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Abstract

In this thesis we are concerned with the study of scattering of acoustic waves

generated by the interaction of an incident wave with an object producing

reected and di�racted waves; we study the case of a square in detail. We

look at how the wave scattering problem based upon the Helmholtz equation

can be reformulated to a lesser dimension size using integral equation formu-

lations. This process may give rise to non unique solutions not inherent to

the original problem. To investigate this, we consider two Boundary Element

Methods that can be used to �nd an approximate solution numerically. The

�rst, a standard collocation method, illustrates how easily spurious solutions

are found. The second, a hybrid Galerkin BEM proposed by Langdon and

Chandler-Wilde, illustrates how careful consideration of the desired solution

when designing a numerical method can avoid these spurious solutions whilst

saving on computational time.
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Chapter 1

Introduction

1.1 Motivation

Scattering problems for acoustic and electromagnetic waves have been the

subject of much theoretical and numerical study. There are many appli-

cations in the �elds of physics, engineering, and geology, including radar

and sonar, medical imaging, and geophysical exploration. Direct scattering

problems are those which aim to �nd the scattered �eld produced by the

interaction of a known incident wave with an object, whereas the inverse

scattering problem is that of trying to determine the nature of the object

or domain of de�nition, based upon the behaviour of the scattered wave.

These problems are often not solvable analytically, and so various numeri-

cal techniques have been devised in order to �nd a good approximation to

the true solution, including Finite Element Methods and Boundary Element

Methods. However, high wave frequencies can be di�cult to approximate

numerically, which can pose problems due to the often highly oscillatory na-

ture of the solution. Thus it is advantageous to use a numerical method that

approximates these high frequencies well, in addition to demonstrating fast

convergence and low storage and computational costs.

2
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1.2 Aims and Outline

We aim �rst of all to study and explain the theory that allows a problem

over an in�nite exterior domain to be reformulated into a boundary integral

equation over a �nite domain, and the problem of non-unique solutions that

may arise from this process. We aim to consider methods that achieve a
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racy is required, thus avoiding extra computing expense. We then conclude

our �ndings and present some possible research ideas for further expansion

around the subject in Chapter 5.



Chapter 2

Background

2.1 Scattering Problems

Direct scattering problems are those which aim to �nd the scattered �eld

produced by the interaction of a known incident wave with an object, based
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Figure 2.1: Total wave �eld comprising incident wave ui and scattered wave
us

(in two dimensions) and is time harmonic if

U = <fe�
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which is satis�ed by ui, us and u = ui+us. The Helmholtz equation is elliptic,

and the use of Green’s functions is particularly appropriate for solving this

type of partial di�erential equation [3]. The fundamental solution of the

Helmholtz equation is the Green’s function

�(x;y) =
i

4
H1

0 (kjx� yj) (2.3)

for the 2D case, or

�(x;y) =
eikjx�yj

4�jx� yj
(2.4)

for the 3D case, where H1
0 denotes the Hankel function of the �rst kind of

order zero. In both the 2D and 3D case, �(x;y) is singular at x = y, and

j�(x;y)j ! 1 as x! y, as explained in [4] and [7]. The Hankel function is

also known as a Bessel function of the third kind, so called as it comprises a

complex linear combination of Bessel’s functions of the �rst kind J�(x), and

second kind Y�(x), resulting in

H1
� (x) = J�(x) + iY�(x):

The �rst and second kind Bessel functions are so called as they are linearly

independent solutions of Bessel’s equation

x2y00 + xy0 + (x2 � �2)y = 0:

2.2 Boundary Integral Formulation

The main advantage of using integral equation methods in the solution of

boundary value problems is that they allow the problem to be reduced from

one involving the whole domain of interest to one involving just the boundary,

reducing the dimension of the problem by one. This is especially beni�cial for

exterior problems where the region of interest is in�nite, such as the exterior
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2.3 Uniqueness of Solutions

As we have seen in x2.2, it is possible to reformulate a problem over an entire

domain into one involving just the boundary, using Green’s Representation

Theorem. Unfortunately, as per [2], due to the reformulation of the problem

as a boundary integral equation, there may arise non-unique solutions that

were not inherent to the original problem. Although the boundary values

of u(x) satisfy the integral equation (2.7), the solution of (2.7) may not be

unique. There exist an in�nite set of values of k for which the equation has

a multiplicity of solutions, which coincide with the ‘resonant’ wavenumbers

for a related interior problem.

To explain this we start with two well known theorems of Fredholm inte-

gral equations. The �rst is a fundamental theorem of integral equations, as

explained in [3].

Theorem 2.1 The Fredholm Alternative

If the homogeneous equation

 + �

Z
Γ

K(x;y) (y)dSy = 0; (2.8)

for boundary � and scalar �, only possesses the trivial solution  = 0, then

the inhomogeneous equation

 + �

Z
Γ

K(x;y) (y)dSy = f (2.9)

will have a unique solution, for all square integrable functions f and kernels

K(x;y).

Proof. Suppose  1 and  2 are two linearly independant solutions of (2.9), so

we have

 1 + �

Z
Γ

K(x;y) 1(y)dSy = f; (2.10)
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and

 2 + �

Z
Γ

K(x;y) 2(y)dSy = f: (2.11)

Then taking (2.10) from (2.11) results in

( 2 �  1) + �

Z
Γ

K(x;y)( 2(y)�  1(y))dSy = 0; (2.12)

an equation of the form (2.8) for  2 �  1. Thus, if there is only the trivial

solution to (2.8), we conclude that  2 =  1: the solution to (2.9) is unique.

As quoted by Burton and Millar in [2], our second theorem:

Theorem 2.2
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Consider now the interior problem

r2v + k2v = 0 in 
 (2.16)

and

@v=@n = 0 on �. (2.17)

This in general only has the solution v � 0 unless k is one of an in�nite set K1

of discrete resonant eigenvalues for which there exists a non-trivial solution.

Similar to (2.5), we have the Green’s formulation for v solving (2.16):

1

2
v(x) +

Z
Γ

v(y)
@

@ny
�(x;y)� �(x;y)

@

@n
v(y)dSy = 0 (x 2 �): (2.18)

Applying @v=@n = 0, we obtain

1

2
v(x) +

Z
Γ

v(y)
@

@ny
�(x;y)dSy = 0 (x 2 �)

which is an equation to solve for v in the form of (2.14). If k 2 K1, there is

a non trivial solution v, and hence the solution to (2.15) will be non unique.

That is to say, there are other solutions to (2.15) besides @u
@n

where u solves

(2.2).

As explained in [2], (2.7) will also have the same defect: there are a

multiplicity of solutions whenever k 2 K2, the set of eigenvalues for the

interior Dirichlet problem. It is possible when trying to solve (2.6) or (2.7)

for @u
@n

that a numerical scheme might pick up an eigenfunction of the related

interior problem. Nevertheless, the two equations (2.6) and (2.7) always have

only one solution in common.

As suggested by [2] and [1], to avoid obtaining an over-determined system

of equations, we instead add a multiple i� of (2.7) to (2.6), where � 2 <n0,
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resulting in

1

2

@u(x)

@n
+

Z
Γ

�
@�(x;y)

@nx
+ i��(x;y)

�
@u(y)

@n
dSy =

@ui(x)

@n
+ i�ui(x); x 2 �:

(2.19)

This can be written as

(I + �)
@u

@n
= f x on � (2.20)

where

�v(x) = 2

Z
Γ

�
@�(x;y)

@nx
+ i��(x;y)

�
v(y)dSy (2.21)

and

f(x) = 2

�
@ui(x)

@n
+ i�ui(x)

�
: (2.22)

By choosing � 6= 0 in (2.19), we can solve to �nd a unique @u=@n. Generally,

solving either (2.19) or, by taking � = 0, (2.6) will result in the same solu-

tion. However if k is an eigenvalue of the related interior Neumann problem

(2.16)-(2.17), (2.6) will have a multiplicity of solutions. To solve (2.19) nu-

merically is more expensive computationally than to solve (2.6) as it requires

the evaluation of more Hankel functions, and this is expensive computation-

ally.

The choice of coupling parameter � has received much attention in the

literature of recent years. As explained in [1], in this case � = k is the

optimal choice for �nding the exterior solution and ensuring the system is

well conditioned. Unfortunately, this choice could potentially double the

computing time compared to choosing � = 0. As can be seen in Table 2.1,

the computation time in Matlab for the evaluation of Hankel functions grows

at a rate similar to that of the increase in the number to be evaluated. It

is therefore of interest to determine whether it is necessary to use (2.19)

or whether numerical schemes for (2.6) do in fact converge to the required

solution of the exterior problem (2.2).
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Table 2.1: Evalution Time of Hankel Functions

Number of Hankel functions Time (seconds)
1 3.72�10�4

10 8.72�10�4

100 1.041�10�3

1000 2.5799�10�2

2.4 A Speci�c Problem

We will consider in this project the scattering of acoustic waves by a convex



14 CHAPTER 2. BACKGROUND

Figure 2.2: Reection of ui on a square domain.

downward vertical. The scattered �eld must also satisfy the Sommerfeld

radiation condition

lim
r!1

r1=2

�
@us

@r
� ikus

�
= 0 (2.26)

uniformly in r, where r = x=jxj is a unit vector in the direction of x, and

r = jxj. This condition ensures us is an outgoing wave, so the scattered �eld

is not reected back from in�nity.

2.5 Eigenvalues of the Interior Neumann Prob-

lem

In order to investigate for which values of k the equation (2.20) with � = 0
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on the interior of the square domain 0 � x � L, 0 � y � L, with Neumann

boundary conditions
@u

@n
= 0 on � (2.28)

on the boundary. We wish to �nd the eigenvalues k for which there are non

trivial solutions, and the corresponding eigenfunctions. These will be the

values of k for which (2.6) and (2.7) will not have a unique solution. These

solutions are those which we expect our Boundary Element Methods to pick

up when we use values k that are eigenvalues when trying to �nd the solution

to the exterior Dirichlet problem, that is (2.23) and (2.24) in <2n
.

Using standard separation of variables techniques, we set u(x; y) = X(x)Y (y).

From the Helmholtz equation we obtain

X 00Y +XY 00 + k2XY = 0

which rearranges to
X 00

X
+ k2 = �Y

00

Y
= �

where � is our separation constant. Rearranging, we obtain

X 00 + (k2 � �)X
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solution u(x; y).

First considering the case �





Chapter 3

Solving the Boundary Integral

Equation
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used to calculate the solution at points in the original solution domain.

Two common boundary element methods are the collocation and Galerkin
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For the 2D case with boundary � : x 2 [a; b], to solve the problem

u(x) +

Z b

a

K(x; y)u(y)dy = f(x) (3.4)

using a simple collocation method we write u as in (3.1), and choose the

piecewise constant basis functions

�j(x) =

(
1 x 2 [xj�1; xj]

0 elsewhere
; (3.5)

where xj = a+ j
M

(b� a) for the points on the boundary

a = x0 < x1 < ::: < xM = b:

Substituting this into (3.4) it follows that

MX
j=1

uj[�j(x) +

Z b

a

K(x; y)�j(y)dy] = f(x): (3.6)

We choose the collocation points sm to be the mid points of each interval

[xj�1; xj] and forcing (3.6) to hold at each of these gives the M equations.

The resultant matrix system is

[�+K] u = f (3.7)

where

u =

0BBBB@
u1

u2

...

uM

1CCCCA (3.8)

is a vector of unknowns,
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� =

0BBBBB@
�1(s1) �2(s1) : : :

�1(s2)
. . .

...
. . .

...

: : : �M(sM)

1CCCCCA = I; (3.9)

the identity matrix,

K=

0BBBBB@
R b
a
K(s1; y)�1(y)dy

R b
a
K(s1; y)�2(y)dy : : :R b

a
K(s2; y)�1(y)dy

. . .
...

. . .
...

: : :
R b
a
K(sM ; y)�M(y)dy

1CCCCCA

=

0BBBBB@
R x1

x0
K(s1; y)dy

R x2

x1
K(s1; y)dy : : :R x1

x0
K(s2; y)dy

. . .
...

. . .
...

: : :
R xM

xM�1
K(sM ; y)dy

1CCCCCA ; (3.10)

and

f =

0BBBB@
f(s1)

...

f(sM)

1CCCCA : (3.11)

For our wave scattering problem (2.20), the kernel is given by

K(x;y) = 2i�H1
0 (kjx� yj) + 2

@
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Figure 3.1: Outward normal derivative vectors

For the normal derivative of the incident wave we have,

@ui

@n(x)
= 5ui � n =

 
@ui

@x1

@ui

@x2

!
�

 
n1

n2

!
(3.15)

where x = (x1; x2)T , so that on �1

@ui

@n
= � @u

i

@x2

= ik cos(�)eik(x1 sin(�)�x2 cos(�));

on �2

@ui

@n
=
@ui

@x1

= ik sin(�)eik(x1 sin(�)�x2 cos(�));

on �3

@ui

@n
=
@ui

@x2

= �ik cos(�)eik(x1 sin(�)�x2 cos(�));

and on �4

@ui

@n
= � @u

i

@x1

= �ik sin(�)eik(x1 sin(�)�x2 cos(�)):
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Similarly, for the normal dervivative of the fundamental solution

@�(x;y)

@n(x)
= 5�(x;y) � n =

 
@Φ(x;y)
@x1

@Φ(x;y)
@x2

!
�

 
n1

n2

!
; (3.16)

where y = (y1; y2)T . From [4],

d

dz
H1

0 (z) = �H1
1 (z);

so that on �1

@�

@n
= � @�

@x2

=
k(x2 � y2)

jx� yj
H1

1 (kjx� yj);

on �2

@�

@n
=
@�

@x1

= �k(x1 � y1)

jx� yj
H1

1 (kjx� yj);

on �3

@�

@n
=
@�

@x2

= �k(x2 � y2)

jx� yj
H1

1 (kjx� yj);

and on �4

@�

@n
= � @�

@x1

=
k(x1 � y1)

jx� yj
H1

1 (kjx� yj):

3.2 Numerical Results

The standard BEM program was run for various values of k, chosen so as to

compare the e�ectiveness of the method for those k which are eigenvalues of

the interior problem, as given by (2.33), and those which are not. Recalling

x2.3, we might expect the BEM to work well when k is not an eigenvalue,

and to perform poorly when k is an eigenvalue, as in that case the BIE does

not have a unique solution. When � = k we expect the method to work

well in all cases. Each side of the square was split into N collocation points,

for N = 2; 4; 8; 16; 32; 64; 128. The program was used to test the importance
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of the coupling parameter � in �nding the unique solution to the exterior

problem, rather than the spurious solutions related to the interior problem.

When computing the L2 error jjexact�approximatejj2 and the relative error

jjexact � approximatejj2=jjexactjj2, the exact solution was taken to be that

resultant from � = k, N
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Figure 3.2: k not an eigenvalue

rate regardless of the value of � when k is not an eigenvalue. It is also clear

that for a desired level of accuracy, as k increases we need to increase N .

For values of k that are not eigenvalues of the interior problem, the stan-

dard BEM easily converged to the correct solution even for � = 0, as shown

in Figures 3.2 and 3.4. However, for values of k that are eigenvalues of the

interior problem, the BEM clearly has problems �nding the unique solution

of the exterior problem when � = 0, as shown in Figure 3.3. As n and m

increase, these eigenvalues become more frequent, and so as k increases it

becomes more likely to �nd a spurious solution. Figures 3.6, 3.7, and 3.8

show how these eigenvalues start to have an inuence even when k is not an

eigenvalue: k = 12:505 is close to two eigenvalues k = 12:5 and k = 12:51,

and its approximation with � = 0 is less accurate than for smaller k even

though it is not actually an eigenvalue, although this may be due to the need

for higher N to approximate the increased oscillation well.
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Figure 3.3: k an eigen5 c4690 G
0.s
1 0 0 1 -127.302 -430lueTS
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Figure 3.4: k not an eigenvalue

Figure 3.5: Absolute Errors when k is not an eigenvalue, N=128
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square’s sides. So perhaps in future work more consideration of this should

be taken into account when discretising our boundary.

Figure 3.6: k an Eigen-value, N=128

Figure 3.7: k not an Eigen-value



30
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Figure 3.8: k an Eigen-value

Figure 3.9: L2 Errors against k
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Figure 3.10: L2 Errors against degrees of freedom, for various k



Chapter 4

Is the Coupled Layer

Formulation Necessary?

The theory from [2], supported by results in Chapter 3, tells us that solving

the Helmholtz equation (2.2) by reducing it to a boundary integral formula-

tion (2.20) may produce spurious solutions w8 562.195 T,1(p)h562.19re75(e(ro)-2)-312.19a50
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The corners usually cause di�racted waves to illuminate the shadow side

strongly, as they travel along the polygon’s sides. As k increases, the leading

order behavior on the illuminated sides �3 and �4 is made up of the incident

plane wave and a known reected wave, whereas these are zero on shadow

sides �1 and �2. The method approximates the normal derivative solution

by separating it into the leading order behaviour and a linear combination

of the products of piecewise polynomials and plane waves travelling parallel
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which when considering interior eigenvalues k = �
L

p
n2 +m2 = 1

2

p
n2 +m2

as in (2.33), is tuned to approximate cos(ks) = cos(1
2

p
n2 +m2s) or sin(ks) =

sin(1
2

p
n2 +m2s). Thus these eigenfunctions will oscillate at di�erent fre-

quencies to e�iks if m;n 6= 0, and in this case they will not be well approxi-

mated by the basis functions. It is only for the case when m = 0 or n = 0,

and k is an integer, that the eigenfunctions may oscillate at the same rate as

the solution to the exterior problem.

The functions v�(s) are approximated by piecewise polynomials on a

graded mesh, specially designed with subintervals spaced so as to equidis-

tribute the approximation error. Since the exterior solution is highly peaked

near the corners of the square, the mesh is suitably re�ned, with larger

elements away from the corners and a higher concentration of mesh points

around the corners. Thus this should avoid approximating the interior eigen-

functions, even in the case that m = 0 or n = 0, as there are few mesh points

away from the corners. The interval of width one wavelength from the centre

is split into N mesh points, and an algorithm then puts O(logN) points on

the rest of the side.

4.2 Numerical Results

The hybrid BEM program was run for N = 2; 4; 8; 16; 32; 64 for some of

the same values of k as run for the standard BEM in x3.2, as well as for

some larger values of k. This enables us to compare whether the hybrid

BEM is more e�ective at �nding the exterior solution for those k which are

eigenvalues to the interior problem, as given by (2.33) for the cases � = 0 in

which case the standard BEM fails, and for the case � = k. The program

was used to test the importance of the coupling parameter � in �nding the

unique solution to the exterior problem, rather than the spurious solutions

related to the interior problem. When computing errors and relative errors
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Figure 4.1: k not an Eigenvalue

4.7, the exact solution was taken to be that of � = k, N = 64, and the

approximate solution to be that of � = 0, N = 64. The graded mesh seems

to have been e�ective in most cases of removing the peaks in error around

the corners of the square.

An interesting case arises when considering low frequencies. As shown in

Figure 4.8 the numerical solutions from the hybrid BEM seem to converge

to a solution using � = k for high N , or using � = 0 up to a certain number

of degrees of freedom, so we can assume this to be the a good approximation

to the true solution. However, it seems that for � = 0 for N ! 1 the

solution starts to diverge again. This is most likely because when N is large,

there are enough of the piecewise polynomials that approximate the non-

oscillatory functions v�(s) to approximate the di�erent wavelengths of the

interior eigenfunctions. The unusual results for k = 2:5, such as the positive

EOC, may be explained by this. Figure 4.3 also suggests that the L2 error

may be starting to increase again as N increases for k = 2:5.
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Figure 4.3: L2 Errors against degrees of freedom, for various k

Figure 4.4: k is an Eigenvalue
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Figure 4.7: Absolute Errors for various k

Figure 4.8: Errors arising for a low wavelength k = 2 and high N
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Table 4.3: Processing time in seconds, N = 64

k � = 0 � = k
2.4 1459.13949 1457.918595
2.5 1443.757474 1550.433721
4.9 1721.390138 1709.063943
5 1752.560662 1747.952968
12.5 2459.256118 2445.934317
12.505 2455.168543 2491.280168
25 3802.594433 3813.400389
50.01 6924.080258



Chapter 5

Conclusions and Future Work

5.1 Summary

The main aim of this project was to consider the theory that allows a problem

over an in�nite exterior domain to be reformulated into a boundary integral

formulation over a �nite domain. We looked at reformulation using Green’s

Representation Theorem, and explained the problems of non-uniqueness that

arise from this process. Studying in detail the case of a square convex poly-

gon, we showed how these spurious solutions arise. We also aimed to consider

methods �nding a good approximate solution numerically, even at high wave

frequencies, whilst minimising computational expense and avoiding spurious

solutions.

We looked at two numerical methods: a standard collocation Boundary

Element Method and a hybrid Galerkin BEM as proposed by Langdon and

Chandler-Wilde in [1]. By comparing the results of these two methods, it

is clear how careful consideration of our desired solution and possible spu-

rious solutions can be used to design a numerical method which avoids the

extra computational expense that the theory suggests we will require. The

46
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standard BEM demonstrated how the spurious solutions which relate to the

interior problem are easily found. Even when using wavenumbers k that are

not eigenvalues of the interior problem, by setting the coupling parameter

� = 0 to avoid the coupled formulation, thus saving computational expense,

we still found signi�cant errors. The hybrid BEM incorporated oscillatory

basis functions with a graded mesh, based upon detailed study of the exterior

solution. These considered improvements did avoid spurious solutions being

found even when k was an interior eigenvalue and the coupled formulation

was not used, provided a very high level of accuracy was not required. How-

ever, the main advantage of using � = 0 rather than the coupled formulation

was expected to be a save in computational time and expense: what resulted

in either case turned out to be very similar.

5.2 Further Work

There is a fair amount of scope for further work on this subject. The results

we have so far are fairly accurate for lower frequency waves, however the

solutions we considered to be exact were those resultant of relatively low N .

It would be interesting to allow the hybrid BEM code to run for higher values

of N and lower wavenumbers k, and to expand futher into what e�ect their

relationship has on errors. With a deeper understanding of the hybrid code,

it may also be relevant to do some error analysis on the numerical results

we have produced. It would also have been appropriate to consider how well

the hybrid BEM approximates even higher frequencies that would have been

considered here, computational time and storage space permitting. As we

have found the hybrid BEM to be e�ective even when using � = 0, it would

be worthwhile to edit the code to make it more cost e�ective time wise. To

do this the code should no longer compute all functions and then multiply

them by � = 0, instead these functions could be removed altogether.
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