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Abstract

In this report we review the Black-Oil model for petroleum reservoir simulation.
The model includes compressibility and general mass transfer effects. The flow
equation are formulated sequentially and split into a parabolic pressure equation
and a hyperbolic system. We also review the Higher Order Godunov method
which is used to discretise the hyperbolic part of the system. A possible technique
of reducing the volume error discrepancy inherent in this sequential formulation
is presented and numerical results given.
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The Black-Oil model is the industry standard phase behaviour model most often
used in reservoir simulation and includes compressibility and mass transfer effects
between the phases. The fluid flow exhibits both hyperbolic and parabolic be-
haviour, both of which can be treated by a fully implicit discretisation. However
to effectively treat both types of behaviour present in the flow equations different
types of numerical procedure are required for each and so a splitting of the flow
equations into a system of hyperbolic conservation laws and a parabolic pressure



2 The Black-0il Equations

2.1 Overview of model

The Black-Oil model [2] is the Industry standard phase behaviour model most
often used in petroleum reservoir simulation. It includes compressibility and
general mass transfer effects between the phases that are needed to model primary
(pressure depletion) and secondary (water injection) recovery.

The flow equations are derived from four main principles:

i) Phase equilibrium - determines how the components combine to form phases,

i1) Equation of state - states that the fluid fills the pore volume,

)
iii) Darcy’s law for the volumetric flow rates,
)

iv) Mass conservation equations for each component.

The flow equations are formulated sequentially, therefore they cannot be sat-
isfied exactly at each step of the computation, and so some incompatibility is
introduced. We satisfy phase equilibrium, Darcy’s law and the component con-
servation laws exactly but the equation of state is linearised so that it is only
satisfied approximately. This splitting of the flow equation is termed a ‘volume-
discrepancy splitting’. We now consider the equations in detail.

2.2 Thermodynamic equilibrium
2.2.1 Components and Phases

The reservoir is considered to be composed of three components oil, gas, and
water. To reach phase equilibrium these components combine to form at most
three phases, liquid, vapour and aqua. At each point in the reservoir the compo-
nents associate into phases in order to attain thermodynamic equilibrium. The
components flow in phases but their total mass is conserved, thus it is necessary
to find how the mass of each component is apportioned into the phases. This
phase equilibrium problem can be expressed as follows: given the pressure p and
the vector n = [n,, n,, n,]? of mass component densities, find the matrix

Nyl Noy 0
N = ng ng ng

0 0 1y

of component densities in each of the phases, subject to the mass balance condi-
tion

n = Ne,

where e is a vector of one’s. Thus it can be seen from the definition of N that
there is a restriction on the way the components are allowed to mix in the phases.
i.e. oil may be allowed in the liquid and vapour phases, gas in all three phases
and water in the aqueous phase only. Oil and water do not mix and steam is not
treated.



With each phase we associate a principal component, oil with the liquid phase,
gas with the vapour phase and water with the aqueous phase. The amount of each
component in each phase is related to the amount of the principal component in
that phase by the ratio matrix . When all three phases are formed is given
by

1 » 0
= ;1 . = ]—Vl
0 0 1
where n is the diagonal part of . The ratios ;, ,, and , must be non-

negative functions of pressure and are supplied as part of the model.
Now we can determine how many phases are present. Firstly we define =
~1, then form the vector . If all three entries of are positive then all three
phases are formed and the fluid is termed saturated. Hence it can be shown that
N s given by

N =

and the solution to phase equilibrium by



For example in the case of the vapour phase being undersaturated, is given by

Il
o — o

0
0
1

Throughout, quantities denoted with an overbar refer to the reduced matrix or
vector in the undersaturated case. The solution to phase equilibrium is then given

by

Water and oil have small compressibilities, but the relatively high compressibility
of gas, and the swelling effects caused by gas dissolving in liquid lead to important
volume changes at reservoir pressures. The Black-Oil model incorporates these
volume changes by relating the volumes of each of the phases to the amounts
of the principal component in that phase. To quantify this relationship we first
define , to be the diagonal matrix of phase volumes per pore volume. The
entries of n and , are related by the formation volume factors,

which are functions of pressure and the undersaturation variable in the case
of undersaturated flow. In the case of undersaturated liquid is the bubble



Darcy’s law specifies how the phases flow through the reservoir and gives the
vector of flow volumes per unit area per unit time, i.e. phase velocities, which in
matrix-vector form is

= (— =) (21)
i.e. Darcy’s law states that the fluid flow is due to a pressure gradient and

a gravitational potential. is the diagonal matrix of phase mobilities which
are phase relative permeabilities divided by phase viscosities ( , ,). Relative

T
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and the quantity e’u — 1 is termed the volume-error-discrepancy.
Multiplication by the porosity ¢ and use of the mass conservation laws to
replace the time derivative of n results in

dp 7 0
CE —|— W aix (fUT —|— gT) =dq, (25)
with the total velocity vy being given by
dp
= |- 2.
vT [ Oz + 7]7—7 ( 6)

where the coefficients ¢, w, f, g, v, ¢ and 7 depend on the pressure p and com-
ponent density n. Since we use ¢ and 7 explicitly we define them here

Ju 0¢
T T
c = ¢e —ap e u—ap7
r=el Lex.

For more details and definitions of the other coefficients see [5].
To examine the character of (2.5) we need to examine the coefficient ¢ of %

and the coefficient of 2272 which is obtained after substitution of (2.6) into (2.5)
and is given by
—wlifr = —el Lex,

since w and f satisfy w/f = 1. The transmissibility 7 is positive, hence the
. 2, . . . .

coefficient of 272 is negative, and therefore for (2.5) to be parabolic we require ¢

to be negative. As pressure increases the rock occupies a smaller volume hence

porosity ¢ is a non-decreasing function of pressure ,22 > 0. Therefore for ¢

> ap
to be negative we require eT%—I; < 0 which is the condition of negative total
fluid compressibility. This is guaranteed by placing restrictions on the formation
volume factors B and ratios R.

Given the sequential formulation described, it is therefore accepted that mass

is conserved at the expense of developing a volume error discrepancy .

2.5 Conservation of mass

We require that the mass of each component is conserved. The matrix N 7!

represents the density of each component in each phase, hence the conservation
of mass equations are
ong) , 9N )

ot Ox
The flux function h = N ;'v can also be expressed as h = RB~'v, which is the
form that will be used in the characteristic analysis. The flux is a function of n,
p and vp, hence in quasi-linear form we have

on 0hon  0hdp  Oh Ovp
E—I_ain@ix__@p@x_avT ox (28)

= 0. (2.7)

The system is hyperbolic if and only if

oh

H:ain



has real eigenvalues for all values of . The terms on the right hand side of

(2.8) are source terms which must be included in the numerical scheme to obtain

oh
on
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To solve the system of flow equations arising from the Black-Oil model we need
to use a numerical approximation. To provide accurate resolution of the sharp
fronts typically found in oil reservoir simulations, requires a high order method.
Hence we use Higher Order Godunov discretisations of the conservation laws.
The pressure equation is solved via an implicit discretisation.

The Higher Order Godunov method [1] achieves second order accuracy in
both space and time. The scheme’s framework includes modifications for both
eigenvector deficiencies and local linear degeneracies and hence gives better per-
formance on systems of conservation laws which posses these properties, than do
other second order schemes.

We now give a review of the second-order Godunov scheme, which can be
considered as a 5-step procedure.

. Beginning with the piecewise constant approximation U7, compute
‘centred’; ‘left” and ‘right’ slopes, whilst maintaining conservation.

2. ‘Limit’ the slopes using monotonicity criteria, again whilst maintaining
conservation. This provides a piecewise discontinuous linear approxi-
mation to the solution at time ¢.

3. Trace along characteristics, using a Taylor series extrapolation, to de-
rive left and right states at grid block interfaces at time ¢ 4 %At. It
is possible that the traced states are unphysical, if this is the case the
physical cell centred value is used instead.

4. Solve the Riemann problem with these left and right states.

5. Use a conservative difference approximation to (2.7) to produce a piece-
wise constant approximation to U?‘H.

We now describe the main steps of the method in more detail.

We begin with a piecewise constant approximation U? to the solution in each

grid block. We wish to calculate an approximation to the slope % so that we

may express the data as a linear profile, which will be piecewise discontinuous.
For example in the scalar case a piecewise constant approximation would look
something like that in Figure 1. We require a discontinuous piecewise linear
approximation which would look something like that in Figure 2.

We define a monotonised centred-difference approximation,

g A
8:1;1, T Az

(3.1)

=z

where in order to calculate A ; we compute undivided centered, right and left
differences and expand these differences in the right eigenvectors j of the system



