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Abstract

A continuous-discontinuous barotropic flnite element based model is developed for
the simulation of synoptic scale atmospheric dynamics using the shallo
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Index of Symbols

x ......................... Cartesian abcissa
y ......................... Cartesian ordinate
z ......................... Cartesian vertical coordinate
r ......................... Spherical radial coordinate
‚ ......................... Spherical azimuth -longitude
µ ......................... Spherical declination -latitude
i or ex ......................... Cartesian abcissa unit vector
j or ey ......................... Cartesian ordinate unit vector
k or ez ......................... Cartesian vertical unit vector
er ......................... Spherical radial unit vector
e‚ ......................... Spherical azimuth unit vector
eµ ......................... Spherical declination unit vector
r ......................... General Position Vector
t ......................... Time Variable
u ......................... (Horizontal) Fluid Velocity Vector
h ......................... Fluid (Atmospheric) Depth
” ......................... viscosity coefficient
‰ ......................... homogeneous fluid density
h0 ......................... Topographic Depth/Height
f ......................... Coriolis Parameter
g ......................... Gravitational Acceleration = 9:81 m s−2

› ......................... Earth’s Rotation Vector
a ......................... spherical Earth radius = 6:3675£ 106 m
› ......................... angular rotation rate = 7:2921£ 10−5 s−1

H ......................... Fluid Depth Scale Factor
H0 ......................... Topographic Depth Scale Factor
U ......................... Surface Fluid Velocity Scale Factor
T ......................... Time Scale Factor
L ......................... Surface Length Scale Factor
F ......................... Coriolis Parameter Scale Factor
~t ......................... Dimensionless Time Coordinate
~u ......................... Dimensionless Fluid Velocity
~h ......................... Dimensionless Fluid Depth
~h0 ......................... Dimensionless Topographic Height
~f ......................... Dimensionless Coriolis Parameter
~r ......................... Dimensionless General Position Vector
Ro ......................... Rossby Number
RoT ......................... Temporal Rossby Number
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Introduction

Atmospheric Model Requirements

Given that the Earth’s atmosphere is one of the most complicated dynamical
systems in the universe, it is (at present) impossible to capture all its processes
accurately, be they rheologic, thermodynamic and so forth, within the same com-
putational framework. Thus it is usually necessary to consider great simpliflca-
tions, whereby most of the dynamical processes of the atmosphere are ignored,
and design a computational model that supports little more than the particular
dynamical phenomena of interest.

Theoretically
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Rotating Frames of Reference

To avoid undue complications, most atmospheric models employ a coordinate ref-
erence frame that is considered to rotate with the angular velocity representative
of that of the Earth. To do otherwise would necessitate the construction of large
and cumbersome expressions for quantities such as velocities, which would prove
di–cult to work with.

As will be indicated later, Newton’s second law lies behind one of the governing
equations, that relating to momentum, for the shallow water model, but is only
intended to be applied in an inertial reference frame that exhibits no accelerations.
The law may be applied in the non-inertial rotating reference frame, with inherent
accelerations towards the centre, in the usual (inertial) manner provided two extra
‘artiflcial’ forces are included in the momentum equation derived from it.

The flrst of these artiflcial forces is usually refered to as a ‘centripetal force’. It
is considered to act in a direction opposite to that of gravity at every point on the
Earth and is a conservative force, allowing it to be represented by a scalar gradient.
Because of the centripetal forces relative weakness compared to the gravitational
force, which is also conservative, it is often (and will be here to) included with it
via a ‘reduced’ gravity potential [8].

The second artiflcial force is termed the ‘Coriolis force’ after the work of Gas-
pard Gustave Coriolis and is found to always act in a direction perpendicular to a
given °uid element’s motion [8]. As such, the force never does any work, as might
be anticipated given itstre40
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the position the viscous difiusion term would otherwise occupy. Ideally, and in most
of what follows, the viscosity shall be considered su–ciently small for the efiects
of difiusion to be neglected. However, it will be seen that for some problems, a
small ‘artiflcial’ difiusion is needed to stabilize the solution.

For atmospheric modelling, a ‘geopotential height’ is often refered to. This
simply refers to the multiplication of the °uid’s height (or depth), h, measured in
meters, say, with the gravitational acceleration g, in meters per second squared.
The units of geopotential height are thus meters squared per second squared, or
[m][m=s2] = [m s2.0093 0 endij
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solution and to implement adaptive meshing techniques [17]. While such tech-
niques have been applied recently with great success to atmospheric models [20],
for the present work only linear (flrst-order) flnite elements will be used.

Closely related to the flnite element method is the ‘flnite volume method’. It
has the same node distribution advantages of the flnite element method, but works
entirely in terms of the
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with theSHALLOW
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For the two-dimensional case of the equations being solved here, variations
in the direction given by this latter coordinate are neglected. Furthermore, in
the spherical coordinate framework, the Coriolis term of the governing equations
simply reads f = 2› sin µ.

Adopting the standard right-handed spherical to cartesian coordinate transfor-
mation

x = r cos µ cos‚ (4.1)

y = r cos µ sin‚ (4.2)

z = r sin µ (4.3)

the spherical unit direction vectors may be written in terms of their cartesian
counterparts and a transformation matrix T as

2

4

er
e‚
eµ

3

5 =

T−1

z }| {2

4

cos µ cos‚ cos µ sin‚ sin µ
¡ sin‚ cos‚ 0

¡ sin µ cos‚ ¡ sin µ sin‚ cos µ

3

5

2

4

ex
ey
ez

3

5 (4.4)

and similarly, by inversion of the transformation matrix, the cartesian unit direc-
tion vectors may be given in terms of those for the spherical coordinate system

2

4

ex
ey
ez

3

5 =

T
z }| {2

4

cos µ cos‚ ¡ sin‚ ¡ sin µ cos‚
cos µ sin‚ cos‚ ¡ sin‚ sin µ

sin µ 0 cos µ

3

5

2

4

e
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The terms proportional to 1=r give rise to what are often called ‘curvature
terms’ when these expressions are used in the governing equations because they
arise due to the curvature of the earth [15]. These terms can be important where
there is a combination of both high latitudes and strong atmospheric °ows.

It will be useful to consider those derivatives of the normalised spherical basis
vectors with non-trivial results. With respect to ‚

@

@‚

2

4

er
e‚
eµ

3

5 =

2

4

¡ cos µ sin‚ cos µ cos‚ 0
¡ cos‚ ¡ sin‚ 0

sin µ sin‚ ¡ sin µ cos‚ 0

3

5 [T ]

2

4

er
e‚
eµ

3

5

=

2

4

0 cos µ 0
¡ cos µ 0 sin µ

0 ¡ sin µ 0

3

5

2

4

er
e‚
eµ

3

5 (4.12)

and then µ

@

@µ

2

4

er
e‚
eµ

3

5 =

2

4

¡ sin µ cos‚ ¡ sin µ sin‚ cos µ
0 0 0

¡ cos µ cos‚ ¡ cos µ sin‚ ¡ sin µ

3

5 [T ]
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Finally, we will need to consider the forcing term
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r cos µ
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and the non-linear term of the momentum equation
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One of the key features of weak formulations is the imposition of boundary
conditions in an average, or weak sense, which has been shown to be preferable
to a strong enforcement [13], [28]. For present purposes, that means removing the
integrals of u ¢ n and ru ¢ n on the domain boundary -the latter will be seen to
arise in considerations of the viscous term.

Th
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Figure 2: Linear Conforming Basis Function over Triangular Finite Element

allows the non-linear contribution to be formed
Z

Ω

‰
@u

@t
¡ ur ¢ u+ fk£ u

¾

¢ û d¿ +

I

@Ω

(u ¢ n)u ¢ û ds

=

Z

Ω

¡gr (h+ h0) ¢ û d¿ (5.9)

Finite Element Spatial Discretization

To derive the flnite element discretization of the governing equations, we flrst
introduce a discretization of the domain › into triangles ›e (1 • e • NE). This
triangulation is composed of NΓ interelement segments ¡l = @›e\@›f with e > f .
Each ¡l is associated with a unique normal vector n which points from ›e to ›f .
The total number of segments and vertices in the triangulation are respectively
denoted NS and NV .

Discrete flnite element equations are then found by approximating the eleva-
tion and velocity flelds by summations of linear conforming, P1, and linear non-
conforming, PNC

1 , basis functions respectively.

Linear Conforming Basis Functions

The three linear conforming basis functions for the canonical triangular element
are given by

`1 (»; ·) = 1¡ » ¡ · (6.1)

`2 (»; ·) = » (6.2)

`3 (»; ·) = · (6.3)

where it should be noted
`1 + `2 + `3 = 1 (6.4)

One such basis function may be seen for the general triangular flnite element in
Figure 2.
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for the zonal component, and
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where a comparable notation of nij has been used for the coe–cient of the time
derivative for the mass equation.

Again, accumulating all such integrals over elements of the computational do-
main allows us to introduce the right hand side term bh

nii
@hi
@t

= bh (7.11)

where to achieve the same simple structure for the elevation mass equation (7.10),
given that the conforming basis functions used for the elevation fleld are not or-
thogonal, the equiv
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in equations (7.5) and (7.6). Without loss of generality, we shall consider the
normal derivative term, similar arguments may be made for the other upwinded
terms.

Consider the sum of two such boundary integrals appearing in the full dis-
cretized zonal momentum equation for the whole computational domain, and aris-
ing from the integrations over two neighbouring elements labelled i and j with
boundaries @›i and @›j repectively.

I

@Ωi

@uh

@ni
[: : :] ds+

I

@Ωj

@uh

@nj
[: : :] ds (7.13)

Let the shared side between such elements be denoted by ¡ij with the subscript
order indicating the direction in which the segment is to be traversed and with a
normal ni pointing away from element i into element j and a normal nj pointing
away from element j into element i. Then the contributions to the last sum from
this edge will be

Z

Γij

@uh

@ni
[: : :] ds+

I

Γji

@uh

@nj
[: : :] ds (7.14)

To avoid a spurious build up of mass along the interface between the two elements,
we would expect

@uh

@ni
= ¡

@uh

@nj
(7.15)

considering that the normals are in opposite directions.
To enforce this continuity restraint it is necessary to decide how the difierent

values of @uh=@n inside each of the two elements are to contribute to this shared
value. This bias may be summarised with a parameter ‚ such that the °ux over
the interface is given by

@uh

@n
= (1¡ ‚)

@uh

@ni

fl
fl
fl
fl
Ωupwind

¡ ‚
@uh

@nj

fl
fl
fl
fl
Ωdownwind

(7.16)

where the ‘downwind’ and ‘upwind’ subscripts indicate the elements into which
there is a net °ow in and out of the element respectively.
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wavelengths smaller than the typical grid element dimensions, such upwinding can
be seen as a sub-grid scale model [14].

Artiflcial Difiusion

Although the use of non-conforming basis functions for velocity flelds is known
to dissipate high order oscillations within a solution [14], and even with fully
upwinded equations, numerical instabilites in the solution can still set in.

In common
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Numerical Experiments

Introduction

For the validation of the code as adapted to a spherical geometry, a number of test
cases suggested by Williamson et al. [29], appropriate to the use of the shallow
water equations on a sphere, was considered. These tests started from relatively
simple experiments to validate the purely advective properties of the code, by
resetting the winds to the initial values every timestep and observing the propa-
gation of a Cosine Bell disturbance (test case 1), to the much more sophisticated
replication of gravity waves excited by an isolated mountain (test case 5) and
approximations to the Rossby-Haurwitz waves. The latter are actually analytic
solutions to the non-linear barotropic vorticity equation (derived from the shallow
water equations) on the sphere, but which may be approximated in the shallow
water model (test case 6).

In the following, solutions for test cases 1,5,6 and 7 of [29] were generated, the
last test being liberally interpreted as simply running the numerical model on a
realistic data set (taken for current purposes from the ECMWF archives). The test
cases 2,3 and 4 would appear to be less popular in the literature, are thus harder
to flnd comparisons for, and are not reported here. A structured mesh generator
was developed to create meshes of various difierent sizes (in terms of the number
of elements they consisted of), with a very uniform element size distribution as
can be seen in the sequence shown in Figure 4.

The largest of these structured meshes, with 20480 elements, was used to cap-
ture the dissipative processes and steep velocity gradients of test cases 1 and 5.
The initial conditions of test case 1 may be seen on this mesh in Figure 5. How-
ever, a much smaller structured mesh of 8192 elements, derived from recursion of
the icosahedron, was tried for the simpler test case 6 anticipating the solution’s
smoother behaviour.

The last test case, employing actual data, was initially
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where the parameter fi corresponds to the angle between the axis of solid body
rotation and the polar axis of the spherical coordinate system and allows for the
direction of advection to be varied to test the isotropy of the method and/or mesh
considered [29]. For the solution presented here this is kept at zero, giving rise to
an advection around the equator.

The initial cosine bell test pattern that is to be advected is given by

h(‚; µ) =
h0
2

‡

1 + cos(
…r

R
)
·

(8.2)

for r < R, and h(‚; µ) = 0 otherwise, where h0 = 1000m and r is the great
circle distance between (‚; µ) and the center of the mountain, initially taken as
(‚c; µc) = (3…=2; 0), and is given by

r = a cos−1 [sin µc sin µ + cos µc cos µ cos(‚¡ ‚c)] (8.3)

The radius R = a=4 and the advecting wind velocity is given by

u0 =
2 … a

12 days
(8.4)

which corresponds to about 40 m/s. No artiflcial viscousity was introduced for
this test case.

As can be seen in Figure 6, there appears to be a slight loss in height of the
initial disturbance, and a large associated ‘dip’ behind, as it propagates around the
Earth. This can be attributed to the limitations the conforming basis functions
have when advecting the elevation fleld. Because these continuous functions take
information from neighbouring elements isotropically, their performance may be
described as centered.

Ideally such advection of the elevation fleld would be dealt with purely 32.894 0 Td
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Test Case Five: Zonal Flow over an Isolated Mountain

This test case again consists of a solid body rotation or zonal °ow

u = u0 (cos µ cosfi + sin µ cos‚ sinfi)
W Flo u ® ®
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indicates the exact time for which the 500 mbar initial data used correspond,
namely midnight before the flrst day of November 2001.

Figures 11 and 12 show contour plots of the geopotential height evolved from
the 500mbar initial data at roughly daily intervals for the following 5 days, with a
difiusion of 2£ 106 m2s−1 used to stabilize the results.

Owing to the relative courseness of the mesh used it is di–cult to pick out
anything but the most large-scale trends in the synoptic behaviour, though a
developing wave may be seen to start propagating westwards in the elevation data
around the south pole.

It should be noted that data could only be extracted from the encoded ECMWF
flles in the form of values on a ‘lat-long’ (latitude-longitude) grid. Thus it wto in ishj
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formula, with no need to simply ’hope’ that things won’t blow up.
Of course, with respect to the results of test case 7, improved results could

more immediately be obtained if the problems simply with the interpolations to
get the initial data could be overcome, or cirumvented. It would also be interesting
if a whole sequence of, perhaps daily, real weather data could be extracted from
achives with which to compute the L2 errors of the global elevation and velocity
flelds as the solution time progresses from that corresponding to the initial data.

Finally, although the use of non-conforming basis functions for velocity flelds
and full upwinding of the momentum equation is known to dissipate high order
oscillations within a solution, it was still found necessary to introduce a general
difiusion term to smooth some of the solutions and act against the creation of local
velocity extrema. The use and application of this artiflcial difiusion, however, could
also be improved.

The principal attraction of introducing viscosity to an otherwise inviscid prob-
lem is to ’smear’ out steep velocity (or elevation) gradients which could otherwise
given rise to short wavelength instabilites that can initiate the destruction of the
solution. However, at present, the code associated with this work applies difiu-
sion in a uniform manner, so smearing is performed globally on the whole solution
regardless of whether or not there happens to be a steep solution gradient at a
particular location.

Given that the presence of difiusion tends to decrease the overall energy con-
tained within a solution, violating any energy conservation principal, it has been
suggested [24], that a more sophisticated application of difiusion, only increasing
the viscosity in regions of high shear, could achieve the same results in terms of
increased stability through the difiusion of high-order modes, but with a lot less
energy loss.

Implementing such a scheme could be relatively easy, with simply the need
to establish some form of linear, or otherwise, dependance of the viscosity to be
applied at a given location to the elevation or velocity gradients (or a combination
of both) there.
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