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A COMPARATIVE STUDY OF COMPUTATIONAL

METHODS IN COSMIC GAS DYNAMICS (an extension)

SUMMARY

We compare how well some computational methods model a representative
astrophysical flow problem. Thisis an extension of a paper written in 1981.

We use the two best methods in the paper plus: Roe's method; Roe’s method with
flux limiters applied; Roe's method with the source term deconmposed and flux
limiters applied; the HLL-method; the HL L-method with flux limiter applied; the

HLLC- method; the HLLC- method with flux limiter applied.

INTRODUCTION

In a paper entitled ‘ A Comparative Study of Computational Methods in Cosmic Gas
Dynamics written in 1981, Van Albada, Van Leer, and Roberts, Jr. [12] compared
some computational methods on a representative astrophysical flow problem in order
to acquaint astronomers with the virtues and failings of typical numerical methods.
The methods they used were the Beam scheme, GodunoVv’s method, second-order
flux-splitting method, MacCormack’s method and the flux corrected transport method
of Boris and Book. Since 1981 there has been substantial progressin computatioral
methods. This work therefore extends the paper to explore new methods which may

be an improvement on the methods previously studied.



THE PROBLEM (as stated in the previous paper [12])

Our test problem is a simple, one-dimensional model of the gas flow in a spiral
galaxy.
The generally accepted theory for the coherent, large-scale spiral patterns observed in
many galaxies is the density wave theory of Lin and Shu (1964, 1966) [6, 7].
The density wave theory states that the spiral-arm pattern is caused by a spiral density
wave. Thisis a supersonic compression wave of increased density that moves through
the stars and gas in the galaxy.
The wave rotates more slowly than the actual material causing the density of the
material to build up. A shock wave builds up and possible outcomes are star
formation and increased collisions of giant molecular clouds.

Roberts wrote a paper in 1969 [8] in which he used one-dimensional, steady state gas

equatiops which included a forcing term due to the spiral field of






and is aligned with the equipotential contours of the spiral. We denote the coordinates

paralel and perpendicular to the equipotential contoursby x and h respectively.

The velocity components in this system are written as:

V=0, (©)

u=q, -

We take the spiral pattern to be tightly wound (so thata <<1) and the equilibrium
velocities to be approximately:

Vo =1 (W- W), @

U, =ar(W- W,).

In this approximation derivatives with respect to h (normal to the spiral arms) are
retained, but derivatives with respect to x (along the spiral arms) are discarded. For a

two-armed spiral the resulting equations can be written as the system of conservation

laws:
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The parameters thet we shall assume in our test problem that are thought to be

appropriate to the neighbourhood of the Sun in our galaxy are:

W=25km s '/kpc W, =135 km s*/kpc
k =31.3 km S_llkpC c=856km s 1
r=10 kpc a »0.11667

We choose A=72.92 (km s*)? for the amplitude so that the amplitude of the spiral

force istwo percent of the equilibrium force r W2 .

In the steady state (5) becomes:

A
82\/\( Vo) +_Sn ar H

ﬂz-kzw-w
dh 2W¢& u g

- ¢
(12)

In the case that we study thereis a shock at h = 131.68° and the flow becomes
supersonic with asonic point at B =155.53° . In Robert’ s paper 1969 [8] he shows a
method to solve (12) in conjunction with (11). In this flow thereis arapid
decompression after the shock and a secondary structure near i = 270° caused by
resonance effects. The time dependent version of thisis modelled best by numerical
methods that are able to deal with the shock while aso resolving the rest of the

structure well.



BACKGROUND PHY SICS

MATERIAL FROM ROBERTS, 1969 [8]

When we look at the overall structure of galaxies we often see a spira structure
occurring. Over the years many scientists have tried to explain what causes this grand
design to happen. One theory associates each spiral arm with a specific body of matter
throughout the arms evolution however this causes a winding problem when we
consider differential rotation. Another suggested theory is the density wave theory.
Originally thiswas studied by B.Linblad by considering the properties of individua
stellar orbits however this was not very convincing. Later P.O. Linblad studied the
stellar collective modes and had more success. After his studies there was still a need
to understand how such a structure could stay quasi-stationary but this was soon

solved by an asymptotic theory developed by Lin and Shu.

In galaxies we see the young stellar associations and brilliant HIl Regions appearing
in chains and spiral arcs within the spiral structure. They lie along the inner sides of
the observed gaseous spiral arms. Therefore we see that star formation takes place
over an even narrower region than the total spiral arm width. Considering the short
amount of time the gas stays in the spiral arm ard the fact that in the linear theory the
gas concentration in a density wave extends over a broad region we would not expect
to find such narrow strips of newly born stars. To explain these strips we therefore
turn to the existence of ‘galactic shocks'. In fact over time we might expect self-

sustained density waves to turn into shocks.
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The factors that effect the gas dynamics in this system are:

1. Theinertial force associated with the rotation of the disc.

2. The smoothed gravitational force of the system as awhole.

3. Gaseous ‘pressure’ associated with turbulence in the interstellar medium and
the hydromagnetic forces (due to magnetic fields embedded in the interstellar
medium)

4. Primary sources of the turbulent energy for the gas:

-cosmic rays
-supernova explosions
-stellar radiation
5. The effect of dissipation of turbulence by collisions of gas clouds (the primary

sink of turbulent energy for the gas).

We visualise each gas streamtube to have a uniform mean turbulent dispersion speed.
The gas flow along each streamtube being isothermal at a uniform mean equivalent
turbulent temperature.

Now, we know that the mgjority of the stars and gas are within alayer which is from
one fiftieth to one hundredth of the diameter of the galactic disc. We can therefore
‘squeeze’ our problem so that it all takes place over an infinitely thin sheet. We
trandate our physical variables into this setting by integrating over the layer's
thickness and taking the mean values. In this problem we shall mainly be concerned

with the response of the gas to an imposed background spiral gravitational field.
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To resolve this problem we need to look at the fundamental equations of motion for
gas flow about the circular disc. Our base state of motion is the Schmidt model (our
gaaxy) in which there is an equilibrium state of purely circular gas flow. This
equilibrium is caused by the total smoothed central gravitational force field exactly
balancing the inertia force associated with the rotation of the disc as awhole. Our
coordinate system for this model consists of the radius out from the centre and the
angle we have rotated around our circle. Building on this model we are able to
construct a perturbed state which superposes a two-armed spiral field on top of the

Schmidt model. Here we shift the coordinate system to be the one we use in this

paper. The coordinates are fixed in a W/, -rotating system and are parallel and

perpendicular to the spiral equipotential curves.

In the asymptotic theory the perturbation quantities to the first order vary only along
the direction normal to the contours of constant phase. This sort of approximation is
first thought of by noticing that the imposed spiral potential is oscillatory as cosine

normal to the contours of constant phase and only slowly varying parallel to them.

When we are using the non-linear gas flow equations we are primarily interested in
solutions which satisfy the following:
1. They permit the gas to pass through two periodically located shock waves
which lie coincident with spiral equipotential curvesin the disc.
2. They describe the gas flow aong a narrow, nearly concentric streamtube band
about the galactic centre, and the streamtube should repeat itself through every

half revolution of the gas flow about the disk.
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3. They ensure closure of the gas streamtube so that no net radial transfer of
mass, momentum, or energy takes place across the streamtube.

This providesa solution of gas flow in a closed, nearly concentric and twice periodic
streamtube barnd through two periodically located shock waves (otherwise known as
an STS solution).
The variables that determine the nature of the STS solution are:

i) the angle of inclination of a spiral arm to the circumferential direction;

i) the angular speed of the spiral pattern;

iii) the amplitude of the spiral gravitational field taken as a fixed fraction of

the smoothed axisymmetric gravitationa field;
iv) the average radius of the streamtube;

V) the mean turbulent dispersion speed of the gas along the streamtube.

Once the three STS conditions have been satisfied and we have specified the values
for all of the above mentioned variables the shock location with respect to the

background spiral arm is determined.

The shape of our graphsin the rest of this paper are illustrated in the diagram bel ow.
From this diagram we can see that the density suddenly increases (shock appears) at
the same point that the velocity normal to the contours of constant phase decreases

and the velocity parale to them increases.
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T typical streamlines

The outer bound of the spiral pattern is dependent on the number of armsin the spiral
design and the spiral gravitational field taken as a fixed fraction of the smoothed

axisymmetric gravitational field.

If we now try to visualise how a galaxy will look we see that:

1.
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Now, if an upper bound of thirty million years is taken for the formation and
evolution of relatively massive stars we see that the possible locations for the regions
of new stars and their associated HIl Regions are on the inner side of the observable
HI spiral arms. They stretch from the shock to approximately the centre of the arm
and so on the graph are contained in the left most part of the section we specified

above.

MATERIAL FROM WOODWARD, 1974 [15]

Most of the time-dependent results presented in Woodward' s paper use the isothermal
equation of state. The isothermal flow equations scale with the density and so the
average density chosen is unimportant. By solving these equations he was able to gain
insight into how and why the shock forms. Looking at his equations it was seen that
time-reversal symmetry and so shockless steady flow solutions were possible.
However for sufficiently large wave amplitudes the symmetry is broken when
irreversible processes occur in the gas and a shock is formed. The shock’s

development takes place as follows:

1. Initially the steegpening is a result of the tendency of the gas in the wave crests to
flow more rapidly than the gas in the wave troughs in the direction of the wave
propagation. Thisis called convective steepening.

2. Later there is an increase in the effectiveness of pressure forces in opposing
convective steepening near the wave crests relative to the wave troughs.

3. The final stage of the stegpening is caused by inertial and gravitationa forces.
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When a resonance condition is met (i.e. the spiral driving potential rotates at an
angular frequency equal to that of a free mode of oscillation of the system) then the
second harmonic component of the density wave form can grow unusualy large.

If the symmetry is broken by numerical viscosity, it is natural that the resonance
should be altered or diminished, if not eliminated. Resonant conditions for higher
harmonics can be found if they are not damped out by the numerical viscosity.
Harmonic resonance may provide an explanation for secondary spiral features such as

spiral arm spurs, branches, or feathers.
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THE METHODS

The schemes that we shall study are:
a) MacCormack’s method (studied in the previous paper [12])
b) Second-order flux splitting method (studied in the previous paper [12])
c) Ro€'s scheme
d) Roe's scheme with flux limiters
€) Roe s scheme with flux limiters and the source term decomposed
f) TheHLL scheme
g The HLL scheme with the minmod limiter applied
h) TheHLLC scheme

i) TheHLLC scheme with the superbee limiter applied to the contact field and
minmod applied elsewhere

We choose to study (a) and (b) from the previous paper as these suited the problem
the best from the last investigation. We then go on to investigate the methods (c), (d),

(e), (M), (9), (h) and (i) to examine whether they produce even better results.

HOW WE APPLY THE METHODS

Firstly, the definition of some of the notation that we shall use here is as follows:

U isthe approximate value of U at (h,,t, ),
R'=F(U") and

H"=HU."h,) (or HU,h,, Dt)).
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This is when the subscript i denotes the value at the spatial point iDh (with

P _%

Dh :% or equivalently Dh = W) and the superscript n denotes the value at

temporal point nDt .

The schemes can be written in the form

\ _f \
n+_gyn P et
Ui S Ui + Zm 2 — Hi 2 (13)

withv=n or v=n+(1/2) . Thisapproximates (5) in the so-called “conservation

form” and is obtained from a discretised version of the partial differential equations.

The numerical flux vector

(Ul KK,UL) (14)

i+=

isafunction of 2k initia values. At acertaintime step itistakentobeour F a h

2

and is determined by the particular numerical method we are using.

In applying our numerical methods we divide our spatial region (0,par) into N equal

zones. The edge of the zonesare at iDh where i =0,L ,N. Using (13) we can

progress our valuesfrom t, to t ., .

The methods are usually stable under the CFL condition, which states that the largest

radial wave or material speed in a cell must not exceed the numerical signal speed.
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In most of the methods that we study in this paper we accounted for the source terms
in separate steps.

First, we approximated
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TESTING THE METHODS (as in the previous paper [12])

TEST ONE

Since the exact solution is only known reliably at the steady state limit we cannot
compare the methods onhow well they model the time evolution of the flow. We
therefore choose to test how accurately the methods produce the steady state. Also,
due to reasons stated in the previous paper we choose to take the exact steady state
solution as the initial value distribution and compare how well each of the methods
preserve it.

Note that the values taken at the start U ? are zone-averaged valuesof the exact

solution in order to be consistent with the data representation of the methods.
During this investigation we found that athough the exact solution is known it is not

readily available. We therefore turned to the last paper for assistance in this matter.

TEST TWO
We will only apply this test to the methods which performed the best in test one.
Here we take uniform initial values (Q,u,v)? = (L,u,,V,) to determine the

“robustness’ of the methods.

In test one we use 64 spatial zones and progress the values by 1200 time-steps from
the exact steady-state with a constant time-step corresponding initially to a global
Courant number of 0.5.

In test two we shall progress the values by 2400 time-steps.



20

ad MACCORMACK’SMETHOD (asin the previous paper [12])

This was developed by MacCormack in 1969 and has been widely used in

aerodynamics.

In this method one-sided differencing is used twice, first to one side and then to
the other. In implementation we can either apply the one-sided differencesin the
same order repeatedly or alternate them to obtain a more symmetric system We

will use the latter type of method here.

It is a method that is formally second order accurate in both space and time and

that does not require you to approximate the Jacobian matrix or its eigenstructure.

On even time steps we will apply aforward predictor step which will determine

the provisiona vaues at t

n+l?

lIn+1 = Uin _ %(Flzl _ Fin) + [xHin. (18)

We follow this with a backward corrector step which determines the final values

at

N+l
é u
urt =280 s 2 E By s ol (19)
2€ Dh 5
8]



21

The corrector step corresponds to inserting

i 1 _
f. 12 [0} _(Fizl_l_ Fin+1)’ (20)
i+ 2
- 1
md Hi 20 E(H in + |__|in+l) (21)

into (13). On the other hand, on odd time-steps we apply a backward predictor step
followed by aforward corrector step.
Even though MacCormack’s method is dightly dissipative we had to add an explicit

smoothing term in order to control nonlinear instabilities in the test problem. The term

that we added was
n Dt én n n n n n U
D, :b_é/_ 1(Ui+1‘Ui)'V. 1Ui - Ui (22)
Dh g i+ 3 G

We applied this to the right hand side of (19)
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Figure one: Result’s from MacCormack’s method
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The formulation of (26) ensures positivity of Q when it is substituted into (24).

Therefore we have

Q0 _ (dQ)!
fhg Dh (27)

allowing us to calculate EGJHQQ
7]
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and F(U)=F U)+F*(U).

The numerica flux for this method being

1 !
f2=F U 2 )+F (U 2). (@)
5- i+=

2)+
The local stability condition is a combination of

%(|u| +ng) £1 with =1, 33)

and EcI ££.
Dh 2

The function ave(a,b) is chosen such that it tends to %(a+b) if a and b are

subsequent finite differences of a smooth solution, but when the solution is not

smooth it tends to the smallest value (see Van Leer,1977 [13]),

(b*+e®)a+(a”+e?)b

avea,b) = aZ +b? + 2e?

(34)

where e?is asmall non-vanishing bias of the order O((Dh)?).

In the actual computations we used e*=0.008, but the results are not very sensitive to

its precise value.

In our results we see that the smooth region is modelled reasonably accurately and our

shock is sharper and narrower than the shock produced by MacCormack’s method.



26

Figuretwo: Resultsfrom the second-order flux-splitting method
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GODUNOV’'SMETHOD
Godunov’s method considers the numerical vaues of the solution to be the cell

averages of the analytic s

27
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Qi 'Qi-lzéwvvipl- (35)

p=L "2

We can generalise Godunov’s method using this function by taking one of the

following approaches.

1. We begin by setting

&~ 0
F.= féQ 1= (36)
"2 20
where Q_l :é. ,00=Q_,+ a WP, isthe value along the cell interface.
2 "3 psP ;<0 "3
We then take
: &~ 0
ADQ1=1R 5 Q). (37)
2 2@
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b) ROE'S SCHEME

Roe proposed a method which approximates the system

by using a piecewise constant approximation in each cell

fug o f hL-%<h <hL+%,
u(x,t) = oh Dh (42)
Tu, if hg - — <h <h, +7.

i
where u_and ugare piecewise constant states at t, and then determines the solution

of the following linearised problem:
u, + AU ,Ug)u, =0. (43)

qf

In this linearised problem we have ,&(uL ug) = T
u

where ,’5\(uI ,U,) needs to satisfy the following corditions:

) ,51(uI Uu)(u - u)=f(u)- f(u) (conservation)

i) f&(ul ,U.)i550 TD (-) 975-7i5.56Tc 6.75 0 8ii9.296 -0.1681Jtith25 -0.- eigel.68.290325:ssereb
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We now find the eigenvalues and eigenvectors of our matrix (as shown in the
appendix). Once we have completed these calculations we observe that in this

problem we have a contact discontinuity (an eigenvalue being u).

We take our numerical flux function in this method to be

HUu) =2 (FW+ F)- A7 ah, (46)

where
|, arethe eigenvalues,

r, are the right eigenvectors,
and
a,=l,(u -u)

where |, are the |eft eigenvectors.

Therefore our numerica flux function works out to be

1 1(? o) . +(U+ 2CV . 0 e 1 9
H(u|,ur):_(f(u|)+f(ur))-—géc_ U, +(U+0) ,- 2 39 T +c| gU+c;+

2 2 & 2c o o

g &V 5
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STABILITY
For this scheme to remain stable we require that:

Dt
Srma(l EL (47)

In the results we see that this method models the general features of the smooth zone
and produces a shock which is similar to that produced by the second-order flux-

splitting method.
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d) ROE'S SCHEME WITH FLUX LIMITERS

In these methods we apply a limited anti-diffusive flux to Roe’'s scheme.

Flux limiters are functions of the ratio of consecutive gradients of the solution.
We begin by choosing a high order flux f,, that works well in smooth regions and a
low order flux f, that behaves well near discontinuities. We then try to hybridise

these two fluxesinto asingle flux f .

This is implemented as follows

1. We view the high order flux as

fH :fL+(fH' fL) (48)



Superbee: f (q) = max(0,mn(1,29), mn(2,q)); (51)

MC:f () = max(0,min((1+q)/2,2,2q9)); (52)
. q+gl

VanlLeer:f(Q) = : 53

anlLeer: f(q) 1+ (53)

Our limited antidiffusive flux in this case is as follows:

-~ 1 8 Dt ~
Fi=3 é1|| ?| @- E“ ) ai‘_’%rp (54)

1
j-=
2

inwhich

| P arethe eigenvalues (asbefore), h52.25M@ 0 Tw () Tj4 Tc0.1 T42.250TD 0 Tcrightc0 Tw
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RESULTS FOR TEST ONE

Roe's scheme with minmod limiter:
This has a sharp, reasonably narrow shock and a smooth zone that is modelled well.

Roe'sschemewithVan LTcO Try narrow






Figurefour: Resultsfrom
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Figure six: Resultsfrom Ro€' s scheme with super bee applied to the contact field
and minmod applied elsewhere.
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After 30,000 time steps using uniform initial values
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e) ROE'S SCHEME WITH THE SOURCE TERM DECOMPOSED AND FLUX

LIMITERS APPLIED

We go on to consider this method since it is thought to create a balance between the
flux and source term in the steady state and so satisfy the C-property of Bermudez and

Vazquez.

We can decompose the source terms as we have decomposed the flux terms. If we do

this we have that
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RESULTS FOR TEST ONE

Roe' s scheme with the source term decomposed:
This has a sharp, reasonably narrow shock and a smooth zone that is modelled well.
Roe' s scheme with the sour ce term decomposed and M C limiter applied:
This has a narrow, reasonably sharp shock and a smooth zone that is modelled well.
Roe s schemewith the sour ce term decomposed and Van Leer limiter applied:
This has a narrow, reasonably sharp shock and a smooth zone that is modelled well.
Roe' s scheme with the source term decomposed and minmod limiter applied:
This has a sharp and narrow shock and a smooth zone that is modelled well.
Also, when we apply this method to uniform initial values the results are till close to
the exact solution after 30,000 time steps.

Roe' s scheme with the sour ce term decomposed, the Van Leer limiter applied to
the contact field and minmod applied elsewhere:

The results of this method are very similar to those we obtained from Roe’' s scheme
with the source term decomposed and the Van Leer limiter applied.

We therefore have omitted these graphs.

Roe's scheme with the sour ce term decomposed, the superbee limiter applied to
the contact field and minmod applied elsewhere:

The results of this method are very similar to those we obtained from Roe’ s scheme
with the source term decomposed and the M C- limiter applied.

We therefore have omitted these graphs.
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We see similarly good results from these methods as we did in (d) however there are
some differences. We have a sharper shock with the minmod limited scheme and
blunter shocks with the method using the MC- limiter as well as the method using a
combination of the minmod and superbee limiters. Our best results obtained in this
sectionis from the scheme using the minmod limiter. Test two was therefore
performed on this scheme.

As before we also look at how the results have progressed after 30,000 time steps
(using uniform initial values) for the minmod limited scheme. We see that these
results do not blow up as they did in the previously studied methodsand therefore

conclude that this may be a better method for this problem.



Figure seven: Resultsfrom Roe' s scheme withthe sour ce term decomposed
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After 30,000 time steps using uniform initial values
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Figurenine: Resultsfrom Roe’ s scheme withthe sour ce term decomposed and
MC limiter applied.
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f) HLL SCHEME

Harten, Lax and Van Leer proposed this approach for solving the Riemann problem
approximately.

In this method we obtain an approximation for the intercell flux directly. We assume a
wave configuration for the solution that consists of two waves separating three
constant states. Taking the wave speeds to be given by one of the following
algorithms, application of the integral form of the conservation laws gives a closed-

form, approximate expression for the flux.

Possible agorithms for the wave speeds (signal velocities) are:

1§ =u_-c, Sk =UgR +C;
2.S =min(u, - C,Ug - ©), S = max(u, +c,u; +c); (60)
3.§ =Uu-c, S;=U+c.

where U isour Roe average.

The HLL flux is

SRFL B SLFR +SLSR(UR B UL)
SR' SL

Fhl= (61)

The corresponding intercell flux for the approximate Godunov method is

i F if 0ELS,
Fh||l:.}.SRFL'SLFR+SLSR(UR_UL) if S £0£S;, (62)
i
f

S-S _
F. if 03 S,

i+=
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STABILITY

The numerical flux function may also be written in the following form

hil 1é L:'I
F :Eéf U)+ fU.)-Q 1(Uw- wa (63)
2 e 2 0
where Q , (thenumerical viscosity-matrix) is defined by
I+§
S+S SS
Q,= Alu, ,ug)- 2 I (64)
3 S-S Y Ts-8

when A(u, ,u,) is a Roe-type linearization which has real eigenvectors aik+ Iy
2

acomplete set of eilgenvectors and satisfies the property

Fe- FL= AU, U )(Ug - Uy ).

Now, a necessary condition for stability is that the viscosity matrix (as defined above)

has nonnegative eigenvalues where the eigenvalues are defined as below:

S.@".-8)-s(s-a",)

kK _ " 2 _
S = k=1,2,3 65
- (=123 )
5 where S, SmMag 0, SxdSoro12 1 0 Te ()1} 30 To03

Now, a ntionfor secessary condies wsignal vinecsar (ig0 Tc75e3 TDDrj 136TD-0.0651 Tf 0.01sedef ol ned255 T (S) Tj -530 TD-0.336 Tc 0 Tw(:) Tj 30 TDO Tc ()5€20) Tj 5335.2
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RESULTS FOR TEST ONE

HLL using thefirst algorithm for the wave speeds:

This has areasonably sharp shock which is displaced downstream and captures the
most general features of the smooth zone.

HLL using the second algorithm for the wave speeds:

This has a shock which isn't modelled very well and captures the most general
features of the smooth zone.

HLL using thethird algorithm for the wave speeds:

This has a sharp, reasonably narrow shock and captures the most general features of

the smooth zone.

In the results we see that the third algorithm for the wave speeds is the best method to
choose for this problem. The shock in this method is dlightly sharper than the other
two and it models the smooth zone reasonably well. The methods are not as good as
the schemesin (d) and (e) at modelling the smooth zone. In the method using the first
algorithm we see a shock which is nearly as sharp as the shock produced using the

third whereas the second algorithm obtains a much blunter shock than the others.
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g HLL SCHEME WITH THE MINMOD LIMITER APPLIED

When we apply flux limiters to this scheme we use a different method to the one we

have previously described in this paper. We apply the limiters to the waves V\/I ”1 .

T2

This is implemented as folldws

WP, =f @P W, (67)
2 2 2
where
W.?i >Wi.pi :| -1 if si’_’i >0,
qif’% - _p: >W_pf ’ Wlpé _af%r.p%’ ! :}i +1  if s.pi <0. (68)
2 "2 I "2

= 1
and s”, aewavel2

2 U
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RESULTS FOR TEST ONE

HLL with the minmod limiter applied and using the first algorithm for the wave
speeds:

This has a sharp and narrow shock which is displaced downstream. It
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Figuretwelve: Resultsfrom the HLL Scheme withthe minmod limiter applied
and using wave speed algorithm (1)
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Figurethirteen: Results from theHLL Stheme with wave speed algorithm (2)
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e HLL Scheme with the minmod limiter applied
©)




h) HLLC SCHEME

A modification of the HLL schemeis the HLLC method. This

60
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the HLL C flux for the approximate Godunov method is

i F. if 0£S,,
oo IF R4S U -U) i S £OES, -
3 iFr =Fr+SUg-Uyg) if S £0£S,,
{ Fr if 03 S,.
RESULTS FOR TEST ONE

HLLC using thefirst algorithm for the wave speeds:

This has a sharp, narrow shock which is displaced downstream and captures the most
genera features of the smooth zone.

HLLC using the second algorithm for the wave speeds:

This has a narrow, reasonably sharp shock and captures the most general features of
the smooth zone.

HLLC us and
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i) HLLC SCHEMEWITH THE SUPERBEE LIMITER APPLIED TO THE

CONTACT FIELD AND MINMOD APPLIED ELSEWHERE.

Thisisimplemented in a similar way to the method shown above for the flux limited

HLL scheme.

RESULTS FOR TEST ONE

HLLC with the superbee limiter applied to the contact field, minmod applied
elsewhere and using the first algorithm for the wave speeds:

This has a sharp, narrow shock and models the smooth zone well.

HLLC with the superbee limiter applied to the contact field, minmod applied
elsewhere and using the second algorithm for the wave speeds:

Thisis one of our best methods. It has a sharp, narrow shock and models the smooth
zone well.

When we apply this method to uniform initial values and look at the results after
30,000 time steps we see that our values have started blowing up.

HLLC with the superbee limiter applied to the contact field, minmod applied
elsewhere and using the third algorithm for the wave speeds:

This has a narrow, reasonably sharp shock and models the smooth zone well.
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Figure seventeen: Results from theHLL C Scheme with wave speed algorithm (1)
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Figure eighteen: Resultsfrom the HLL C Scheme with the superbScheme
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Figure nineteen: Results from theHLL C Scheme with wave speed algorithm (2)
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Figuretwenty: Resultsfrom the HLL C Scheme with the superbee limiter applied



After 30,000 time steps using uniform initial values
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CALCULATED ERRORSIN THE SMOOTH ZONE

TEST ONE

SCHEME AVE.OF ABS. AVE.OF ABS. AVE.OF ABS.

ERRORSIN RHO ERRORSIN U ERRORSIN V

MacCormack’s method | 0.02213081 0.246966 0.164614
Second-order flux- 0.0351086 0.53583 0.20800
splitting method

Roe's method 0.03775312 0.611001 0.230072
Roe’s method with 0.02204784 0.198943 0.193965
minmod limiter

Roe's method withMC | 0.01868166 0.137541 0.186092
limiter

Roe's method with van | 0.01983648 0.150512 0.189726
Leer limiter

Roe’s method with 0.02064359 0.162159 0.185261
minmod and van Leer

Roe's method with 0.01729878 0.121218 0.182321
minmod and superbee
With sourceterm

decomposed

Roe's method 0.01308100 0.149290 0.200135
Roe’s method with 0.01877022 0.197524 0.148464
minmod applied

Roe’s method with 0.01759703 0.159043 0.151072
M C-limiter applied

Roe's method with van | 0.01826681 0.156895 0.146105
leer limiter applied

Roe’s method with 0.01857917 0.169565 0.141185
minmod and van leer

Roe's method with 0.01613746 0.157628 0.147561
minmod and superbee

HLL method (1) 0.03832700 0.528293 0.215260




TEST TWO

SCHEME

AVE.OF ABS.
ERRORSIN
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RESULTS

In the HLL method the density peak is displaced downstream and only the most
general features of the smooth zone are represented. The third algorithm for the signal
velocities produced the best results with a density peak that is better represented and a
narrower shock. The HLLC scheme is similarly quite poor at modelling the smooth
zone. In the first two agorithms it produces