +

N
∑

n=1

a(j)
n (ψ(j)

n , Pfk)

−
N



finite-dimensional trial spaces from which the approximations are selected.

We seek an approximation to χ which is the solution of the integral equation

χ = f + LPχ. The Neumann series for this equation is given by

χ = f +
∞

∑

n=1

(LP )



Chapter 6

Numerical results

In this section, we attempt to reproduce various results that h



which he produced a graph of |R| against ws, a dimensionless parameter.

The paper presented by Chamberlain (1993) considered the reproduction of

Booij’s graph using a very similar method to the one set out in this disser-

tation. He produced results that to the naked eye seemed to be identical to

the original set produced by Booij. To confirm the accuracy of our methods

we are here again interested in reproducing Booij’s results for the MSE.

In Booij’s original paper, all length scaling is conducted with respect to the

deep-water wavenumber σ2

g
. Chamberlain chose to non-dimensionalise all

length values with respect to l and create a non-dimensional H(x) instead of

the h(x



The program was run using σ2

g
= 1 and for values of ws between 0.05 and

6. The number of discrete points in each interval used for the numerical

computation of the integrals was 200. This ensured that the step size was

small which is crucial when performing numerical integratio



ss
10

−1



ss
0 1 2 3 4 5 6

2

3

4

5

6



ss
0 1 2 3 4 5 6

2

3

4

5

6

7

lNF igur e6.3:Numb erofbasisfunct ionsneededt om aket heer r or <10



ss
0 1 2 3 4 5 6

2

3

4

5

6

7

8

9





ss
10

−1
10

0
10

1

10
−1

Petrov−Galerkin
Neumann series

l

|R
1
|

Fi3880 1 39181j



discontinuous. If h′(x) is continuous then our current set of boundary con-

ditions are correct, whereas if h′(x) is discontinuous at x = 0 and/or x = l,

then new boundary conditions are required.

Booij’s test problem involves two slope discontinuities in h′ at x = 0 and

x = l. This means that our existing boundary conditions are incorrect. The

correct set of boundary conditions for this problem are

ζ ′(0) + ik0ζ(0) = 2ik0

(

1 +
iu1(0)

2k0

√

u(0)

)

− 2ik0
iu′u



ss
10

−1
10

0
10

−2

10
−1

MSE
MMSE

l

|



ss
10

−1
10

0
10

−3

10
−2

10
−1

MSE
MMSE

l

|R
1
|

Figure 6.7: Comparison of the MSE and MMSE subject to discontinuous

boundary conditions applied to Booij’s test problem.

and Staziker.

6.2 The effects of different types of talud on

the reflection coefficients

This example is again taken from the paper by Chamberlain (1993). In his

paper, Chamberlain endeavoured to determine the effect of different types

of talud on the reflection coefficient. He considered three different types

of talud: a concave talud, a convex talud and a linear talud. The non-

dimensional fluid depths to the left and right of each talud are 1 and 0.5

respectively. The equations for each talud are defined to be:

H1(x) =
1

2
+

1

2
(x − 1)2

47



for the convex talud,

H2(x) = 1 −
1

2
x

for the linear talud, and

H3(x) = 1 −
x2

2

for the concave talud. As discussed in the previous example, Chamberlain

employed a non-dimensional scaling on his variables with respect to l. Thus

his x above is defined to be equal to the x used in our notation divided

through by l. Also, the above equations defining the shape of each talud

need to be divided through by h0. Therefore in our notation the shapes of

the taluds become

h1(x) =
h0

2

(

1 +
(x − l)2

l2

)

,

h2(x) = h0

(

1 −
x

¡ 2(x) =
h0

(

1 + (

x



ss
0 1 2



Chamberlain and Porter (1995) considered some examples of wave scattering

over ripple beds to emphasise the difference in approximations produced by

the MSE and the MMSE. They used some experimental data provided by

Davies and Heathershaw (1984) and compared their solutions to these results

in order to draw conclusions about accuracy. We now attempt to reproduce

this here.

The function h(x) in this problem is now taken to be

h(x) = h0 − d sin

(

2nπx

l

)

, 0 < x < l

where n is the number of ripples. The real constant d will be defined shortly.

This bedform therefore consists of a sequence of n sinusoidal ripples about

the mean depth z = −h0.

The examples considered by Chamberlain and Porter (1995) involved the

non-dimensionalisation of the parameters in the problem. They plotted a

graph of |R1| against a parameter β in the interval (0.5, 2



δ =
d

h0

,

and fix a particular β ∈ (0.5, 2.5) we obtain

k0h0 =
βπ

20δ
,

l = nπβ tanh(k0h0),

h0 = k0h0 tanh(k0h0),

so provided that δ and n are specified at the start of every problem, we can

calculate every necessary quantity.

Figure (6.9) shows the approximations produced by the MSE and





very different. The MSE picks out that there should be a peak at β = 1 but

it does not predict the correct value at the peak. It also completely misses

the peak at β = 2. The MMSE does however pick out the correct values at

the peak at β = 1 and β = 2. This graph is again identical to the naked eye

to the graph produced by Chamberlain and Porter.
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Chapter 7

Conclusions

The scattering of small-amplitude waves by variations in a one-dimensional

topography has been examined. Rather than attempting to solve the origi-

nal boundary value problem that was formulated as an ordinary differential

equation, the problem has been converted to a complex-valued integral equa-

tion and then split up into two further real-valued integral equations. This

method is very similar to the method used by Chamberlain (1993) except

that the integral equation formed is not self-adjoint and the function ρ is not

forced to be entirely one-signed. This method does not have the advantage

of providing an integral equation for which we can easily derive error bounds

for but the implementation of the approximation is made considerably more

simple.

We have seen that this method has proved just as effective as the origi-

nal integral equation method used by Chamberlain, and that it can easily

reproduce the results that other people have obtained using numerically solv-

ing differential equation techniques. In addition, some calculations have been
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performed using the modified mild-slope equation which has never been done
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