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Abstract

This thesis is a collection of published, submitted and developing papers. Each paper is pre-
sented as a chapter of this thesis, in each paper we advance the field of vectorial Calculus of
Variations in L*°. This new progress includes constrained problems, such as the constraint
of the Navier-Stokes equations studied in Chapter 2. Additionally the combination of con-



Chapter 4 provides part of the corresponding developing preprint, joint work with Nikos
Katzourakis. We consider the problem of minimising the L* norm of a function of the
Hessian over a class of maps, subject to a mass constraint involving the L* norm of a
function of the gradient and the map itself. We assume zeroth and first order Dirichlet
boundary data, corresponding to the “hinged” and the “clamped” cases. By employing
the method of LP approximations, we establish the existence of a special L* minimiser,
which solves a divergence PDE system with measure coe [ciehts as parameters. This is
a counterpart of the Aronsson-Euler system corresponding to this constrained variational
problem.
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Chapter 1

Background and Motivations

In this chapter we review several background concepts that will be assumed throughout
the thesis.

1.1 Sobolev spaces

During the early 20th century, there was a substantial development in the theory of di Lert
ential equations. Specifically, most partial di[erential equations (PDEs), either linear or
nonlinear, cannot be “solved” in the classical sense of writing an explicit formula represent-
ing a solution as diLerkntiable as the equation would suggest. This was the beginning of
analytic PDE theory, abandoning to a large extent the search for new calculus techniques
to represent formulas of solutions.

A related problem, which arose almost simultaneously, is that in general we have to
extend our search for solutions to functions of lower regularity. In fact, for the vast majority
of PDEs, it is impossible to prove existence of a solution as dilerkntiable as the terms
within the equation. Let alone find an explicit formula to describe the solution in terms of
elementary functions.

The modern approach to PDEs consists of searching for appropriately defined gen-
eralised solutions. Firstly, we ascertain existence, given a specific domain and certain
prescribed boundary/initial conditions. The relevant vector spaces to initiate these ques-
tions are the Sobolev spaces. Before we can introduce their definition, we must discuss
what it means for a function to have a derivative in the weak sense.



Definition 1.1.1. Let Q R, with n [CN. Suppose u,v [T} (Q) and a = (ay, ..., 0)
is a multiindex of order |a| = oy + ... + o, = k. We say that v [} (Q) is the a™-weak
partial derivative of u, written as
0% =v,
provided . .
ud®edL" = (-1 vedL",

Q Q
for all test functions @ [GQ:°(Q). Additionally, our integration is with respect to the
n-dimensional Lebesgue measure L".

Theorem 1.1.2 (Uniqueness of weak derivatives). A weak ot"-partial derivative of u, if it
exists, is uniquely defined up to a set of measure zero.

Proof of Theorem 1.1.2. Let v,w [} (Q) such that:
- — —

ud®edL" = (=) vedL"= (-1 wedL" [@LC(Q).
Q Q Q

Then, ] ]
vodL" =  wodL".
Q Q

Consequently, .
(v—w)edL" =0.
Q
Thus, v—w = 0 a.e and v = w a.e. Hence, we have uniqueness up to a set of measure
Zero. [
Let us consider some elementary examples of functions possessing weak derivatives.

Example 1.1.3. If u CCK(Q) then its classical partial derivatives are indeed weak partial
derivatives for |a| < k.

Example 1.1.4. Suppose n =1 with Q = (0, 3) and

1
Laxl—6 if 0<x<2,

U(X)Z'i’—u if 2<x<3.

Let 1
_Mif o<x =2,

V@%_@3W2<x<&



We intend to show that u”= v in the weak sense. Choose any ¢ [C[°(Q), we must show
that 4 3

updL = —  vo'dL.
0 0

Using additivity and integration by parts, we easily compute

L4 I L4 L4 L4
updL = ueL+ uedL = (@x—6)e{x)dL+ 2¢¥x)dL
0 0 2 I_i_l |_2__| g 2 ] |€__|
= o(X)(dx—6) — 4o(x)dL +2 ¢(x)
5 ° 2
=20 = 4o dL —29(2)
L4 L4
=— 4o(x)dL=— vodL,
0 0
as required.

Example 1.1.5. The discontinuous function f : (0,2) - R

1
_if o<x<1,

FOO= i 1ox<a,

is not weakly diLerkntiable. For any ¢ [CI°(0, 2), we compute

3 ] 3 O G
 fodl= (OedL+ ¢l = 9(x) =@~ e =—0).

Consequently, the weak derivative g = f”must satisfy
-
, 99dL = o),
for any ¢ [Q:(0,2). Suppose for contradiction and assume there exists a g [LE. (0, 2)

that satisfies the above. Suppose we have test functions with ¢(1) = 0, then g = 0 a.e for
any ¢ LCE°(0,2), so g =0 a.e. This must also hold for test functions I3 or test functions 171s



Definition 1.1.6. Let Q [CRT be open and p [T, co], then we define the Sobolev spaces
as follows: 1 1

WKP(Q) := u [CIP(Q): D% [CIP(Q), for Ja| <k ,

where the derivatives are taken in the weak sense. If u [CW*P(Q) we define its norm to
be:

1
mk,p(g) .= MDu @(Q), l1<p<oo,

lal=k

w,oo(Q) L= [(DFu @(Q)

|al<k

Remark 1.1.7. An alternative choice of norm is given as follows

L1
[ I— P
w-P(Q) g - EDPU[Q(Q) |:,I 1<p<oo,
lal<k
[Tk (q) © = m% [DFu [ (q).

These norms are equivalent to the previous choices, in the sense they generate the same
topology. However, throughout this thesis we will employ the norms used in Definition
1.1.6, since they significantly simplify our calculations.



Definition 1.1.9. We denote by
WoP(Q)

the closure of C°(Q) in WKP(Q).

Consequently, u Ijv(')"p(Q) if and only if there exists functions u, [GQ(Q) with
Un —— U in WKP(Q). We see the closed subspace WgP(Q) as functions within W*P(Q)
that exhibit the additional property

D% =0o0n0Q forall |o| =k —1.

We must introduce the Trace operator for this expression to make sense, otherwise we have
a problem. In the classical setting of u [CC(Q), u has boundary values in the usual sense.
However, there is a substantial issue when we encounter functions in a Sobolev space that
are not continuous, or only defined a.e. As 0Q is an n-dimensional Lebesgue null set, there
is no clear interpretation for the meaning of “u restricted to 0Q”.

Theorem 1.1.10 (Trace Theorem). Assume Q is bounded and 0Q is C*. Then there exists
a bounded linear operator
T:W(Q) — LP(0Q)
such that
(i) Tu=ulsq if u CWP(Q) n C(Q)
and
(i)
[T @(ag) =C



Theorem 1.1.13 (Poincaré’s inequality). Suppose that 1 < p < oo and Q is a bounded
open set. Then there exits a constant C (depending on Q and p) such that

Wl dq) = CDuldq),
for any u LW SP(Q).

Theorem 1.1.14 (Poincaré Wirtinger inequality). Assume that 1 < p < oo and Q is
a bounded, connected open set with Lipschitz boundary. Then there exits a constant C,
depending only on n,p and Q, such that

1

__UdLnE = CU@(Q),

Q LP(Q)

for each function u CWP(Q).

These results are highly significant, as they allow us to bound the norm of a function,
using only the norm of its gradient.

Another useful bound is the Morrey estimate.

Theorem 1.1.15 (Morrey’s inequality). Assume n < p < oo. Then there exists a constant
C, depending only on p and n such that

[Ulcdy gy = C [Uulwh.p(q)

for all u CCI(Q), where .
=1—-—.
Y P

Thus, if u CWP(Q), then u is in fact Holder continuous of exponent y. This embedding
can actually be made compact. The notion of compact embeddings is used throughout
linear and nonlinear functional analysis, it is of the utmost importance within the realm
of di[erkntial equations.



The second condition means that if (ux)g=, is a sequence in X with sup, [} L] < oo,
then some subsequence (Uk;);jZ; [(Uk)gZ; converges in Y to some limit u:

jIim fu};, —ulyl=0.

Theorem 1.1.17 (Rellich-Kondrachov). Suppose that Q is bounded with C! boundary.
Then, for p > n, the embedding WP(Q) [CCIQ) is compact, i.e WP(Q) b C(Q).

This result allows us to prove the existence of a uniformly convergent subsequnce,
through a WP(Q) norm bound.

We refrain from discussing this topic any further, as there is a great deal of accessible
literature on Sobolev spaces. The reader should consult [1, 21, 42] for a comprehensive
exploration. These references also contain the proofs of the results quoted in this section.

1.2 Variational problems

The study of minimisation problems has been undertaken by a variety of mathematicians
for diverse intentions. There has been a substantial focus in understanding the relationship
between minimality conditions of a functional and the appreciation of PDEs. As there
is no general theory for all PDEs, we must exploit the PDE structure where possible.
An important collection of such problems are when we can view minimality through a
variational approach, this is a corner stone of Calculus of Variations. For instance, suppose
we have some potentially nonlinear PDE with the form

Alu] =0, (1.1)

where A[u] is a given dilerential operator and u is the unknown. Equation (1.1) can be
characterised as the minimiser of an appropriate energy functional E[u], such that

Efu] = Alu]. (1.2)

The practicality of this method is that now we can prove existence of extrema for the
energy functional E[-] and consequently the solution of (1.1). This approach provides a
much more tractable method than the direct consideration of problem (1.1).

In this thesis we will not explore the Calculus of Variations as a means to study non-
linear PDEs. Neither will we pursue classical problems from the well established field of
minimising integral functionals. However, a strong foundation in the study of integral

7



Calculus of Variations is necessary to examine the problems we face in this thesis. We will
recap some of these fundamental ideas in a subsequent subsection. Our interest lie at the
heart of minimising constrained vectorial supremal functionals and finding the necessary
conditions these minimisers must satisfy. This is the field of vectorial Calculus of Variations
in L*> and will be the topic of this thesis.

1.3 Literature review

Due to the extensive nature of this branch of mathematics, it is rather challenging to include
and produce a completely comprehensive literature review. A substantial quantity of the
appropriate literature is reviewed in the introductions of the papers that are presented in
this thesis. However, we will briefly outline the most important previous considerations
that have inspired the new progress in this thesis.

1.4 Integral Calculus of Variations

We will now recap some rudimentary details, essentially textbook material of integral Cal-
culus of Variations. See [36, 42, 90] for further details.

Let X be a vector space and E : X — R, a real valued continuously di[erentiable
integral functional. Our first natural question of interest concerns the existence of min-
imisers, this can be investigated through the well established direct method in the Calculus
of Variations.

Theorem 1.4.1 (The Direct Method in the Calculus of Variations). Suppose X is a reflex-
ive Banach space with norm [I_And let M [Xlhe a weakly closed subset of X. Suppose
E : M — R [{doo} is coercive and sequentially weakly lower semi-continuous on M
with respect to X, that is, suppose the following conditions are fulfilled:

= E(U) — oo as [u[#- oo,u [X.



Remark 1.4.2. Notice that the direct method is not only restricted to proving the exis-
tence of integral functionals.

Once we have established existence of solutions, our next point of inquisition is deter-
mining necessary conditions that these minima or maxima must satisfy. These necessary
conditions will be in form of PDEs. For vectorial problems these necessary conditions will
manifest as a system of PDEs.

If E has local extrema (local minima or maxima) at a point Xo [X, then
Exo) = 0.

Under further regularity of E, specifically a C? functional, we can deduce that

E(x0) =0,

if Xo is a local minimum.

Figure 1.1: Local Extrema

We can intuitively visualise lower dimensional problems like the figure above.

Similarly,
E%xo) < 0.

if Xo is a local maximum.

Now let E be a C! real valued functional over the bounded open set Q [CRI". Then
for some up, [ and ¢ [CA(Q;R™) and for some su Lciehtly small €5 > 0 the function
E(ug + €9) is also continuously dilerkntiable, when |g] < &. The first variation is then



defined as the derivative of E at point ug along the direction of ¢ for € = 0. When ug is a
critical point we conclude that

d
de E:OE(uo +¢€9) =0. (1.3)

We can visualise an elementary situation as follows.

b

Figure 1.2: Directional Derivative

Consider the functional E defined as above, where L [CCIH(Qx<RNxRN>*") is the Lagrangian

dg E(up +¢€9) = Dg L—LD



This can be rewritten in the following index notation

| — N 1
Di Lp;(,u,Du) +Ly(,u,Du)=0, j=1,.,NinQ,

For example, consider the p-Dirichlet integral functional
1
Ep(u) := |DulPdL", u CWP(Q;RM).
Q

The corresponding Euler-Lagrange equations are given by the renowned p-Laplacian
Apu = Div(|DulP™Du) =0 in Q. (1.5)

Note that for any P [CRN*", the notation |P| denotes its Euclidean (Frobenius) norm:
11
IP|= (Pij)?

2
i=1j=1

1.5 Calculus of Variations in L*

Calculus of Variations in L* has a reasonably short history, with the first developments
being made by Gunnar Arronsson in the 1960s. He considered L* variational problems
in the scalar case [4]-[9]. The evolution of vectorial problems did not begin till much
later, with Nikos Katzourakis initiating its growth in the 2010s. In this thesis we will
study constrained vectorial problems, only a very small quantity of previous literature
existed at the commencement of this project [65, 66]. There has already been subst0 0 rgo3-43552 Tf



As mentioned, in the classical setting of integral functionals, where
1
E(u)= L(-,u,Du)dL",
Q



A standard di Cculity, when dealing with these types of problems, is the complexity of
the PDE system given in (1.8). As previously mentioned, these systems do not possess



some motivational ideas into why we consider the problem, specifically what is variational
data assimilation and how this could support weather prediction. Subsequently, we can
pose our research question as a constrained supremal minimisation problem. Once we have
established the theoretical foundations, introduced appropriate vector spaces and devised
an admissible class of functions, we start to inspect some fundamental questions. The first
is clearly existence of minimisers, indeed our initial theorem in this chapter. Once existence
has been ascertained, we can pursue PDE conditions that these minimisers satisfy, this is
the contents of our second and third theorems. It turns out that our L° minimisers
solve a divergence PDE system involving measure coe [ciehts. This is a divergence form
counterpart of the corresponding non-divergence Aronsson-Euler systems that have been
previously mentioned. Given that measures are present in our equation, we also investigate
some of their properties in our third result.

Chapter 3 presents the joint paper with Nikos Katzourakis. This paper was accepted to
the journal Advances in Calculus of Variations in March 2023. Here we investigate a more
abstract problem: The minimisation of a general quasiconvex first order L functional
that is constrained by two quantities. Specifically, the sublevel set of another supremal
functional and the zero set of a nonlinear operator.

The chapter begins as before, by assembling an outline of the problem. Given the anatomy
of the research, the same natural questions must be examined. Thus, our first result
provides existence of minimisers through utilisation of the direct method, subsequently
constructing the connection between minimisers of the LP and L* problem. Our next
step involves exploiting the generalised Kuhn-Tucker theory to discover equations that the
constrained minimisers satisfy. The final result is rather challenging to prove, we can not
pass to the limit as easily as we did the previous chapter. The issue is we have products
that converge in a weak sense and we can not use duality to overcome it. Due to the
specificity of the problem, we can bypass the comprehensive machinery of Young measures
and employ the theory of Hutchinson’s measure function pairs. This allows us to pass to
the limit and produce the desired PDE condition. However, this still requires a substantial
body of work. Throughout this project, we must impose ever increasing restrictions upon
the nonlinear operator Q. The final section illustrates the variety of problems still available
to us, despite the initial limitations of assumptions in our previous results. For instance,
examples of potential operators include those expressing pointwise, unilateral, integral
isoperimetric, elliptic quasilinear di [erential, Jacobian and null Lagrangian constraints.

In Chapter 4 we illustrate a component of the developing preprint paper, joint work
with Nikos Katzourakis. The complete paper was submitted to the journal Proceedings of
the Royal Society of Edinburgh, in March 2023. In this final piece of research, we examine
an extension of the previously existing first order problem [67]. Specifically, allowing the

14



functional in question to depend on Hessians as opposed to gradients. Additionally, the
constraint depends on the gradient and the function itself. Following an analogous line of
inquiry, we determine PDE conditions for constrained minimisers, utilising our knowledge
of the approximating problems.

In Chapter 5 we discuss the conclusions and future work.
Appendix A provides the derivation of a bound stated in Chapter 2.

Appendix B contains a simple computational proof of the modified Holder inequality
utilised in Chapter 2.

15



Chapter 2

Vectorial Variational Problems in L
Constrained by the Navier Stokes
Equations

2.1 Introduction and main results

Let Q R be an open boundd [(R)]TJ/F44 729 11.950TJ/F44 729 5J84 7cs



A problem of interest in the geosciences, in particular in data assimilation for atmospheric
flows in relation to weather forecasting (see e.g. [22, 23, 24]), can be formulated as follows:
find solutions (u, p) to (2.1) such that, in an appropriate sense,
(-
y =0,
Q(" L U, M) —q= 0!

where q : Qr — RN is a vector of given measurable “data” arising from some specific
measurements, taken through the “observation operator” Q of (2.2). In (2.1) and (2.3),
y represents an error in the measurements which forces the Navier-Stokes equations to
be satisfied only approximately for solenoidal (divergence-free) vector fields. Namely, we
are looking for solutions to (2.1) such that simultaneously the error y vanishes, and also
the measurements q match the prediction of the solution (u, p) through the observation
operator (2.2). In application, Q is typically some component (e.g. linear projection or
nonlinear submersion) of the atmospheric flow that we can observe. Unfortunately, the
data fitting problem (2.3) is severely ill-posed; an exact solution may well not exist, and
even if it does, it may not be unique.

(2.3)

In this paper, inspired by the methodology of data assimilation, especially variational
data assimilation in continuous time (for relevant works we refer e.g. to [18, 25, 39, 47, 48,
75, 77, 86]), we seek to minimise the misfit functional

(upy) B (1—?\)%(-,-,11, m)—q§ Ay




argument, the L* norm is not additive but only sub-additive. Further, one would also
need estimates for (2.1) in appropriate subspaces of L* for weakly dilerentiable func-
tions, which, to the best of our knowledge, do not exist even for linear strongly elliptic
systems (see e.g. [52]). Even then, if one somehow solves the L*> minimisation problem
(by using, for instance, the direct method of the Calculus of Variations as in [36], under
the appropriate quasiconvexity assumptions for |Q — q| + |y| as in [17]), the analogue of
the Euler-Lagrange equations for the L* problem cannot be derived directly by perturba-
tion/sensitivity methods due to the lack of smoothness of the L* norm.

In this paper, to overcome the di [culties described above, we follow the methodology
of the relatively new field of Calculus of Variations in L* (see e.g. [34, 61] for a general
introduction to the scalar-valued theory), and in particular the ideas from [64, 65, 66,
68] involving higher order and vectorial problems, as well as problems involving PDE-
constraints, which have only recently started being investigated. To this end, we follow the
approach of solving the desired L variational problem by solving respective approximating
LP variational problems for all p, and obtain appropriate compactness estimates which allow
to pass to the limit as p —» oo. The case of finite p > 2 studied herein is also of independent
interest, especially for numerical discretisation schemes in L (see e.g. [70, 71]), but in this
paper we treat it mostly as an approximation device to solve e [ciehtly the L* problem.
The idea of this approach is based on the observation that, for a fixed essentially bounded



Then, for any p (A, o), we define the LP misfit E;, : XP(Qr) — R by setting

Loy « -
B, upy = A-NKECu LLPE o+ AV q,). (2.6)
We note that in (2.6) and subsequently, the dotted LP quantities are regularisations of
the respective norms at the origin, obtained by regularising the Euclidean norm in the
respective target space:
—

m(QT) = ﬁl(p) %(QT), | . |(p) = | . |2 + p—2_ (27)

Further, since we will only be dealing with finite measures, we will always be using the
normalised LP norms in which we replace the integral over the domain with the respective
average, for example for LP(Qr) with the (n + 1)-Lebesgue measure, the norm will be

] Lepl
AL dq,) = — |hfPdL™ .
Qr
The admissible minimisation class XP(Qy) over which E;, is considered, is defined as follows:
1 1
XP(Q7) = (u,py) CWP(Qr) : (u,p,y) satisfies weakly (2.1) , (2.8)
where

WP(Qr) := WZ5P(Qr; R™) x WEP(Qr) x LP(Qr; R). (2.9)

The rather complicated functional spaces appearing in (2.9) are defined as follows. The
space W/2P(Qr; R™) consists of solenoidal maps which are W2 in space and WP in time,
and also laterally vanishing on 9Q % (0, T):

= C] T
FfSP(QriR™) = LP (0,T); Wgd(Q:R")

B



The associated norms in these spaces are the expected ones, namely

%‘Qﬁﬁ;p(g_ﬂ = M(QT) + DM(QT) + [DFV@(QT),

2.12)
q@;vlg;p(gﬂ = gL dor) + D Ldr)-

Note also that the divergence-free condition for u in (2.1) has now been incorporated

in the functional space W><"(Qr). Finally, the L* misfit Emg rmng ramg r—



Assumption (2.15), albeit restrictive, is compatible with situations of interest in weather
forecasting (see e.g. [22, 23, 24]). Our first main result concerns the existence of Ep-
minimisers in XP(Qy), the existence of E.-minimisers in X*°(Qr) and the approximability
of the latter by the former as p - oo.

Theorem 2.1.1 (Ee-minimisers, E,-minimisers & convergence as p — oo). Suppose that
(2.5) and (2.15) hold true. Then, for any p [(h + 2, o], the functional E, (given by
(2.6) for p < oo and by (2.13) for p = oo) has a constrained minimiser (Up, Py, Yp) in the
admissible class XP(Qr):

— o Ho oo O L1
Ep Up,Pp,Yp = inf Ep upy © upy [CEP(Qr) . (2.16)

Additionally, there exists a subsequence of indices (p;)5> such that the sequence of respective

Ep,-minimisers (Up;, Py, Yp;) satisfies (Up, Pp, ¥p) — L (Uko, Peo, Yeo) IN W9(Q7) for any
g [, o0), as pj — oo. Additionally,

— H 2,159 . DN
l, —Lud, in Wlii(QTﬁ% ),
p —— Uco, inC Q;R"
L1
Up —= DUs, inC Qr;R™" , (2.17)
» —Lpdd, in W;%(Qr; R,
for any q (1, o0), and also
Ep(up’ pp’ yp) s E°°(u°°7 Poo, yOO) (218)

Given the existence of constrained minimisers established by Theorem 2.1.1 above, the
next natural question concerns the existence of necessary conditions in the form of PDEs
governing the constrained minimisers. We first consider the case of p < co. Unsurprisingly,
the PDE constraint of (2.1) used in defining (2.8) gives rise to a generalised Lagrange
multiplier in the Euler-Lagrange equations, obtained by utilising well-known results on the
Kuhn-Tucker theory from [94]. Interestingly, however, the incorporation of the solenoidality
constraint into the functional space (recall (2.10)), allows us to have only one generalised
multiplier corresponding only to the parabolic system in (2.1), instead of two.
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To state our second main result, we first need to introduce some notation. For any
M and p (A, oo), we define the operator

M, : LPQr;RM) — LP(Qr;RM),
where p™:= p/(p — 1), by setting
IV {6y V

M(V) = =—P . (2.19)
IIIIQ(QT)

Here | - | is the regularisation of the Euclidean norm of RM, as deflned in (2.7). By
Holder’s inequality it is immediate to verify that (for the normalised LP~norm) we actually

h
e %p(V)% <1,

CPHaT)
and therefore 91, is valued in the unit ball of LP(Qr;RM). Further, for brevity we will
use the notation 1 1 1

Klu,p] ==K -,-,u, CLp ,
1 1
Kr][ulp] = KI'] '1'%; m y O (2 20)
| K = . '
(A,a)[u1p] K(Agl » Uy Im&l ’
Kr[u1p] = Kr '1'|u1 m) H

for K and its partial derivatives K, K(a a), K; with respect to the arguments for u, Ctand
p respectively.

Theorem 2.1.2 (Variational Equations in LP). Suppose that (2.5) and (2.15) hold true.
Then, for any p (i + 2, 00), there exists a Lagrange multiplier

I, o =
Wo TWo,"" (QR") (2.21)

associated with the constrained minimisation problem (2.16), such that the minimising
triplet (up, pp, yp) CXP(Qy) satisfies the relations

1 1 -
1 1l

% —A 0:u — VAU + (U-D)u, + (up - D)u
Q

T



([ 1 1 1
(1-2N) . K [Up, pplp - My Klup, pp] dL™ = —A . Dp - 9, (y,) L™ (2.23)

for all test mappings
(u,p) CWZGP(Qr;R") x WE(Qr),

where the operators K, K, Ka a), K; are given by (2.20).
Now we consider the case of p = oco. For this extreme case, which is obtained by an

appropriate passage to limits as p —» oo in Theorem 2.1.2, we need to assume additionally
that the operator K[u, p] does not depend on (d:u, p), hence in this case we will symbolise

1 (- 1
K[u] =K -,-,u,Du ,
1 [
Kylu] =K, -,-,u,Du , (2.24)
1 1
Ka[u] :==Ka -, -, u,Du ,

for K and its partial derivatives K;,, Ka with respect to the arguments for u, Du respectively,
all of which will also need to be assumed to be continuous. We note that, when p = oo, there
is no direct analogue of the divergence structure Euler-Lagrange equations. Instead, one
of the central points of Calculus of Variations in L* is that Aronsson-Euler PDE systems
may be derived, under appropriate (stringent) assumptions. Even in the unconstrained
case, these PDE systems are always non-divergence and even fully nonlinear and with
discontinuous coe Lciehts (see e.g. [12, 13, 35, 63, 70]). The case of L* problems involving
only first order derivative of scalar-valued functions is nowadays a well established field
which originated from the work of Aronsson in the 1960s [4, 5], today largely interconnected
to the theory of Viscosity Solutions to nonlinear elliptic PDE (for a general pedagogical
introduction see e.g. [34, 61]). However, vectorial and higher L* variational problems
involving constraints, have only recently been explored (see [65, 66], but also the relevant
earlier contributions [10, 11, 15]). For several interesting developments on L variational
problems we refer the interested reader to [14, 16, 19, 20, 27, 39, 49, 76, 80, 81, 84].

In this paper, motivated by recent progress on higher order and on constrained L*
variational problems made in [68] by the second author jointly with Moser and by the
second author in [65, 66] (inspired by earlier contributions by Moser and Schwetlick de-
ployed in a geometric setting in [79]), we follow a slightly dilerent approach which does
not lead an Aronsson-Euler type system; instead, it leads to a divergence structure PDE



Euler-Lagrange equations before letting p — oo, which is dilerent from the scaling used
to (formally) derive the Aronsson-Euler equations as p - oo.

In the light of the above comments, our final main result concerns the satisfaction
of necessary PDE conditions for the PDE-constrained minimisers in L* constructed in
Theorem 2.1.1, and reads as follows.

Theorem 2.1.3 (Variational Equations in L*). Suppose that (2.5) and (2.15) hold true,
and that additionally K does not depend on (0:u, p) with K, K, Ka in (2.24) being contin-

uous on Qr x R"™ x R™N. Then, there exists a linear functional

(— P =
We, T Wye (QR") (2.25)
r>n+2
which is a Lagrange multiplier associated with the constrained minimisation problem (2.16)
for p = oco. There also exist vector measures

L1 1 [y
Yoo M Qr;RY | 0o Qr:R" (2.26)
such that the minimising triplet (Uoo, Poo, Yoo) EB”(QT) satisfies the relations
O
% A KpylUe] - U + KalUe] : Du -dzoo
1 1 - — (2.27)
% —A 0tu — VAU + (U D)Ue + (Uso - D)U - dOc + W, u(:,0) ,
or -
_ Dp-dos =0, (2.28)
Qr

for all test mappings
- N = ':10_ o 5]
(u,p) CIW 5" (Qr;R") nC? Qr;R" x W ?(Qr) nCh Qr

Further, the multiplier W, and the measures Zw,owlﬁn be approximated as follows:
édp -F91, in W@Z&IZ/”(Q R™ , forallr>n+2,
>, “E=l, inM Qr; RNI:,I (2.29)

%: 1
, ~Fad, inM Qr;R",

along a subsequence p; — oo, where
1

= e
o = My Kup] L Xq,,

=N

(2.30)
My (yp) L Xq, .

24



Finally, <., concentrates on the set whereon |K[u..]| is maximised over Qr

S e I%{um]@ @[UWE = 0, (2.31)

Le(Qr)

and 0. asymptotically concentrates on the set whereon [y.| is approximately maximised
over Qr, in the sense that for any € > 0 small,
111 111

lim oy Iyl < W@y —e =0, (232)

Even though the weak interpretation of the equations (2.22)-(2.23) is relatively obvious,
this is not the case for (2.27)-(2.28) despite having a simpler form. The reason is that the
limiting measures (., 0o,) are not product measures on Qr = Q % [0, T] in order to use
the Fubini theorem, therefore due to the temporal dependence, (2.28) cannot be simply
interpreted as “div(0.) = 0”. Similar arguments can be made for (2.27) as well. Since
this point is not utilised any further in this paper, we only provide a brief discussion in the
next section.

We conclude this introduction with some remarks regarding the organisation of this
paper. This introduction is followed by Section 2.2, in which we discuss some preliminaries
and also establish some basic estimates which are utilised subsequently to establish our
main results. In Section 2.3 we prove Theorem 2.1.1 by establishing the existence of con-
strained minimisers for all p including p = oo, as well as the convergence of minimiser of
the former problems to those of the latter. In Section 2.4 we prove Theorem 2.1.2, deriv-
ing the necessary PDE conditions which constrained minimisers in LP satisfy. Finally, in
Section 2.5 prove Theorem 2.1.3, deriving the necessary PDE conditions that constrained
minimisers in L satisfy, as well as the additional properties that the measures arising in
these PDEs satisfy. A key ingredient here is that we establish appropriate weak* compact-
ness for the Lagrange multipliers arising in the LP problems in order to pass to the limit
asp - oo.

2.2 Preliminaries and the main estimates

We begin by recording for later use the following modified Hélder inequality for the dotted
LP



which can be very easily confirmed by a direct computation. Next, we continue with
a brief discussion regarding the weak interpretation of the equations (2.27)-(2.28). As
already noted in the introduction, since (Z, 0 ) are generally neither product measures
or absolutely continuous with respect to the (n + 1)-Lebesgue measure on Qr = Q < [0, T],
one needs to use the disintegration “slicing” theorem for Young measures in order to express
them appropriately, as follows. Since 0. is a vector measure in M(Q7; R"), by the Radon-
Nikodym theorem, we may decompose

d0e

O = d@olﬁ”m

where [al, CITI(Qy) is the scalar total variation measure and do../d [al, [i$ the vector-
valued Radon-Nikodym derivative of g., with respect to [al, L_Fix any h CIL#(Qr, [al, )]
By the disintegration “slicing” theorem for Young measures (see se.g. [44, Theorem 3.2, p.
179]), we have the representation formula

1 1 L&h L1
~ hdlal, F o] §h(x,t)d@o|ﬂ]>() d [al, [°(t)

Qr

where the measure [al, [CICW([0, T]) and the family of measures ([ad [k rmr; CIM(Q)
are defined as follows:

1 1
o 1 1 dlal, CA x - . o I
al, 1= [al, [N x. , Lal, = = , for A CQlBorel.
[(A) d@,mx-m)

Namely, [al, [™lis one of the marginals of 0., and for [al,[®h.e. t [0, T], the measure
I% [ #valuated at A is dlglined |:a|S the Radon-Nikodym derivative of the measure [al, A x

with respect to [al, CDx- at the pointt C[Q, T]. Then, in view of (2.28), by choosing
p in the form p(x, t) = n(X)T(t), we have

[
0= _ Dp dow
=
d0e
— Dp-d@Dd@D
— [hed do 1 —1
— [Ched —1 1

- ) Dn(x)-(jdgé)l(,t) dial, [X) k0w 0o

[0,T] Q



The arbitrariness of T implies that for [al, [Ph.e. t []d, T], we have

— do 1
Dmn(x) - dlmolﬁl('t) dlal, LX) = 0.

When restricting our attention to those test function for which m|sq = 0, we obtain the
next weak interpretation of (2.28):

div



Since 26 > 1+ n/p, by the standard Sobolev embedding theorem for fractional spaces (e.g.
[38, Theorem 8.2], we have that W2®P(Q) is continuously embedded in the space C1%(Q),
where 0 < a < 26 — 1 — n/p. The conclusion ensues. O

Remark 2.2.2. Let us now record for later use the following simple inclusion of space
(which is in fact a continuous embedding):

1 I [ Y
c%® [0, T];CoQ) [CP® Qr .

1 =
Indeed, for any h CCI%® [0, T]; C%%(Q) , we compute
%(th Xl) - h(tz, Xz)%g |h(t1, Xl) - h(tz, Xl)l + |h(t2, Xl) — h(tz, X2)|
= gtb ) — h(tz, ) [elg) * [A{t2, ) Ledag X1 — X2|®

< [t — 6% + X1 — X[ m,a([O’T@wsm Td [(QBWS7:)]TI/Fpe [(2)]TI/F79 11.955:



satisfies that (uo, 0,yo) [



assumption (2.5)(f) yields that
1
(Owu,p) B % -,u,Du,atu,p%

LP(Qr)

is also convex. By standard results in the Calculus of Variations (see e.g. [36]) it follows that
E, is weakly lower semicontinuous in WP(Qy). Since the convex combination of p-th roots
of two weakly lower semicontinuous functionals is indeed a weakly lower semicontinuous
functional. By the bounds obtained in Lemma 2.2.3, it follows that XP(Q1) is weakly
closed in WP(Qr). Furthermore, E, is weakly lower semicontinuous in XP(Qr). Hence, E,
attains its infimum at some (up, pp, Yp) CXP(Q7).

Consider now the family of minimisers (U, pp, Yp)p=n+2. For any (u,p,y) C3*(Qr)
and any q < p, minimality and the Hoélder inequality for the dotted LP functionals yield

Ep(Up, Pp, Yp) < Ep(U,p,y) < Ewo(u,p,y) + p .

By choosing (u,p,y) = (uo,0,Yyo), by Lemma 2.2.3 and a standard diagonal argument,
we have that the family of minimisers is weakly precompact in W9(Qy) for all ¢ [
(n + 2,00). Furthey, by Lemma 2.3 and Remark 2.2.2, W>s%(Qr;R") is compactly
embedded in C%® [0, T];C1%(Q;R") . Hence, for any sequence of indices p; — oo, there
eXIStS (Uoo, Poos Yeo) [0k rgan2,00) W (Q71) and a subsequence denoted again as (p;):7° such
that (2.17) holds true. Additionally, due to these modes of convergence, it follows that
(Ueo, Poo, Yoo ) SOIVES (2.1), therefore in fact (Uco, Poo, Yoo) LA (Q7). 1, pJ(Q2



for any (u,p,y) CX*(Qr). The above inequality establishes on the one hand that
(Uco, Poo, Yoo) Minimises Eo over X*°(Q1), and on the other hand by choosing (u,p,y) =
(Ueo, Poo, Yoo ) that (2.18) holds true. Hence, Theorem 2.1.1 has been established. ]

2.4 The equations for LP PDE-constrained minimisers

In this section we establish the proof of Theorem 2.1.2



where the operator 9%, : LP(Qr; RM) — LP(Qr; RM) (for M [N, n}) is given by (2.19)
and we have used the notation introduced in (2.20). Next, we note that the mapping G
which incorporates the PDE constraint is also Fréchet diLerentiable and it can be easily

confirmed that its derivative
1 1

4G © WP(Qr) — B WP(@r),LP(@riR") x Wag" (QR") |
d H e =
AG)apn(U.p.yY) = gzOG U+eu,p+ep,y+ey
is given by the formula

L1 1 5} A Du+(@u-D D
— + (U - + (U - +Dp —
QU —VAU+ (u-D)i+(@-Du+Dp-y

dG (a,ﬁy)(u’ P.y) = u(-, 0)

We now claim that the dilerkntial
_2
(dG)@py) : WP(Qr) — LP(Qr;R") x Wy, (Q;R")

is a surjective map, for any (u,p,y) [M¥P(Q). This is equivalent to the statement that for
any p > n + 2, the linearised Navier-Stokes problem

%tu—vAu+(u-D)G+(G-D)u+Dp: F, in Qr,
divu = 0, in Qr,

% u(-,0) = v, on Q,
u=0, onadQx(0,T),

has a solution (u,p) CWALP(Qr:R™) x WEP(Qr), for any Ui CWZLP(Qr;R™) and any
data )
(F,v) CIP(Qr;R") x Weg " (Q; R").
This is indeed the case, and it is a consequence of a classical result of Solonnikov [87, Th.
4.2] for n = 3 and of Giga-Sohr [54, Th. 2.8] for n > 3, as a perturbation of the Stokes
problem. As a consequence, the assumptions of the generalised Kuhn-Tucker theorem hold
true (see e.g. Zeidler [94, Cor. 48.10 & Th. 48B]). Hence, there exists a Lagrange multiplier
1 2y =
Np CLP(Qr;R™) x Wy "7 (Qr; R™)

such that
[ Leh & L1
L ) = dG 1 My 1/\ 1
P (Up'pp-yp)(u P.Y) (Up'ppv)’p)(u P.Y) P
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for any (u,p,y) [C\WP(Q). By standard duality arguments, the Riesz representation theo-
rem and by taking into account the form of the di[erkntials dE, and dG, we may identify
N\, with a pair of Lagrange multipliers

1 2 IE
(@p, W) CIPQriR™) x Wy ™ (Qr;R")

(- (-
such that, the constrained minimiser up, py, Y, [XP(Qr) satisfies the equation

(- —1
1= o K [Up, Ppl - U + Kaa)[Up, Pp] : [ Ky [up, pp] P
H ] -
My Kup, pp]l dL™ + A My(y,) -y dL™?
1 or -
= 0:u —VAU+ (u-D)u, + (U, - D)u+Dp—y -@,dL""" + [@,, u(-,0)[]
for any (u,p,y) [C\WP(Qr). We note that here we have tacitly rescaled (¢p, ¥,) by multi-
plying them with the factor p(L"**(Qr)) ™, in order to remove the averages arising from E,
on the left hand side and to be able to obtain non-trivial limits as p — oo of the multipliers
themselves later on. By using linear independence, the above equation actually decouples
to the triplet of relations
1 [ - (I —
% —A) KnlUp, Pp] - U + Kaa)lUp, Ppl © T 90, Hefyp, pp] dL™™
L] AJAEB8AN1.9552 Tf 6.503 0 Td [(L)]TJI/F44 7.9
Ez O0:u — VAU + (u-D)u, + (up - D)u Qr 1 —
Or R god{Loss st rualsEEh . 793y Taur C D



2.5 The equations for L*



In order to derive the desired estimate on (W,),>n+2, We argue as follows. Consider
(2.22) for K, = 0 (the first equation appearing in this proof) and let us fix the initial value
on Q x {0}

u(,0) = 0 WSS (QR")
of the arbitrary test function u, but we will select u on Q; such that the term in the
bracket in the integral on the right-hand-side becomes a gradient. Then, this term will
vanish identically as a consequence of (2.23) when K, = 0 (the second equation appearing
in this proof). Indeed, let p > n + 2 and let also (T, p) be the (unique) solution to

%ata—mm (@ D)u, + (U, - D)T + DP = O, in Qr,
divl = 0, in Qr,

E u(-,0) =0, on Q,
=0 onoQx(0,T),

The solvability of the above problem is a consequence of the classical result of Solonnikov
[87, Th. 4.2] for n = 3 and of Giga-Sohr [54, Th. 2.8] for n > 3, as a perturbation of the
Stokes problem: by choosing ¢ > n + 2 in Solonnikov’s assumption (4.14), a solution as
claimed does exist. Further, since U is in W§§°(Q; R"™), by [87, Cor. 2, p. 489] we have the
uniform estimate

Hg + r S
[m;\flfjiv @t Plyhor gy = C(r) [m%%;%,r(g),

for any r [(IL,o0). By Lemmas 2.2.1 and 2.2.3 and Remark 2.2.2, if we restrict our
attention to r [L(h + 2, o), we additionally have the bound

Ml d o,y + ML 4y = C(r) [m%IQf%,r(Q):
0,0

for some new constant C(r) (which is unbounded as r [Cn= 2). By setting

1 1 1
XK. :=sup |K,|+|Kal: Qr x BY_(0) x BX"(0) ,
| 1
= s sup Dby + (D o)
p>n+

where B_(0) and B "(0) denote the balls of radius



% (-
(2.19) we have D K[up]E%(Q ) < 1 (for the normalised L* norm):

59,0 Fen] o5 e
L1 @ E

+(1— )\)E:I Kn[up] 0 + Kalup] : DT -9, K[u,] dL"™*?

T

L1 4O
=1-NTL"(Q) Kn[up] + Kalup] : DT - 90, K[up] o||_n+1



(in the locally convex sense). (Hgnce, as it can be seen by aregystomary diagonal argument
in the scale of Banach spaces Wgo- " (Qr;R") : r >n+2 comprising the Fréchet space,
there exists a continuous linear functional
1, 2,
W, : Woo" (Q;R") — R

r>n+2
and a further subsequence as p — oo such that along which we have W, EF®J] in the
locally convex sense. Additionally, since

1, 2, =
W, [ Wy (Q;R")
r>n+2
the convergence W, —EFW] is equivalent to weak* convergence in the Banach space
WES"T(Q; R) for any fixed r > n+ 2. In conclusion, we see that (2.27)-(2.28) have now
been established.

Now we complete the progfpf Theorem 2.1.3 by establishing (2.31)-(2.32). Since
Klup] — Kluw] in C Qr; RN | by applying [64, Prop. 10], we immediately obtain that
> .. concentrates on the set whereon |K[u.]| is maximised over Qr:

2 I%{um]§< ngTax @[um]ﬁ=l 0.

This proves (2.31). For (2.32), we argue as follows. We first note that

@ @(QT) — IEO(QT)

asp — oo, along a subsequence. In view of (2.6) and (2.13), this is a consequence of (2.18)
and the fact that K[u,] — K[Us] uniformly on Qr, which implies

@[up] - @[uw] %@(QT).

As a consequence of the convergence of [¥J[dq,) 10 [V [Ld(q,), for any € > 0 we may
choose p large so that

LP(Qr)

€
i Ldary = Do Ledor) — >
Let us define now the following subset of Qr, which without loss of generality we may

assume it has positive L"*1-measure:
1 -

Ape = |yp| = W Ldoy)—¢€ .
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In particular, if L""(A,¢) > 0, then necessarily [y [+,) > 0. For any Borel set
B Ok such that L"*(Qr n B) > 0, we estimate by using (2.30), (2.19), (2.7) and the
above:

L (ApenB) & T Bl
1 1Yol (o)
oy EQ(QT) Ap.enB

L™ (ApenB) LA
a7 g Yehden e dL
Q) P.e

_ LA B)

Op(Ape NB) =

Wd [ do(qr) — €

le:g(lQT) |—p——i
< L"™!(A,. 0 B) %ES; —
)73

As a result, for any € > 0 small, any p large enough and any Borel set B [Qk with
L"*1(Q7 n B) > 0, we have obtained the density estimate

1
0p(Ape N B) < 1- € '
L'+ (Ape n B) 20Yd, (b o) — €
The above estimate in particular implies that 0,(A,¢) — 0asp — oo for any € > 0 fixed,
therefore establishing (2.32). The proof of Theorem 2.1.3 is now complete. O

Remark 2.5.1. It is perhaps worth noting (in relation to the preceding arguments in the
proof of (2.32)) that the modes of convergence

Ml Cdor) —— D[k (o,) and y, —Eyel in L=(Qr; R")

as p - oo, in general by themselves do not su Lcelto obtain y, —— Y. in any strong
sense, hence precluding the derivation of a stronger property than (2.32), along the lines
of (2.31). A simple counter-example, even in one dimension, is the following: let p 2N

e ¢ &'Dlj 1y :IIZI
Yo = X% o X g ge X2,
j=0 p’ P p ' p

and also Yo 1= X(1.2)- Then, we have |y,| =1 L-a.e. on



Chapter 3

On the Isosupremic L* Vectorial
Minimisation Problem with PDE
Constraints

3.1 Introduction and main results

Let n,N [N and let also Q b R" be a bounded open set with Lipschitz continuous
boundary. Consider two functions

f,g . OQxRY xRN*"—_ R, (3.1)

which will be assumed to satisfy certain natural structural assumptions. Additionally, let

p > n be fixed and consider a given nonlinear operator
Y o I
Q : Wy ;RN —. E, (3.2)

where (E, [-I)1s an arbitrary Banach space. In this paper we are interested in the following
variational problem: given G = 0 and the supremal functionals

Foo,Geo : W3=(Q;RN) — R,

defined by .
Em(u) : = esssup (-, u, Du),
Q

3.3
%w(u) : = esssupg(:,u, Du), (33)
Q
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find Ue W °(Q; RN) such that
1
Feo(Us) = INf Foo(u



best of our knowledge, the only work which directly studies isosupremic problems is [11] by
Aronsson-Barron. Among other questions answered therein, it considers some aspects of
the one-dimensional case for n = 1, but with no additional constraints of any type (which
amounts to Q = 0 in our setting).

More broadly, very few previous works involve vectorial problems with general con-
straints in L*. Certain vectorial and higher order problems involving eigenvalues in
L* have been considered in [65, 69]. Examples of problems with PDE and other con-
straints are considered in [30, 63, 64, 66]. In the paper [15] of Barron-Jensen, a scalar
L* constrained problem was considered, but the constraint was integral. With the ex-
ception of the paper [11], it appears that vectorial variational problems in L involv-
ing isosupremic constraints have not been studied before, especially including additional
nonlinear constraints which cover numerous dilerkent cases, as in this work. For as-
sorted interesting works within the wider area of Calculus of Variations in L* we refer
to [10, 14, 16, 17, 19, 20, 26, 27, 68, 76, 80, 81, 84].

Let us note that, in this work, we refrain from discussing the question of defining
and studying localised versions of L



C_1 _ _
FEXists a continuous C : Q x RN —_, [0, o0) and an a > 2:
C_1 1

1
Ed<f(x,n,P)<C(x,n) IP|*+1,
1 1 (3.6)
Ed<gxnP)=cixn) IPI*+1,
for a.e. x and all (n,P).
For a.e. x and all n, f(x,n,-) and g(x,n, -) are quasiconvex on RN>", 3.7

1
Eifher T or g is coercive, namely exist ¢, C > 0 such that either

f(x,n,P) = c|P|* —C,

ar (3.8)
g(x,n,P) = c|P|* - C,

for a.e. x and all (n,P).

These assump34.552 0 Td [(”)-38ns0 Td [((v)2714(relaty)-326(79 11d [stO lard 11d [in 11d [2 T



Our first main result concerns the existence of F,-minimisers in XP(Q) and the existence
of Fo-minimisers in X*°(Q), obtained as subsequential limits as p - oo.

Theorem 3.1.1 (Fe-minimisers, Fy-minimisers & convergence as p — oo). Suppose that
the mappings f,g and Q satisfy the assumptions (3.5) through (3.9). If the next compati-
bility condition is satisfied
1 1 [ 1
inf Geo: Q7' {0} nWy (Q;RY) < G, (3.12)

then, for any p [C]d, oo], the functional F, has a constrained minimiser u, in the admissible
class XP(Q), namely = - —

up) = inf F, v) : v CXP(Q) . (3.13)

Additionally, there exists a subsequence of indices Sp 2 such that, the sequence of respective
., -minimisers Satisfies U, —» Uo unifo/F110 1w TJ/FaakanTd [[(11.9552 f 5.95 -11.557 (8]
Pj



L1

he partial derivatives gy, 9np, 9pn, gpp Of g are continuous on

9 < RN x RN*" ‘and for C, a as in (3.6), we have the bounds
L1 - .

%nn(x,nﬁ)lsc(x,n) IP|*2+1,
R

(XN, P)=C(kxn) [P +1,
] ]

%pp(x,nﬁ)l =Cx,n) [P|“2+1,
N =

pn(X,N,P)=<C(x,n) |P|*“+1,

rall (x,n,P).

-H

It follows that

he partial derivatives f,, fp, gy, gp of ¥ and g are continuous on
Q x RN RN*" and for C,a as in (3.6), we h have the bl%nds

EIint(X n,P)+[fe|(x,n,P) = C(x,n) IPIO‘ 1+1z|

B, 106, 1, P) + [ge [(x, 1, P) < C(x, 1) Pt
rall (x,n,P).

—h

Further, we will assume that:

%s continuously diLerkntiable, and its Fréchet derivative
(dQ)s : WgP(QRY) — E

%s closed range in E, for any u CQr 1({0}) CWP(Q; RV).

(3.15)

(3.16)

(3.17)



where (E5'COCY is the dual space of E, such that not all vanish simultaneously:

Aol + [Lp| + [ L2 O. (3.19)

Then, the minimiser u, CXP(Q) satisfies the equation
I - 1

E\p _Q'I:[Up]p_1 L
=



need to impose some natural additional hypotheses. These hypotheses, although they
restrict considerably the classes of f,g, Q that were utilised in order to prove existence
of minimisers, they do nonetheless include the interesting case of F., being the L*> norm
of the gradient. Firstly, let us introduce some convenient notation and rewrite (3.20) in
a way which will be more appropriate for the statement and the subsequent proof. By
introducing for each p [(, o) the non-negative Radon measures 0,, T, CIM(Q) given by

% 1 I:fl[up] e

0= @ Ry U




Now we state the additional assumptions which we need to impose:

E is a separable Banach space. (3.27)

he restriction of the di[erkntial (u,v) B (dQ)u(v), considered as
dQ : Q7'({0}) x WyP(@;RY) — E,
tisfies the following conditions:
U —Cih Q75({0}) as m — oo, and ¢ CWFP(Q;RY), then (3.28)
dQ)um (Um) —— (dQ)u(u),
(dQ)un (@) —— (dQ)u(9),

N

as m - oo,

The above assumption requires that dQ be weakly-strongly continuous on the diagonal of
Q1({0}) x Q71({0}) and on subsets of the form Q1({0}) x {@}, when W,°(Q;RN) x
W, P(Q; RN) is endowed with its weak topology and E with its norm topology. We assume
further that:

I

) g does not depend on P, namely g(x,n,P) = g(x,n),
gi) T is quadratic in P and independent of n, namely
f(x,n,P)=A():P [P]
r some continuous positive symmetric fourth order tensor (3.29)
A Q — RV*" [RY*", which satisfies
AX):P P10, AX):P [QI=A(X):Q [P])
rall x CQland all P,Q CRN*"\ {0}.

—=h

-

The above requirements are compatible with the previous assumptions on f. In fact, by
[65, Lemma 4, p. 8] and our earlier assumptions, the positivity and symmetry requirements
for A are superfluous and can be deduced by merely assuming that f is quadratic in P
(up to a replacement of A by its symmetrisation), but we have added them to (3.29) for
simplicity. We may finally state our last principal result.

Theorem 3.1.3 (The equations in L°). Suppose we are in the setting of Theorem 3.1.2
and that the same assumptions are satisfied. Additionally we assume that (3.27) through
(3.29) hold true. Then, there exist

Ao CT0,1], Mo 00,1, W CBE (D), (3.30)
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which are Lagrange multipliers associated with the constrained minimisation problem (3.4).
There also exist Radon measures

0w [INM(Q), T, [CIMI(Q), (3.31)

and a Borel measurable mapping DuL': Q — RN*" which is a version of Du., [
L*(Q; RN*"), such that the minimiser u. CXF°(Q) satisfies the equation
1 1 1 1
Noo §fp(-,Du5 : D@ dOe + Moo agn(-,uoo)-cpdroo = Yo, (dQu.(9) ., (3:32)

[ T
for all test maps ¢ CCE Q;RN , coupled by the condition

1 1
Meo Geo(Uss) —G = 0. (3.33)

Additionally, the map Dul’can be represented (modulo Lebesgue null sets) as follows:

(- o
or any sequence (v;);° CC} Q;RN satisfying

— B
%ﬂo N = Uoo L 22 Lemy ) = O

F=Him sup Feo (v;) (Ueo) (3.34)

xist a subsequence (Jx)7> such that

Ijﬂm Dv;, (x), if the limit exists,
ustx) = k- 309

0, otherwise.

(Such an explicit sequence (v;j)7° is constructed in the proof.) Finally, the Lagrange multi-
pliers Ao, Moo, Woo and the measures 0., To Can be approximated as follows:

%Jp -F9y, in BE(),
%p — N, In[0,1], (3.35)
s — Mo, in[0,1],

—1
4, ‘Pad, in M@Q),
4 PT)  in M(Q),

and
(3.36)

along a subsequence p; — oo.
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The weak interpretation of (3.32) is
(- 1 1
—Neodiv(fe (-, DUSY0c  + Moo 0q() Uoo)Too = Weo, (AQ)ue.
I Ry .
in C3 QR , up to the identifications
1 1 1 1

Voo, (@Que. = Yoo, (AQ)ue () » 9 =00~ (), o =()-Tp.

Note that in Theorem 3.1.3, the equations obtained depend on certain measures not a priori
known explicitly. Therefore, their significance is understood to be largely theoretical, rather
than computational. For the proof of this result, we will utilise some machinery developed
in the recent paper [65] for some related work on generalised oco-eigenvalue problems. The

main points of this approach are recalled in the course of the proof, for the convenience of
the reader.

We conclude this lengthy introduction with some comments concerning the composition
of this paper. In Sections 3.2 and



Consequently, in view of (3.11), both constraints are satisfied by ug, hence u, CXP(Q) 8 [
Next, note that P is a (Morrey) quasiconvex function. To see this, let h : RN*" — R
be an arbitrary quasiconvex function, in our case we will take h(P) = f(x,n, P) for fixed
(x,n). Then, by assumption (3.7), for any ¢ W, (U;RN) with U b R" open and
P [CRN*" fixed, .

h(P) < — h(P + Dg) dL".
U

Hence, by Jensen’s inequality and the convexity of t 3 t°, we conclude that

Ceh P
h(P)’< — h(P +D)dL" < — h(P + Dg)°dL".
V] U

We now proceed to bound fP. By (3.6), we estimate
[ .~ (- (|
0<f(X,n,P)P<C(X,n)° 1+|P|* < 2P 1C(x,n)° 1+|P|*P .

By standard results (see [36]), F, is weakly lower semicontinuous on Wy % (Q; RN). Let
(u®)s> [XP(Q) denote a minimising sequence. By virtue of (3.6) we have f = 0, hence
clearly inf; =, (UM) = 0. We now show that the infimum is finite. To this aim, by (3.6)
we estimate

i O]

!%Fp(u ) = Fp(uo)

eh Lirp!
= —Qf(', Uo, DUo)p dL"

Lehr— 1 Ll

= — C(.u)(1+[Duol®) dL"
Q

which yields
o
inf Fp(u®) < (-, U



R)
By using the Poincaré and Holder inequalities, we infer that
C+ —[h(,u®,DuM)PdL" = c"mf Gk ap g
Q

for some new constant ¢~ > 0 which is independent of i [CN. If h = f, then by the
previously derived estimates we have the uniform bound
W ey < 5 © + Fp®) < 5+ A0 U0) Lk 1+ Do
and if h = g, then by the isosupremic constraint we have the uniform bound
1 1
- 1 - C+G

[ [hh.ap (o) =< ol Gy(u?) = R
In either case, we have that (u®)$° is weakly precompact in Wy “(Q; RN). By passing to
a subsequence if necessary, standard strong and weak compactness arguments imply that
there exists a map u, W, *"(Q; RN) and a subsequence denoted again by (u®)$* such
that 1
Cu® —, u,, in L%°(Q; RY),
EBU® —Da,, in L(Q; RY™),

as i - oo. Further, since p > n, by the Morrey estimate we have that (u®)$* is also
bounded in C%Y(Q,RN) for y < 1 —n/(ap). By the compact embedding of Holder spaces,
we conclude that

U(') - - Up 1






for the constants ¢,C > 0 of (3.8) (which are independent of p and q). If h = f, by
applying our earlier estimates we deduce the uniform bound

1= ¢ o1 = =
D, o) = c ¢t Fo(up) = o EEC(',UO)@(Q) 1+ Mg [ -

If h = g, then again as in our earlier estimates we have the uniform bound
1 1 ¢+ G

1
(D, (g < ¢ €+ Golp) <~ —

In either case, we see that under (3.8), our estimates above imply that
[Dup Loy = K,

for some constant K > 0 independent of p,q. Further, by the Poincaré inequality, we
deduce that 1 1

[} bwhaoy = K 1+C(q) ,

where C(q) is the constant of the Poincaré inequality in Wol'q(Q; RN). Hence, the sequence
of minimisers (Up)p=5 is bounded in Wy%(Q; RN) for any fixed q [{1, c0), and therefore it
is weakly precompact in this collection of spaces. By a standard diagonal argument, there
exists a sequence (p;j);> and a mapping
P 19 .pn
Ueo [ Wy(Q; R"™),
p<q<oo
such that u, —[t] in W;9(Q; R") as pj — oo, for any fixed g [(p, o). By standard

compactness arguments in Sobolev and Hoélder spaces, we infer that
1 (| 1
o) —- Ueo, inC Q;RY |

Cpl, —[D.., in L9(Q;RN*M),
as pj — oo, for any q (P, o0). We will now show that u., [CA<(Q). In view of (3.11),

we need to show that U mol'“(cz; RN) and that G..(U.) < G and also Q(U.,) = 0. By
the weak lower semi-continuity of the L% norm for g = p fixed, we have

(DU oo @(Q) = |E)mlnf Up @(Q) =< K.
)j — 00

By letting q — oo, this yields that Du., [C0*(Q;RN). By the Poincaré inequality in
Wy(Q; RN), we infer that u. [TW,*°(Q;RN). Next, since G,(u,) < G for all p [ (@, o0),

via the Holder inequality and weak lower semi-continuity, we have
1 1

Geo(Ues) = JiM Gq(ue) < liminf  liminf Go(up) < liminf Gy(u;) < G,
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yielding that indeed G (Uw) < G. We now show that Q(u.) = 0. We have already
shown in Proposition 3.2.1 that Q~1({0}) is a weakly closed subset of W;%(Q; RN) for any
q (@, o). Since Q(up) =0 for all p = p and u, —[Cud in W, 9(Q; RN) as pj — o, we
deduce that Q(u.) = 0, as desired.

It remains to show that u. is indeed a minimiser of F., in X*°(Q), and additionally
that the energies converge. Fix an arbitrary u [C3*(Q). By minimality and by noting
that X*°(Q) [CX*(Q) for any p []d, oo], we have the estimate

Folue) = fim Fofue)

lim inf ILr_n inf Fq(up)
j — 0O

1

IA

q—.oo

IA

Ilior_n inf F,(up)
J_>oo
< limsup Fy(up)
pj — 0O

< limsup Fp(u)

pjaoo

= Feo(u),

for



This reformulation is a labour-saving device, drastically shortening the proof of this result.
In view of assumption (3.16), first we will show that the following functionals are Fréchet
di Lerkntiable

1 Lap o N
B(Fp)p Wol Q,R I R,

p 1 1
;(Gp)p—i CWE® ;RN — R.

A direct computation gives the next formal expressions for their Gateaux derivatives
I%I 5 1] 1 1
d =(Fp)" (v) = — fluPP™ f[u]-v+Ffe[u]: Dv dL",
p Q
GP RS - 1 1
d Z(Gp)’ —— (V) = —g[uP™" gglu]-v+gp[u]: Dv dL",
p Py Q
for all u,v W, *(Q;RN). We will now show the above formal expressions indeed de-
fine Fréchet derivatives, by employing relatively standard estimates throygh the Holder
inequality. We argue only for %(Fp)p, as the estimates for % (Gp)P — GP are identical.
Since a > 1 and p = p > n, by Morrey’s estimate we have

] ]
E?f[u]'“‘1 f[u] - v+ fp[u] : Dv dL”E

(I 1 1

< — [FU]P™* [Fy[ulllv] + [fp[u]]IDv] dL"
[ (. [y 1 (.

< —C(,uP 1+|Du® * 1+|Du[*! (jv| + |Dv])dL"
Q

| L1

= 2"@|C(-,u)p@m(m — 1+ |Du|** + |Du|*® + |Du|®*"! dL"
Q



F CCP(Q x RN x RN*M) with F[u] = F(-,u, Du), where
1
E(u) = — Flu]dL",
Q

and .
(dE)u(v) = _QFn[U] v+ Fp[u] : DvdL",

for all u,v CW,*"(Q;RN). As F is arbitrary we can choose F = fP (to investigate our
functionals of interest), such that T satisfies (3.14). We have
Fp = pfPfp,
P=p 2& ]
Fpp = pfp— ffop + (p - 1)fp fd .

By (3.14), it follows that

1 1
|fP(X!n1P)| SC(X,T]) |P|a_l+l )
1 1

[fO,n.P)l=Cx,n) [PI"+1,

for some new continuous functions at each step. Hence,
(| 1
IF(x,n,P)I=C(x,n) IP|*P+1.

Additionally,

- [T -
IFe(x,n,P) = C(x,n) [PI*P7D +1 |P|"t+1
] -

=C(x,n) |P|*P7t+1 .
Furthermore,

1
|FPP(X’ nl P)l = qula_






= [ ezl

= = [Fonlu + (A + V] - AV + Fop [U + (A + p)v] : ADv|@ % dpdAdL”
Q 0 O
VT do(q)
FEIL O 3 o=
= - |Fanlu + (A + V] - Av| + |Fop[u + (A + w)v] : ADv| “°~* dpudAadL"”
Q 0 O

I%(I% L4 [dp

=C — [Fanlu + A + vl Av|
Q 0 O
=1

1 [do ap
+ [Fpp[u+ (A +p)v]: ADv| *** dudAdL” I de(q)
I_—F—l—lljll L4 [dp
=Co — |Fon[u + A+ p)v] - Av| " dudadL”
Q 0 O
N [Cdp [ogh
+ — |Fnp[u + (A + w)v] : ADv| “° dpdAdL” T do(q)
Q 0 O
e e [do_ logh
=C |Foqlu + (A + V] - Av| 7 dudAadL”
, [
I__F—l—“jll L [dp

+ - |Fnp[u + (A + p)v] : ADv| “°* dpdAdL” LRIT, do(q).
Q 0 O



Combining both of these we bounds, we obtain,

— E Fqlu + Av] — Fy[u] dA-v@iL” + — E Fplu+ Av] — Fp[u]dA : Dv@iLn
Q=0 Q-0

%Eﬂ L4 Cdp %ll
—= [Fon[u + (A + V] - Av| ** dpdadL”

=C -

I_—F—l—lljllljll:] [dv lap 12

ap

+ — |Fre[u+ (A + p)v] : ADv| 7 dpudAdL" LT do(q)
Q 0 O

Fehg oo = (el
1

+C4 IFpnlu+ A\ + wv]- Av| ' dudAdL"

I__E'—“illljll:l [do fap

+ - IFop[Uu-+ (A + V] : ADV| 7 dpdAdL" [N [doo.
Q 0 O

We proceed to bound the first term,

I__F—I—“:II L [dp I%

C. — |Fonlu + (A + p)v] - Av| 7" dpdAdL” VT do(qy

Qo0 o0

CHga o e R =]
=C, - C(x,n) |Du|+|(A+ p)Dv| +1 [v|]er=T dudAdL"

Q 0 O
W1 dp(q)
I__F—hl:l [db op Tpl
< @, )k — |DuUl® 2+ |Dv|*®2+1 ®*|v|ee-1 dudAdL" VT do(q)
Q

S Iﬂ(.l n) I:II:I

Q






1 1
+ [d(, ) (b MUhG, + MG, +1 DV o) M)
1 1
—2 —2
+ @(7 ﬂ) IE"(Q) [Du [ﬁﬁp(g) + ED'V[gﬂp(Q) +1 |A_LI—|QP(§2) I:D'\HEP(Q)
1 1
+ () [k MU, + MG, +1 MV,
1 1
= () b DU, + DV, + 1
1
mP(Q) + 21DV [ide(q) DT dp (o) + D Iq_ip(sz)
1 1
= [cJ(,n) k) MUl,G + MV G +1 ik
1 1

=0 w,ap(g) .

1

1 1
This estimate establishes that the functional %(Fp)p (and therefore % (Gp)P—GP ) is

indeed Fréchet di Lerkntiable.

We now show that the equations that the constrained minimiser satisfies take the form
as given in (3.20) and (3.21). Given the Fréchet derivatives and our assumption (3.17)
on the range of dQ, we can invoke the generalised Kuhnlp3.17)
on the ra -14.446 Td [(on)-348(the)-348(range)-348(of)]TJ/F40 11.9y8(raF405he)-E



the space of Radon measures. Indeed, if F,(up) > 0, then since f =0 we have
[0} (@) = 0,(Q)
_ 1 (¢, Duy?
CL"(Q) o Fpup)rt
- —Iﬁf(- Dup)P 1 dL"
Fp(up)P~t o ~'°
e

1
< _————- — f(,Dup’dL"
Fo(up)P™t o (. Duy)

:]_,

dL"

whilst if Fp(u,) = 0, then trivially [G}[{®@) = 0. In both cases, [G}[(Q) < 1 for all

p (@, o0). The estimate for [TJ[(@) is completely analogous, yielding [TJ[(Q) < 1 for all
p (@, o).

Step 2. By using assumption (3;29) gAd definition (3.22), we have the following di [erential
identity: for any fixed v CCp Q;RN and any p [(f, o) we have
(| [ (|
f(:,Dv—Duy)do, = f(,Dv)do, — f(:,Duy)do,
Q (tl Q
+  fp(:,Dup) : (Du, — Dv) dop,.
-y 1
Indeed, by using that fp (X,P) = A(X): () P+ P [() , we may compute
1 (|
f(-,Dv—Duy)do, =  A(
Q Q
+Z

o ially 1

+Z

o v — DfdF49 9.9626 Tf 0.83 14..587 0 Td [(ially)] TJ/F83 11.9552 Tf 83.305 0 Td [(K)]TJ/F7 11.¢



for all test maps ¢ LW, **(Q; RN), whilst we also have that

A, C00,1], M, [J0,1] and ¥, CBE (0).

Further, by assumption (3.27), the weak* topology of the dual space E s sequentially (pre-
) compact on bounded sets. Thus, the previous memberships imply that, upon passing to
a further subsequence as j — oo, symbolised again by (p;)7°, there exist

Ao [0,1], Mo, C0,1] and Y., CBE(0),

such that the modes of convergence (3.35) hold true as p; — oo.

Step 4. By Steps 2 and 3, for ¢ := up, — v, where v Q7 %I; RN I:ils an arbitrary fixed
map, for any fixed p [(f, oo) we have the identity
1 1
Np §f(" Dup, —Dv)do, = W, (dQ)y, (up



whilst for Fy(up) = 0 the equality follows trivially. To establish (3.37), it su [ced to note
that by assumption (3.29) and by the variational representation of the minimum eigenvalue
of the symmetric linear operator A(x) : RN*" —, RN>" we have that ap, > 0 and the
inequality

®[QF = A(X) : Q QI

for all x CQland all Q CRN*", where | - | is the Euclidean norm on RN*",

Step 6. By Steps 1, 3 and 5, and by using that Fy(u,) —— Fo(Ue) as pj — oo (as
shown in Theorem 3.1.1), we may invoke Hutchinson’s theory of measure-function pairs,
in particular [57, Sec. 4, Def. 4.1.1, 4.1.2, 4.2.1 and Th. 4.4.2], to infer that there exists a
map | [
Voo [P Q,00;RN*"

such that, along perhaps a further subsequence (p;):°

mibp



Step 7. The equations established in Step 6 will complete the proof of the theorem, upon
establishing that B
Voo = DU 0.-a.e. 0n Q,

where Dul’: Q — RN*" is some Borel measurable mapping which is a version of Du., [1
L>=(Q; RN*"), namely such that

Du. = Dul' L"-a.. onQ,

(recall that 0Q is a nullset for the Lebesgue measure L"). The remaining steps are devoted
to establishing this claim, together with the-apprgximability properties claimed in (3.34)
for some sequence of mappings (vj);> CC§ Q; RN , which will be constructed explicitly.

Step 8. If Ao = 0, then Step 6 completes the proof of Theorem 3.1.3 as the first term
involving V., vanishes. Hence, we may henceforth assume that Ao, > 0. Therefore, by
passing perhaps to a further subsequence if necessary, we may assume that

Noo

Ny = 57 >0,






Step 11. To complete the proofref Thgorem 3.1.3, it remains to show that at least one
sequence of mapping (vj);> CCF Q; RN exists, which satisfies the modes of convergence

required by (3.34). To this end we utilise (for the first time) the assumption that the
bounded domain Q



[ (.
e For any © [Cl Q xRN*" | satisfying for any x [Qithat O(X, -) is convex on RN*" with

O(X,) = O(x,0) = 0, and also that the partial derivative ©p exists and is-epntinuous op—
Q < RN>Nwe will show that there exists a modulus of continuity o [Q [0, oo); [0, o)
with w(0) =0



we have

]
© x,K#(Du)(x)

1

o






and assumption (3.9) is always satisfied.

(i) If for any x [Ql we have

1 1 1 1
Nnx,-)=0 L[CT(x,-)=0,

namely when all points in the zero set are critical points, then Q satisfies (3.17).

(ii1) Assumptions (3.27) and (3.28) are always satisfied.

The choice of E is deliberately made “as large as possible”, as then the Lagrange
multipliers of Theorems 3.1.2 and 3.1.3 are valued in the smaller space E"= L*°(Q; RM).

Proof of Proposition 3.4.1. (i) Follows directly from the definitions, by the continuity
of N and by Morrey’s estimate, because p > n.

(ii) Indeed, since

(dQ)u(9) = My(,u) -0,
if u CQ*({0}), then M(-,u) = 0 a.e. on Q and therefore My(-,u) = 0 a.e. on Q, which
implies that (dQ), = 0, hence its image is the closed trivial subspace {0} CLI(Q;RM).

(iii) Note first that L*(Q; RM) is separable. Also, if we have u,, —[_&nd ¢, —[_@in
Wol’p(Q; RN) as m - oo, then by Morrey’s theorem and the cempactpess of the imbedding

of Holder spaces we have Uy, — u and also ¢, — @ in C Q;RN as m - oo. Hence,
we have as m — oo that

(AdQ)um (®m) = My (-, Um) - Om —— TMh(,u) - @ = (dQ)u (),
i S
in C Q;RM | which a fortiori implies strong convergence in L(Q; RM). O

We note that the proof of (iii) above is immediate if one assumes the additional hy-
pothesis of (ii), since then (dQ),,, = 0 for any sequence (um)® CQI({0}).

Proposition 3.4.2 (Case 2). Let N CCHQ



for E := L1(Q), we have the following:

(i) The zero set of Q equals
1 1

Qr{op) = v OWIPQ;RY) : M(x,v(x)) <0, a.e. x ,
and assumption (3.9) is always satisfied.

(i) If for any x it holds that
1 1 1 1

nx,-)=0 L[CT(x,-)=0,
then Q satisfies assumption (3.17).

(iit) Assumptions (3.27) and (3.28) are always satisfied.

Proof of Proposition 3.4.2. (i) Follows as in the proof of Proposition 3.4.1(i), upon
noting that {m < 0} = (—oo,(].

(i) Since - -
(dQ)u(e) = m7 NI, u) My(-,u) - @,

if u CQ1({0}), then M(-,u) <0 a.e. on Q and therefore TX(-,u)) = 0 a.e. on Q because
{n"= 0} = (—oo, 0], which implies that (dQ), = 0, hence its image is the closed trivial
subspace {0} [CI3(Q;RM) and (3.17) is satisfied.

(iii) Similar to the proof of Proposition 3.4.1(iii), using the dilerent expression for the
di Lerkntial dQ as above. n

Proposition 3.4.3 (Case 3). Let K [CRY he a closed set with K 8 [IThen, there exists
M Ca~(RY) satisfying K = {N = 0} M, = 0}. Further, if one defines

Q : WeP(@RN) — LYQ), Q(u) := M(u),

and E := L1(Q), then we have
1 1

Ql({0}) = v CWIP(Q;RY) : v(x) K, ae. x ,
and Q satisfies (3.9), (3.17), (3.27) and (3.28).

Proof of Proposition 3.4.3. It is well-known that for every such set K, there exists a
function N A~ (RN) with the claimed properties. A proof of this fact can be found e.g.
in [82, Sec. 1.1.13, p. 25] (the claimed inclusion is not explicitly stated, but follows from
the method of proof by the smooth Urysohn lemma). The rest follows from Proposition
3.4.1. O
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3.4.2 Integral and isoperimetric constraints

The nonlinear operator of (3.2) can also cover the following important case of constraint:
(|
h(:,u,Du)dL" < H,
Q

when h: Q xRN x RN*" —, R and H [CRlare given.

Proposition 3.4.4. Let h : Q x RN x RN*" —_, R satisfy the assumptions (3.5)-(3.7)
and (3.16) that f,g are assumed to satisfy, with a < p. Let also H R be given and let
m:R —- Rbeasin (4.2). Then, by defining the operator
B 1
Q: WyP(RY)— R, Q) :=m Qh(-,u,Du)dL”—H ,

and setting E := R, we have the following:

(i) The zero set of Q equals
1 - (| 1
Q oy = v WP(Q;RN) :  h(,v,Dv)dL"<H
Q

and assumption (3.9) is satisfied.

(i) Q satisfies (3.17), (3.27) and (3.28).

Proof of Proposition 3.4.4. (i) If Q(uy) =0 and u,, —[Uih Wol"“_’(Q;



and assumption (3.16) for h implies that dQ is (jointly) continuous on WZP(Q; RN) x
Wy P(Q; RN). Further, if u CQ({0}), then by part (i) we have
-
h(:,u,Du)dL"—H < 0,
Q

and therefore the first factor of (dQ).(¢) vanishes because {m”= 0} = (—o0,0]. Thus,
(dQ). = 0 when u CQ1({0}), and hence its image is the closed trivial subspace {0} [R]
yielding that (3.17) is satisfied.

(iii) For any sequences Uy, —[1ih Q 1({0}) CWP(Q; RN) and @ —L@ih WiP(Q; RN)
as m - oo, by part (ii) we have

(dQ)um (Pm) = 0 —- 0 = (dQ)u(9)
as m - oo, hence (3.27) and (3.28) are satisfied. ]

3.4.3 Quasilinear second order di[erential constraints

The operator Q of (3.2) can also cover the case of various types of nontrivial PDE con-
straints. As an example, we discuss the case of quasilinear divergence second order systems
of PDE of the form ] 1

div A(-,u,Du) = B(:,u,Du) in Q, (3.41)

where the coe [ciehts maps A : Q xRN xRN*n —, RN>*ngnd B : QxRN x RN>*" —_, RN
are given. Given the plethora of possibilities on the assumptions for such systems, the
discussion in this subsection is less formal and is only aimed as a general indication of the
admissible choices for Q.

Suppose that A, B are C! and satisfy appropriate growth bounds, and also that P &
A(:,-,P) a monotone map, and that the set of weak solutions to the system (3.41) is
strongly precompact in Wy (Q; RN). A su Lcieht conditions for strong precompactness in
W, P(Q; RN) for the set of weak solutions is for example a global C1Y or a W2*Y a priori
uniform bound on the set of solutions, for some y [(0,1). Appropriate assumptions on
the coe Lciehts A, B that allow the derivation of such a priori bounds can be found e.g. in
[55] for N =1 and in [52] for N = 2. Then, by defining the operator

Q : WgP(@:RY) — W (Q;RY)

as 1] (|
[Q(u),pyd= 5 A(-,u,Du) : Dy + B(:,u,Du) - ¢ dL",
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and setting also E := W~1P(Q;RN), assumptions (3.9), (3.17), (3.27) and (3.28) are
satisfied, with

1 ] — 1

Q'({oph) = u 01’5(Q; RN) @ div A(,u,Du) = B(:,u, Du) weakly in Q .

Note first that the expression of Q~1({0}) is immediate by the definition of the di [erkntial
operator Q. Next, note that by assumption, for any sequence of weak solutions (uy,)°> L1
WP(Q; RN) to (3.41), there exists u W) P(Q; RV) such that u, — u strongly along
a subsequence m; — oo. By applying this to any sequence (Um)y> CQI1({0}) (namely
sequence of solutions) for which u,, —[Cuds m — oo, by passing to the limit in the weak

formulation for fixed @ IEVC}"S(Q; RN), which reads
(- (-

A(:,Um, Duy) : DY + B(:,Um, Duy) - ¢ dL" = 0,
Q

we get that u CQ%({0}), as the convergence is in fact strong. Hence, (3.9) is satisfied.
Further, under appropriate bounds, the operator Q is Fréchet di Lerkntiable and

1 — [ 1
(@Qu@.0 =  Ay(,u,DU)- @ + Ap(-,u,Du) : Do : DYdL"
| -

+ 0 B,(-,u,Du)-¢ + Bp(,u,Du) : Dg -ydL".

To see that the image qfHdQ)y : Wol"j(Q; RN) — E is closed for any fixed u CQ({0}),
let (Tm);° CRY (dQ), E:EI]be a_sequence in the range with T, — T strongly in E as

m - oo. Since T, CRg (dQ), , exists ¢, CWIP(Q; RN) solving the following linear

second order system
1 1

—div Ay(-,u,Du) - ¢m + Ap(-,u,Du) : Don
+ Bp(-,u,Du) : Doy + By(-,u,Du) - @ = Tpn.

By the monotonicity of the above system (due to our earlier assumption), under appro-
priate conditions one has a uniform bound in Wy ?(Q; RN), yielding the weakregmpagtness
of the sequence of solutions (@m);°, which establishes the closedness of Rg (dQ), [El
and (3.17) ensues.

Finally, for any sequence (um)y> [CQI'({0}) satisfying uy, —[ds m — oo and any
(0] I]l'ol'p(Q; RN), there exists mj — oo such that un —— uasm; — oo. These facts imply

that (dQ)y,,,(Um) — (dQ)y(u) and also (dQ),,,(¢) — (dQ)u(®), both strongly in E as
m - oo. Hence, (3.27) and (3.28) are satisfied.
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3.4.4 Null Lagrangians and determinant constraints

We close this paper with the observation that Theorem 3.1.1 holds true even when Q
expresses a fully nonlinear pointwise Jacobian determinant constraint, or even a more
general pointwise PDE constraint driven by a null Lagrangian. As an explicit example, let
n = N and consider the di[erkntial operator

Q : WgP(QR") — W LE/MY(Q),

by setting
Q(u) := det(Du) — h,

for a fixed h CIP/"(Q), satisfying the necessary compatibility condition
(|
hdL" = 0.

Q

We also take -
£ = woeng) = W)

Then, we have
1 - -
Q'{0}) = u CWIP(Q;R™ : det(Du) =hae.inQ .

It follows that (3.9) is satisfied