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For linear eigenvalue problems, it is well known that working with invariant subspaces in-
stead of eigenvectors offers conceptual and numerical benefits [16]. For example, eigenvectors
associated with a multiple eigenvalue are unstable under perturbations, that is, an arbitrarily
small change in the matrix may cause some of the eigenvectors disappear. In contrast, the
corresponding invariant subspace remains stable under perturbations, provided that all copies
of the eigenvalue are included in the subspace. It will be seen that similar statements hold
for matrix polynomials; working with invariant pairs generally increases the robustness of
numerical methods in the presence of (nearly) multiple eigenvalues.

For k = nℓ, invariant pairs are closely connected to the notion of standard pairs developed
by Gohberg, Lancaster, and Rodman [15]. For k < nℓ, invariant pairs could therefore be seen
as local versions of standard pairs. As the focus of this paper is on numerical aspects, we
shall not discuss this connection in more detail.

For k = n, any matrix S satisfying (2) is called a solvent. We refer to Higham and Kim [19]
for existing results on solvents for ℓ = 2. Currently, it is not clear to us how solvents can be
put to good use in the context of invariant pairs. One emphasis of this paper is that it is
best, both from a theoretical and numerical point of view, to treat the matrices X and S not
as independent entitities but only jointly in an invariant pair (X, S).

For k = 1, invariant pairs coincide with eigenpairs (provided that X 6= 0). Numeri-
cal aspects of eigenpairs for matrix polynomials have been studied quite intensively in the
last decade. A number of theoretical results concerning the sensitivity of eigenvalues and
eigenvectors of matrix polynomials under (structured) per
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αβℓ−1A1 + α2βℓ−2A2 + · · · + αℓAℓ in place of (1), partly because it elegantly allows for the
simultaneous treatment of finite and infinite eigenvalues. At least for ℓ = 1, it is known
how to put invariant subspaces in a homogeneous framework: by using pairs of deflating sub-
spaces [34, 35]. In this work, we will refrain from using such a homogenous formulation as
it would significantly increase the level of technicality. Moreover, one of the advantages of
deflating subspaces, their direct connection to the factors of the generalized Schur form, is
lost when going to ℓ > 1. Infinite eigenvalues contained in an invariant subspace can still be
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Definition 2 (Minimal pair) A pair (X, S) ∈ C
n×k × C

k×k is called minimal if there is
m ∈ N such that

Vm(X, S) :=




XSm−1

...
XS
X


 (4)

has full column rank. The smallest such m is called minimality index of (X, S).

By the Cayley-Hamilton theorem, the minimality index of a minimal pair cannot exceed k,
see also [28, Lemma 5]. Moreover, it will be shown in Lemma 5 below that the minimality
index cannot exceed the degree of the matrix polynomial.

The following theorem shows that it is always possible to extract a minimal invariant pair
with minimality index at most ℓ from a non-minimal one. This allows us to restrict most of
the discussion in this paper to minimal invariant pairs.

Theorem 3 Let (X, S) be an invariant pair for a matrix polynomial P of degree ℓ. Then
there is a minimal invariant pair (X̃, S̃) with minimality index at most ℓ such that

span Vℓ(X̃, S̃) = span Vℓ(X, S),

with Vℓ(X, S) and Vℓ(X̃, S̃) defined as in (4).

Proof. Let k̃ denote the rank of Vℓ(X, S). If (X, S) is not minimal, k̃ < k and after a
change of basis we may assume that the null space of Vℓ(X, S) is spanned by the unit vectors
ek̃+1, . . . , ek. This implies that the last k − k̃ columns of X, XS, . . . , XSℓ−1 are zero. Let us
partition

X =
[
X̃, 0

]
, S =

[
S̃ S12

S21 S22

]

with X̃ ∈ C
n×k̃ and S̃ ∈ C

k̃×k̃. Then, by induction,

XS =
[
X̃ ˜
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Lemma 6
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with

LP : (△X,△S) 7→ P(△X, S) +

ℓ∑

j=1

AjX DSj(△S), (11)

L
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Then, directly by definition,
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for all △P ∈ U(0) and some open neighborhood U(0) ⊂ (Cn×k)ℓ+1 around zero. Moreover,
the Fréchet derivatives of these functions satisfy

(
DfX(△P ), DfS(△P )

)
= −L

−1
(
△P(X, S), 0

)
. (20)

Defining
‖△P‖ :=

∥∥[E0, E1, . . . , Eℓ]
∥∥

F
, (21)

this shows that the perturbed polynomial P +△P has an invariant pair (X̂, Ŝ) close to (X, S),
satisfying

(X̂, Ŝ) = (X, S) − L
−1

(
△P(X, S), 0

)
+O(‖△P‖2), (22)
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Lemma 10 Let (Y, S), Y ∈ C
ℓn×k, S ∈ C

k×k be a simple invariant pair of L(λ) ∈ L1(P )
and let Y be partitioned as Y =

[
Y H

ℓ . . . Y H

1

]
H

with Yj ∈ C
n×k, j = 1, . . . , ℓ. Then, for any

j ∈ [2, ℓ], (Yj , S) is a simple invariant pair of P (λ) if and only if S is nonsingular.

Proof. Theorem 9 implies that (Y1, S) is a simple invariant pair and Yj = Y1Sj−1. We
obtain

P(Yj, S) = AℓYjS
ℓ + · · · + A1YjS + A0Yj = P(Y1, S)Sj−1 = 0.

If S is nonsingular then this relation implies that (Yj, S) is an invariant pair. Moreover,

rank (Vℓ(Yj, S)) = rank
(
Vℓ(Y1, S)Sj−1

)
(28)

shows that (Yj , S) is minimal and therefore a simple invariant pair. If S is singular then,
by (28), (Yj , S) is not minimal and is therefore not a simple invariant pair.

Lemma 10 reveals that every block component of a computed simple and minimal invariant
pair of L(λ) is a candidate for approximating a simple invariant pair of P (λ), provided that
S is nonsingular. In the following we discuss four different strategies for extracting invariant
pairs.
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Since P (X̃, S̃) = γ1P (Ỹ1, S̃) + · · ·+ γℓP (Ỹℓ, S) it follows that

R(X̂, S̃) =

∥∥∥γ
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since these methods are not always backward stable [20]. Another interesting application
arises in numerical continuation of eigenvalues for matrix polynomials as discussed by Beyn
and Thümmler in [9].

5.1 Basic Algorithm

Given an approximation (X0, S0) to a simple invariant pair (X, S) ∈ C
n×k × C

k×k our aim
is to compute a correction that brings (X0, S0) closer to (X, S). By Theorem 7, (X, S) is a
regular value of the nonlinear matrix equations

P(X, S) = 0, V(X, S) = 0, (30)

where P(X, S) = XA0 + XA1S + · · · + XAℓS
ℓ and V(X, S) = W HVm(X, S) − I for some

normalization matrix W H = [W H

m−1, . . . , W H

0 ] ∈ C
k×mn. Newton’s method applied to (30)

with starting value (X0, S0) takes the form

(Xp+1, Sp+1) = (Xp, Sp)− L
−1
p

(
P(Xp, Sp), V(Xp, Sp)

)
, (31)

where Lp is the Jacobian of (P, V) at the current iterate (Xp, Sp):

Lp(△X,△S) =

(
P(△X, Sp) +

ℓ∑

j=1

AjXp DSj
p(△S),

m−1∑

j=0

W H

j

(
△X Sj

p + X DSj
p(△S)

))
,

see also (19). The invertibility of Lp and the local quadratic convergence of Newton’s method
is guaranteed by Theorem 7, provided of course that (X0, S0) is sufficiently close to (X, S).

In our implementation of (31) we keep the columns of Vm(Xp, Sp) orthonormal and adapt
W correspondingly in the course of the iteration. For this purpose, we compute a (compact)
QR decomposition

Vm(Xp, Sp) = QR

with Q ∈ C
mn×k such that QHQ = I. It then follows directly that Q takes the form

Q =




Q0RSm−1
p R−1

...
Q0RSpR−1

Q0


 .

for Q0 ∈ C
n×k. Hence the replacement (Xp, Sp) ← (Q0, RSpR−1) results in orthonormal

Vm(Xp, Sp). Moreover, by ch97011 Td076ositgTJ
/R22 10.9091 Tf
136.27 0 Td
[(X)-1.55762]TJ
/R76 10.9091 Tf
15.3902 0 Td
[(C)-3.22266]TJ
/R22 10.9091 Tf
11.6 0 Td
[(�)0.331217]TJ
/R28 7.97011 Tf
6.35977 -1.67969 Td
[(m)6.33776]TJ
/R16 10.9091 Tf
8.03984 1.67969 Td
[(()3.88733]TJ
/R22 10.9091 Tf
4.2 0 Td
[(X)3.46883]TJ
/R28 7.97011 Tf
9 -1.67969 Td
[(p)-7.18321]TJ
/R22 10.9091 Tf
4.8 1.67969 Td
[(;)-162.223(S)-2.80863]TJ
/R28 7.97011 Tf
11.5199 -1.67969 Td
[(p)-7.18421]TJ
/R16 10.9091 Tf
4.8 1.67969 Td
[())-302.105(p)29.2053(e)-3023540(h)-5.44495(a)57.99852veTJ
/R30 10.9091 Tf
1511199 0 Td
[(C)-3.77991]TJ
/R16 10.9091 Tf
7.91992 0 Td
[(()3.88733]TJ
/R22 10.9091 Tf
4.2 0 Td
[(X)3.46883]TJ
/R28 7.97011 Tf
9 -1.68969 Td
[(p)-7.18427]TJ
/R12 10.9091 Tf
4.8 1.67969 Td
[(;)-162.223Sp
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Letting r2 and q2 denote the first columns of R̃es2 and Õrt2, respectively, this shows that the
second columns △x2,△s2 of △X,△S satisfy the linear system




P (s22)
ℓ∑

j=1
AjX[DSj]22

m−1∑
j=0

sj
22W H

j

m−1∑
j=1

W H

j X[DSj ]22




[
△x2

△s2

]
=

[
r2

q2

]
, (37)

where s22 denotes the first diagonal element of S22 and [DSj]22 satisfies the recursion (34)
with s11 replaced by s22.

The described process can be continued in an analogous manner to compute all columns
of △X and △S. The cost of the overall algorithm is dominated by the solution of k linear
systems of the form (33) and (37). Since each of these systems has order
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with unitary matrices Q, Z ∈ C
ℓn×ℓn and upper triangular matrices TA, TB ∈ C

ℓn×ℓn. Note
that if the initial approximation (X0, S0



Invariant Pairs for Matrix Polynomials 22

implementation [31] of the QZ algorithm requires about 160 seconds for n = 500 and about
1450 seconds for n = 1000. Even taking into account that the new implementation of the QZ
algorithm described in [25] (which is not yet included in Matlab) may reduce these numbers
by a factor 4 − 8 it would require an excessive number of iterations to make Approach III
competitive.

6 Numerical Examples
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We perturb
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and hence

(A+ λB)yj =

j∑

i=1

1

(i− 1)!
(A+ λB)V

(i−1)
ℓ (xj−i+1, λ)

=

j∑

i=1

(
v ⊗

1

(i− 1)!
P (i−1)(λ)x−

(i− 1)

(i− 1)!
BV

(i−2)
ℓ (x, λ)

)

= −

j∑)


