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Abstract

In this dissertation, velocity-based moving mesh methods for the discontinuous

galerkin finite element technique are investigated and applied to solving linear

and nonlinear conservations laws with periodic boundary conditions. Two main

approaches for the method are considered. The first approach is cell-based and

uses a conservation principle on each cell to derive the boundary speeds. The

second approach is boundary-based, finding boundary speeds dependent on the
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Chapter 1

Introduction

Many equations used in atmosphere and ocean modelling, including the Euler

equations of gas dynamics and the shallow water equations, are conservation laws

derived assuming the conservation of a particular quantity. Increasingly, Finite

Element Methods (FEM) are being employed to solve such equations due to their

ability to handle complex geometries. Research is ongoing into ways to improve

the accuracy of the numerical solution without significantly increasing the com-

putational cost and generally follows one of two routes.

Conservation laws often have discontinuous numerical solutions even if the initial

data is smooth and continuous. Using standard FEM which work in the contin-

uous domain, there is a limitation on how well sharp gradients and shocks can

be captured, so it would seem natural to model the solution in a discontinuous

manner. The Discontinuous Galerkin (DG) method developed by Reed and Hill

[15] is an example of such a technique.

The other approach commonly used is to apply grid adaptation techniques to

the standard FEM. Such techniques may include mesh refinments or the use of

higher order polynomial approximations in the region of the shock, and Arbitrary

Lagrangian-Eulerian (ALE) methods [16], also known as moving meshes, which
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Introduction

cluster nodes around the feature and follow the feature as it moves over time.

In more recent years, research has looked at combining these two approaches

to provide even better results, incorporating grid adaptation techniques into the

discontinuous FEM. The use of a moving mesh algorithm with the DG technique

was investigated by Li and Tang [14] who looked at mapping-based methods. We

shall also consider the use of moving mesh algorithms but choose to focus on

velocity-based methods instead.

In this dissertation we firstly look at the stationary DG method and in Chapter 2

we consider the Runge-Kutta Discontinuous Galerkin (RKDG) method developed

by Cockburn and Shu [11]. In Chapter 3 we discuss various grid adaptation tech-

niques before progressing to include some velocity-based moving mesh algorithms

into the DG method in Chapters 4 and 5.

In Chapter 4, we focus on cell-based methods and derive the boundary velocities

through imposing a conservation principle on each cell. We derive a cell-based

method, and some variations, using the local Lax Friedrichs numerical flux at cell

boundaries. Additionally, we derive a cell-based method where no flux calculations

are required. Through solving simple linear and nonlinear test cases, we evaluate

the success of these cell-based methods.

In Chapter 5, we derive a moving DG method without the use of the conservation

principle seen in Chapter 4. In this method, the velocities may be obtained from

an external source, and we consider a boundary-based method where the boundary

speeds may be taken as the notional shock speed associated with the discontinuity

in the numerical solution. The results of numerical tests are given in Chatper 6

where we also consider the case of zero boundary speeds and compare with the

stationary RKDG method from Chapter 2.

Application of the boundary-based moving mesh method to a 1D system of non-

2



Introduction

linear equations is considered in Chapter 7, where the method is derived for the

shallow water equations. Some results of preliminary tests for the tidal bore prob-

lem and dam-break problem are given in Chapter 8.

Finally, in Chapter 9, we make some general conclusions and consider possible

future work.

3



Chapter 2

The Stationary RKDG Method

2.1 History

The Discontinuous Galerkin (DG) method falls within the category of finite el-

ement techniques, using local basis functions to approximate the exact solution

on each element. Developed by Reed and Hill [15] for solving the linear neutron

transport equation σu+∇(au) = f where σ is real and a is linear, the DG method

is noteably different from continuous methods in that it allows the numerical so-

lution to be discontinuous across element boundaries.

Having been used for linear problems, the DG method was then extended to

solve nonlinear problems including hyperbolic conservation laws which required





The Stationary RKDG Method

smooth function v(x) and integrating over the cell interval:

∫

Ij

(

∂u

∂t
+

∂f(u)

∂x

)

v dx = 0.

Using integration by parts we obtain

∫

Ij

∂u

∂t
v dx −

∫

Ij

f
∂v

∂x
dx + fv

∣

∣

∣

∣

∣.



The Stationary RKDG Method

The numerical flux may be calulated in many ways, with the Lax-Friedrichs

and Godunov schemes providing typical forumlae. Although the accuracy of the
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∀j = 1 . . . N,



The Stationary RKDG Method

2.2.2 Time Integration

We may rewrite (2.7, 2.7) as

duh

dt
= Lh(uh) in [0, T ]

uh(0) = uh0,

and partition [0, T ] into M equal intervals of size ∆t.

To step through time and find uh(t = T ), we will use the total variation dimin-

ishing (TVD) Runge-Kutta scheme given in [5].

For m = 0, . . . , M − 1 compute um+1
h from um

h



The Stationary RKDG Method

2.3 RKDG Results on a Stationary Mesh

2.3.1 Linear Advection

We consider the RKDG method applied to the simple linear advection problem

ut + (3u)x = 0 on [0, 1] × [0, 0.335]

u(x, 0) = 3 sin(2πx) + 1 on [0, 1]

with periodic boundary conditions.

At t = 0.335 s, we would expect the intial data to have completed slightly more

than a single revolution as the wave speed = 3, and as the data should be simply

advected, we expect no change in the amplitude of the sine wave. Figure 2.3 shows

that the stationary RKDG method has been able to acurately capture the wave

speed, advecting the intial data with no significant loss of amplitude.

0 0.2 0.4 0.6 0.8 1
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−1

0
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2.3.2 Inviscid Burgers

As a second test case, we consider the stationary RKDG method applied to the

nonlinear advection problem
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and so will eventually move out of the region of densly packed nodes into a region

covered by larger cells and the accuracy of the shock capture will decrease. This

provides the motivation for our investigations into a moving mesh method which

would alow the mesh to move with the shock over time.

2.3.3 Stability

For the linear advection problem where f(u) = cu, using linear polynomial approx-

imations and the 2nd order RKDG method, Chavent and Cockburn [4] showed

the stability condition to be given by

c
∆t

∆x
≤ 1

3
. (2.8)

The results of numerical investigations for our linear advection test case showed

the method was stable for





Moving Mesh Methods

under the category of r-refinement, which are also commonly known as moving

meshes. In these methods, the number of nodes is kept constant but they are

redistbuted so that they are clustered around features of interest. There are two

main approaches to moving mesh methods; one is based on mappings, the other

on velocities.

3.1 Mapping-based moving mesh techniques

Mapping-based moving mesh methods have three main features. Firstly, there is

a 1:1 mapping between nodes in the logical or computational domain, which are

equally spaced, to the nodes in the physical domain, where they may be clusted

in areas of interest. Li and Tang [14] give this mapping as

ξ : x 7→ ξ, Ω 7→ Ωc,

where Ω denotes the physical domain, Ωc denotes the logical domain, and where

ξ may be found by solving the elliptic system

∇x(m∇xξ) = 0.

Here, m is a monitor function, the second key feature of the method, which is used

to guide the cell redistiubution. The third feature is interpolation of the numerical
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3.2.1 Cell-based techniques

In Chapter 4, we look at some cell-based techniques, where the boundary speeds



Chapter 4

Cell-based Moving Mesh

Methods

We now combine a cell-based moving mesh grid adaptation technique with a DG

method similar to the RKDG method seen in Chapter 2.

The conservation law problem

ut + f(u)x = 0 on [0, 1] × [0, T ] (4.1)

u(x, 0) = u0(x) on [0, 1] (4.2)

is now solved with periodic boundary conditions on a moving mesh.

For a cell-based moving mesh method, we make use of a conservation principle

on each cell and, following the example of Baines et al. [2], seek to move the cell

boundaries such that
d

dt

∫ xj+1/2

xj−1/2

vu dx = 0 (4.3)

holds for all time.

In the stationary DG method, we derived and solved a weak form of our conserva-

tion law problem for uh. Now, we will instead derive a weak form of the problem in

16
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terms of boundary speed ẋ which we will solve and then use with the conservation
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Due to the conservation principle (4.3) and the fact that v(x) moves with dx
dt , this

simplifies to give

0 =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx. (4.5)

Combining (4.5) with (4.4), we obtain

−
∫ xj+1/2

xj−1/2

v
∂

∂x
(uẋ) dx = −fv|xj+1/2

xj−1/2
+

∫ xj+1/2

xj−1/2

f
∂v
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d

dt

∫ xj+1/2

xj−1/2

vhuh dx = 0 (4.10)

∫ xj+1/2

xj−1/2

uh(x, 0)vh dx =

∫ xj+1/2

xj−1/2

u0(x)vh dx. (4.11)

The analytic flux f is not defined at cell boundaries due to the discontinuity in uh,

so we introduce a numerical flux scheme h(x) = h(uh(x)−, uh(x)+) ≈ f(uh(x)). As

for the stationary DG method, we choose to use the local Lax Friedrichs formula

given in [5] as

h (a, b) =
1

2
[f(a) + f(b) − c(b − a)]
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For the simple case when vh
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



∆j(t) 0

0 1
3∆j(t)









w0
j (t)

w1
j (t)



 =





∆j(t = 0)w0
j (t = 0)

1
3∆j(t = 0)wl

j(t = 0)



 (4.13)





w0
j (0)

w1
j (0)



 =





1
2

{

u0

(

xj+1/2
√

3

)

+ u0

(

xj−1/2
√

3

)}

√
3

2

{

u0

(

xj+1/2
√

3

)

− u0

(

xj−1/2
√

3

)}



 . (4.14)

The weak formulation provides cell-by-cell matrix systems for determining the

boundary speeds ẋ, which we may then use to find the updated numerical approx-

imation uh. We consider two ways of solving for the boundary speeds:
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Cell-based Moving Mesh Methods

We may define the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, and we now replace the

smooth v(x) with a test function vh ∈ Vh and the exact solution u by a numerical

approximation uh.

From the original conservation law (4.1), we may replace ∂uh
∂t and obtain

0 =

∫ xj+1/2

xj−1/2

vh

[

∂

∂x
(uhẋ) − ∂f(uh)

∂x

]

dx.

Alternatively, this may be written as

0 =

∫ xj+1/2

xj−1/2

vh [(uhẋ) − f(uh)]x dx. (4.15)

One possible solution for equation (4.15) is to take

ẋ =
f(uh)

uh
.

We may use this formula twice at each x
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4.2.3 Results

The non-DG method is first applied to a linear advection test problem where we

seek to solve

ut + (3u)
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Chapter 5

A Boundary-based Moving

Mesh Method

In the previous moving mesh methods investigated in Chapter 4, the boundary

speeds have been derived based on the conservation principle (4.3) and this has

directly linked cell width to the value of the numerical solution on that cell by

(4.13). If we wish to overwrite boundary speeds with alternative values e.g. to pre-

vent boundary overtaking, we must therefore derive a new moving mesh algorithm

which does not depend on the conservation principle (4.3).

5.1 Derivation of a full-DG Method

The conservation law problem

ut + f(u)x = 0 on [0, 1] × [0, T ]

u(x, 0) = u0(x) on [0, 1]

is again solved with periodic boundary conditions on a moving mesh.

31



A Boundary-based Moving Mesh Method

5.1.1 The inclusion of boundary speeds

To include boundary speeds ẋ we use Leibniz rule

d

dt

∫ xj+1/2

xj−1/2

mdx = mẋ|xj+1/2
− mẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂m

∂t
dx

to expand
d

dt

∫ xj+1/2

xj−1/2

vu dx

which is no longer assumed to be zero for all time.

Taking m = vu where v(x) moves with dx
dt , we have

d

dt

∫ xj+1/2

xj−1/2

vu dx = vuẋ|xj+1/2
− vuẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂

∂t
vu dx

=

∫ xj+1/2

xj−1/2

∂

∂x
(vuẋ) dx +

∫ xj+1/2

xj−1/2

∂

∂t
(vu) dx

=

∫ xj+1/2

xj−1/2

[

v
∂

∂x
(uẋ) +

∂v

∂x
uẋ + v

∂u

∂t
+

∂v

∂t
u

]

dx

=

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx +

∫ xj+1/2

xj−1/2

u

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

As v(x) moves with dx
dt , the last integral term is zero and substituting in for ∂u

∂t

from our orginal conservation law, we obtain

d

dt

∫ xj+1/2

xj−1/2

vu dx =

∫ xj+1/2

xj−1/2

v (ẋu − f)x dx.

It may be possible to solve this equation by using quadrature to evaluate the

integral on the right-hand side directly. However, we choose to follow the ideas of

the stationary RKDG derivation and use integration by parts to obtain

d

dt

∫ xj+1/2

xj−1/2

vu dx = − v (f − ẋu)|xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

(f − ẋu)
∂v

∂x
dx. (5.1)

We now have a problem for u which includes ẋ as required.

32
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5.1.2 The weak formulation

Defining the finite dimensional subspace Vh to be
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where φl(x) = Pl

(

2(x−xj)
∆j

)

and wl
j are coefficients to be found.

Through the orthgonality properties of the Legendre polynomials we are able to

express our problem (5.2, 5.3) as a matrix system

∀j = 1, . . . , N




1 0

0 1/3









∆̇jw0
j + ∆jẇ0

j

∆̇jw1
j + ∆jẇ1

j



 = −





h(xj+1/2) − h(xj−1/2)

h(xj+1/2) + h(xj−1/2)



(x
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5.2 Boundary Speed Selection

Unlike previous moving mesh algorithms, this method does not generate the

boundary speeds. Instead they may be input from an external source at each

timestep, and then the changes to the numerical solution uh are found accord-

ingly.

In particular, we note that if we take ẋ = 0 for all boundaries and for all time,

the method reverts back to the stationary DG method with Euler timestepping

and should yield similar results to the RKDG method from Chapter 2, allowing

for the difference in accuracy and stability between the Euler and Runge-Kutta

time-stepping algorithms.

5.2.1 Selecting non-zero boundary speeds

At each boundary, the numerical solution uh is discontinous and a jump in the

solution occurs (see Figure 2.2). A natural choice for the boundary speed would

be the notional shock speed associated with this discontunity in uh. In the case

when the jump in uh is negligible, we can instead use the overall wave speed.

We therefore select the boundary speeds to be

ẋ =







f ′(u+
h ) if u+

h − u−
h ≈ 0

[f(uh)]
[uh] otherwise

(5.6)

where [uh] and [f(uh)] denote the jumps in uh and f(uh) respectively.

5.2.2 Controlling cell distribution

Over time, the choice of boundary speeds may result in boundaries overtaking

one another or cell widths becoming negligbly small. We need to overcome these

issues.

To avoid cells of negligble width, it would may seem natural to remove a boundary

35
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stability. However, if ∆t < ∆tmin, we use ∆tmin and must amend the boundary

speeds.

Ideally, we only wish to amend the boundary speeds in problematic regions where
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Numerical Results for the full-DG Method

boundaries have remained fixed at their initial locations and it is only through

considering the absolute difference between the solutions for uh at the nodes, as in

Figure 6.2, that we are able to see any difference in the numerical approximations

found by the RKDG and full DG methods.

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

node position

Figure 6.2: The absolute difference in solution between the 2nd order RKDG

method and the full-DG method with ẋ = 0, for the inviscid burgers problem

f(u) = 1
2u2 at t = 0.25 taking ∆x = 0.05 and ∆t = 0.0005.

Numerical investigations into stability indicate that for a linear f(u) = cu, the

stability of the full-DG method with ẋ = 0 is comparable with that of the 2nd

order RKDG method which is given in [4] as

c
∆t

∆x
≤ 1

3
3.139 0 Td
[(a)-414.913(l)-0.244.913(l)-0.244.913(l)-0.244.91.311076(h)011 Tf3.756(i)-0.24841d
[11076(h)0.330099(on(a)9I901-0.0626628(GTd
[(3.139 0 Td
[2953357 cm )0.0917563]TJ
/R12 5471.89 m
0.049235a cm )0.0917563]TJ
/R12 5471.89 m
0.049235a cm )0.0917563]TJ
/R12 5471.89 m
0.049235a 23386m
0.049235a cm 
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is becoming very steep, although the vertical shock has not yet formed.
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and then at adopting a fixed boundary speed across all boundaries.

6.3.1 Adjustments through speed averaging

We first use the average speed technique to amend boundary speeds around prob-

lem cells which would otherwise become too small at the next timestep.
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Although the shock capture is generlly not as good as the results seen for the

stationary methods, even though the nodes are more densly concentrated, this

method has the potential to allow different regions of the mesh to move at different

average speeds, allowing multiple features of interest to be followed which may

prove useful in some situations.

6.3.2 Adjustments through adopting a fixed speed

We now consider using the adoption of a fixed speed to control the cell distribution.

Using the fixed speed method, all boundaries are moved with a uniform velocity

determined by an approximation to the shock speed. For the test case given by



Numerical Results for the full-DG Method

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5



Numerical Results for the full-DG Method

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5



Chapter 7

Shallow Water Equations

The shallow water equations may be used for modelling fluid flow in situations

where the vertical motion can be considered insiginificant in comparision to the

horizontal motion. The equations desribe the flow of a fluid at a single pressure

height and are not able to model factors which vary with height. For the use of the

equations to be appropriate, the wavelength of the phenonmenon being modelled

must be much larger than the depth of the fluid. This means that, in spite of

the name, shallow water equations may be used in deep ocean basins if we are

modelling tidal motion due to the large tidal wavelength.

The stationary DG method has been applied to many shallow water problems, with

Yu and Kyozuka [17] investigating both tidal flows and the dam-break problem.

For application of the moving mesh algorithm developed in Chapter 5, we shall
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7.1.1 The inclusion of boundary speeds

The conservation law problem (7.4, 7.4) must be reworked to include boundary

speeds ẋ.

To include the boundary speeds into the first shallow water equation, we follow

the derivation in Chapter 5.

We use Leibniz rule

d

dt

∫ xj+1/2

xj−1/2

mdx = mẋ|xj+1/2
− mẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂m

∂t
dx

to expand
d

dt

∫ xj+1/2

xj−1/2

vh dx.

Taking m = vh where v(x) moves with dx
dt
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To include the boundary speeds into the second shallow water equation, we again

follow the derivation in Chapter 5, and obtain

d

dt

∫ xj+1/2

xj−1/2

vQ dx =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(Qẋ) +

∂Q

∂t

]

dx +

∫ xj+1/2

xj−1/2

Q

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

Again, we take v(x) to move with dx
dt so the last integral on the right-hand side

disappears. However, now when we substitute in from the second shallow water

equation (7.3), we have an additional term as the right-hand side of (7.3) is non-

zero.

d

dt

∫ xj+1/2

xj−1/2

vQ dx =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(Qẋ) − ∂

∂x

(

1

2
gh2 +

Q2

h

)

− gh
∂B

∂x

]

dx.
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∀j = 1, . . . , N

d

dt

∫ xj+1/2

xj−1/2

vh





hh

Qh



 dx = −vh





hhuh − ẋhh

1
2gh2

h +
Q2

h
hh

− ẋQh





∣

∣

∣

∣

∣

∣

xj+1/2

xj−1/2

+

∫ xj+1/2

xj−1/2





hhuh − ẋhh

1
2gh2

h +
Q2

h
hh

− ẋQh





∂vh

∂x
dx −

∫ xj+1/2

xj−1/2





0

vhghh
∂B
∂x



 dx (7.6)

∫ xj+1/2

xj−1/2





hh(x, 0)

Qh(x, 0)



 vh dx =

∫ xj+1/2

xj−1/2





h0(x)

h0(x)u0(x)



 vh dx (7.7)

We note that

F =





f1

f
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7.1.3 Choosing boundary speeds

In the full-DG method from Chapter 5, the boundary speeds are taken as the

local shock speeds at each boundary (5.6). However, we now ha
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• Solve (7.9, 7.11) to obtain w0
j (0), w1

j (0), z0
j (0), and z1

j (0) and hence find

hh(t = 0), Qh(t = 0);

• For m = 0, . . . , M − 1,

–



Chapter 8

Numerical Results for Shallow

Water Equations

The full-DG moving mesh method with fixed speed adjustements to control cell

distribution has been derived for a 1D system of shallow water equations in Chap-

tershallow. We now apply the method to two simple test problems, firstly consid-

ering the dam-break problem, as considered by Yu and Kyozuka [17], and then a

tidal bore.

8.1 A Dam-Break

The dam-break problem, with a well-documented solution, has been frequently

used as a preliminary test for modelling a system of shallow water equations. The

set-up usually starts with the fluid being at rest and partioned into two heights

by a dam which is then instantaneously removed at t = 0 and the fluid begins to

flow.

Yu and Kyozuka [17] consider the conservation law problem

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + +67-0.19694]TJΩ2678.00.250651(� 4.9320)0.06266++
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taking the initial conditions to be

h(x, 0) =







1m if x ≤ 0.5m

0.5m if
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∂B
∂x = 0, and h therefore represents the surface height, as well as the height of

water above the bed.

The conservation law problem to be solved is given by

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 = 0 on [0, 1] × [0, T ]

taking the initial conditions to be

h(x, 0) =








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Figure 8.2: The height of the water in the dam-break problem at t = 0.002, found

using the full-DG method with stationary boundaries.

We now compare the results for a moving mesh, allowing boundary speeds to be

taken as the notional shock speed at each boundary, or fixed at the largest shock

speed. To allow some movement, we set the maximum / minimum parameters to

be given by

- Initial cell width: ∆j = 0.005

- Minimum allowed cell width: ∆j min = 0.005

- Minimum allowed timestep: ∆tmin = 0.00001

- Maximum allowed timestep: ∆tmax = 0.0001

Again, we view the solution after 200 steps (t ≈ 0.002) and see in Figure 8.3 that

the results are very similar to that of the stationary mesh. If we encourage further

movement by reducing the minimum cell width to 0.001, without changing any
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distibution algorithm being poorly designed to cope with the multiple shocks that

are present.
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8.2.1 Our problem

The height and speed of a bore is effected by many factors including the height of

freshwater in the river, offshore and opposing winds and pressure levels. However,

we will assume a very simple model for our bore, and seek to solve the conservation

law problem

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 = 0 on [0, 1] × [0, T ]

where

h(x, 0) =



















2 if 0 ≤ x ≤ 0.1

(sin(5 ∗ pi ∗ (x − 0.1))).2 + 2 if 0.1 < x < 0.3

2 if 0.3 ≤ x ≤ 1

u(x, 0) = 3.

We shall use periodic boundary conditions, as this is how the full-DG method has

been developed, although we note that they are unrealistic for a river.

8.2.2 Results

The system was solved for stationary boundaries, setting ẋ = 0, and the results

from an early timestep may be seen in Figure 8.4.

Without any results to compare this to, we cannot be sure that this is giving

the correct solution, although the results are plausible, w
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Chapter 9

Summary and Further Work

9.1 Summary

This dissertation looked to find a moving mesh method for use with the Discon-

tinuous Galerkin (DG) Finite Element Method , and this has been achieved for a

single equation, although only preliminary results were avaliable for the extended

algorithm for a 1D system.

We began by considering the stationary Runge-Kutta DG method developed by

Cockburn and Shu [11], and commonly used grid adaptation techniques, including

velocity-based moving mesh methods. From this, we persued two different routes

for obtaining a moving DG method.

Firstly, we considered cell-based moving mesh methods, where the boundary

speeds were derived assuming a conservation principle on each cell. Such methods

had limited success, possibly due to the use of numerical flux
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9.2 Extensions

Due to time constraints, we were unable to fully develop and test a velocity-based

moving mesh DG method for a 1D system, and there is the potential for much

futher work in this area. The periodicity of the boundary conditions was not

realistic for the dam-break and tidal bore test problems, so amending the full-DG

method for non-periodic boundary conditions would be a natur



could be particularly important for the tidal bore test case, as bores are known to

develop in rivers that not only become shallower, but also significantly narrower,

creating a funnelling effect on the water.
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