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Abstract

We study wave splitting procedures for acoustic or electromagnetic scatter-
ing problems. The idea of these procedures is to split some scattered field into
a sum of fields coming from different spatial regions such that this information
can be used either for inversion algorithms or for active noise control.

Splitting algorithms can be based on general boundary layer potential
representation or Green’s representation formula. We will prove the unique
decomposition of scattered wave outside the specified reference domain G and
the unique decomposition of far-field pattern with respect to different reference
domain G. Further, we employ the splitting technique for field reconstruction
for a scatterer with two or more separate components, by combining it with the
point source method for wave recovery. Using the decomposition of scattered
wave as well as its far-field pattern, the wave splitting procedure proposed in
this paper gives an efficient way to the computation of scattered wave near the
obstacle, from which the multiple obstacles which cause the far-field pattern
can be reconstructed separately. This considerably extends the range of the
decomposition methods in the area of inverse scattering. Finally, we will
provide numerical examples to prove the feasibility of the splitting method.
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examinations. Nondestructive testing employs inverse problems techniques for qual-
ity control. For a given incident wave, the impenetrable obstacle D will generate a
scattered wave outside D, which is in general governed by the Helmholtz equation
for acoustic waves or Maxwell equations for electromagnetic waves. The scattered
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the curves [8, 11].
Motivated by these problems, we present an efficient way to reconstruct the

scattered wave from the far-field pattern caused by multiple obstacles. The basic
idea is to split the far-field pattern into several parts which are essentially related
to each obstacle. Correspondingly, the scattered wave is also decomposed. Please
observe that our splitting avoids any approximation as for example employed for
the Born approximation or physical optics approximation. Using this idea based on
general potential theory or Green representation formula and combining it with the
point source method, we propose a scheme which provides a reconstruction of the
scattered wave at all points outside of some scatterer D with several components.
This splitting method enables the recovery of the scattered wave outside of multiple
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Denote by Φ(·, ·) the free-space fundamental solution to the Helmholtz equation
∆u+κ2u = 0 in R2 or R3. For G given in Definition 2.1, the single- and double-layer
potentials are defined by

(Sϕ)(x) :=

∫
∂G

Φ(x, y)ϕ(y)ds(y),(1)

(Kϕ)(x) :=

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y)(2)

for x ∈ Rm and solve the Helmholtz equation in Rm \ ∂G. Moreover we introduce

(K ′ϕ)(x) := 2

∫
∂G

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂G,(3)

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂G.(4)

It is well known the above four integrals called potential functions are well-defined
for x ∈ ∂G with density ϕ in suitable Hölder or Sobolev spaces (see [5]).

2.1 Uniqueness of source splitting

This section serves to establish the uniqueness of a general scattered field splitting
for some domain G given by Definition 2.1. Here, we do not need to specify the
concrete form of the potentials under consideration.

Theorem 2.2. Consider domains Gj as given in Definition 2.1. Assume that we
are given a decomposition us = us

1 + us
2 of the scattered field us such that

1. us
j satisfies the radiation condition for j = 1, 2;

2. us
j soles the Helmholtz equation in the exterior of Gj for j = 1, 2;

3. Both (us
j)

+ and
∂(us

j)+

∂ν
exist in ∂Gj, where

(us
j)

+|∂Gj
:= lim

x∈Rm\Gj , x→∂Gj

us
j(x).
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Proof. We subtract the two representations and use the definition

(5) vj(x) := us
j(x) − ũs

j(x), x ∈ Rm \Gj, j = 1, 2

to obtain in Rm \G1 ∪G2 that

(6)2 [ 2 56ψTd[(()]TJ/F51ψ11.155ψTfψ18.278ψ0ψTd[(u)]TJ/F36ψ7.97ψTfψ6.662ψ4.936ψTd23v2[uj)− ~ u 2˜uj� :=u �~
u

0 1 n

mu G4y.9 Tf 11.9 7531 0.1 74 2.926 Td23~ G m

· ∈Rm \
G m∞]TJ/F5∈ ∞∞.95733f 7.389 ∞.7:6 Td∈3∈−
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with γ = 1/(4π) in R3 and γ = eiπ/4/
√

8πκ in R2, S is the unit sphere in Rm. Here,
the density ϕ lives on ∂G = ∂G1 ∪ ∂G2. We denote

(11) ϕj(y) := ϕ(y) for y ∈ ∂Gj

and denote the corresponding single-layer potential operators by Sj, i.e.

(12) (Sjϕj)(x) :=

∫
∂Gj

Φ(x, y)ϕj(y)ds(y), x ∈ Rm

and we have

(13) Sϕ = S1ϕ1 + S2ϕ2.

Algorithm 2.3. The splitting of the far field of a scatterer D = D1

⋃
D2 is obtained

from the following three steps.

1. Solve the far-field equation

(14) S∞ϕ = u∞

to generate density function ϕ defined in ∂G, where S∞ is given via (10).

2. Define two functions

(15) us
j(x) := (Sjϕj)(x), x ∈ Rm \Gj, j = 1, 2,

which can be considered as a scattered wave outside Gj, in the sense that it
solves the Helmholtz equation in Rm \Gj and meets the radiation condition.

3. Compute the far field patterns of us
j defined by

(16) u∞
j := S∞

j ϕj, j = 1, 2.

In this way, the far field pattern u∞ is decomposed as

(17) u∞ = u∞
1 + u∞

2 .

Correspondingly, the scattered wave us related to u∞ has the splitting

(18) us(x) = us
1(x) + us

2(x), x ∈ Rm \G

from the linear superposition principle and Rellich lemma, where us
j is computed

via (15). Moreover, us
j outside Gj is the scattered wave related to u∞

j with j = 1, 2
again from Rellich lemma, noticing us

j(x) defined by (15) is the radiation solution.
For the feasibility of the above scattered wave splitting based on the far-field

pattern decomposition we need to investigate the following questions.
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1. Is (14) uniquely solvable? If so, then the decomposition (17) and the functions
us

1, u
s
2 in (15) are uniquely defined.

2. For given G, is (18) a decomposition of us in the sense of Theorem 2.2? If
this is the case then the single-layer approach is a constructive method for this
unique decomposition of the scattered field.

Theorem 2.4. Assume that G is chosen in the way of Definition 2.1 such that −κ2

is not the interior Dirichlet eigenvalue of ∆ in Gj for j = 1, 2. Then there exists a
unique solution ϕ ∈ L2(∂G) to (14).

Remark. The proof contains two parts. Firstly, we prove that the far field
operator S∞
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from the following Theorem 2.10 again that us
j can be extended analytically to

Rm \Gj. Therefore condition 3 is also met. �

This result gives a positive answer to the second question. Since the choice of
G meeting the previous conditions is not unique, we must consider the uniqueness
of far-field decomposition (17) and the scattered wave decomposition for different
choice of G. This uniqueness can be stated as

Theorem 2.6. Denote by u∞ the far-field pattern caused by obstacle D and us the
scattered wave outside D related to u∞. Assume that G̃ := G̃1

⋃
G̃2 different from

G is the other configuration satisfied the same requirement on G given previously.
If we decompose the far-field pattern u∞ as

(19) u∞ = ũ∞
1 + ũ∞

2

using the same algorithm given above for G̃ and construct ũs
j(x) outside G̃j by the

density function ϕ̃j related to ∂G̃j, then we have for i = 1, 2 that

(20) ũ∞
j (x̂) = u∞

j (x̂)

and

(21) ũs
j(x) = ũs

j(x), x ∈ Rm \Gj

⋃
G̃j,

provided that (G, G̃) meets the following separation condition

(22) G1

⋃
G̃1

⋂
G2

⋃
G̃2 = ∅.

Proof. We prove this theorem splitting the proof into the following two cases.
First, we treat the case where G′

j contains Gj in its interior for both indices j = 1, 2.
Secondly, we reduce the general case to this special case.

Case 1: Gj

⋂
G̃j = Gj with j = 1, 2. For given G, G̃, it follows from ũ∞

1 + ũ∞
2 =

u∞ = u∞
1 + u∞

2 that

(23) (ũ∞
1 − u∞

1 ) + (ũ∞
2 − u∞

2 ) = 0.

On the other hand, noticing the correspondence be17 11.9152 0 Td[(:)]TJ/F17 11.95417 sp9nstruct221
TJ/F.022 Td792 Td[(j)]e b e17 11.9TJ/0) = ~u
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Now applying the same argument as that in the proof of Theorem 2.2 with G
there replaced by G̃, we get that

ũs
j = us

j , x ∈ Rm \ G̃j

for j = 1, 2, which proves (21), noticing in this case Gj

⋃
G̃j = G̃j. Now using the

relation between (ũ∞
j , u

∞
j ) and (ũs

j , u
s
j) in terms of the density (ϕ̃j, ϕj) again, we

know (ũ∞
j , u

∞
j ) are the far-field pattern of scattered wave (ũs

j , u
s
j). Therefore (21)

leads to (20) immediately.
Notice, in this case, our proof does not need the condition (22), which is guar-

anteed automatically by the definition of G̃.
Case 2: Gj

⋂
G̃j 6= Gj for at least one j = 1, 2. In this case, the separation
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On the other hand, the radiating solution us to the Helmholtz equation in the
exterior of Gj has the representation ([5], Theorem 2.4)

(27)

∫
∂Gj

{
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us(y)

∂ν(y)
Φ(x, y)

}
ds(y) =

{
0 x ∈ Gj

us(x) x 6∈ Gj.

We will use these formulas to derive a general splitting procedure which does not
need to avoid interior eigenvalues of the domain Gj.

Using the potential operators, Green’s formula for the radiating solution us of
the Helmholtz equation can be written in the form

(28) us = Kus − S
∂us

∂ν
in Rm \G.

Then, the normal derivative ∂us

∂ν
on Λ ⊂ ∂G for us(x) outside G meets

(29)
∂us

∂ν
= Tus −K ′∂u

s

∂ν
in ∂G

due to the jump relation of potential functions. This equation is not adequate to
calculate the normal derivative from its boundary values, since for interior eigen-
values for the negative Lapcacian it lacks uniqueness and thus existence for general
boundary values. For this reason we use the following operator representation of
the the Dirichlet-to-Neumann map B : us|∂G → ∂us

∂ν
|∂G or Steklov-Poincare opera-

tor, respectively. Following [5], page 48, with some parameter η > 0, the operator
is given by

(30) B := (iηI − iηK ′ + T )(I +K − iηS)−1 : C1,β(∂G) → C0,β(∂G),
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1. Solve the integral equation

(32) u∞ = (K∞ − S∞B)ϕ

to obtain the boundary values ϕ = us on ∂G via the solution ϕ ∈ C1,β(∂G),
noticing (27).

2. Use (30) to evaluate the Dirichlet-to-Neumann map

(33) ψ := Bϕ

to calculate the normal derivative ψ = ∂us/∂ν on ∂G of the field us outside G
in terms of (29).

3. Compute

(34) u∞
1
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By the same argument as that in the proof of Theorem 2.2, we get that

vs
j (x) ≡ 0, x ∈ Rm \Gj, j = 1, 2.

On the other hand, vs
1(x) is the radiation solution outside G1, it follows from (27)

that vs
1(x) ≡ 0 in G1. Since both double-layer potential K1ϕ1(x) and single-layer

potential S1Bϕ1(x) solve the Helmholtz equation in Rm \ ∂G1, using the jump rela-
tion of K1 and the continuity of S1 with on ∂G1 in the continuous density setting,
we finally get from vs

1(x) ≡ 0 in Rm \ ∂G1 that ϕ1(y)|∂G1 ≡ 0. Similarly, we get
ϕ2(y)|∂G2 ≡ 0. �

Here we decompose the far-field pattern by Green formula, where us|∂G is con-
sidered as the density. Comparing the decomposition of far-field pattern by general
potential theory method in the previous section, the advantage of wave splitting
based on Green formula is that we get us as well as its normal derivative directly.
This kind of technique has been used in the reconstruction of Neumann data from
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scattered wave in terms of the density functions (us
i |∂Gi

,
∂us

i

∂ν
|∂Gi

) corresponding to
the far-field decomposition (34). So we omit this result.

By the above theorem we can calculate us
j outside of the domains Gj. In Gj \Dj

we will show below that the scattered wave us
j can be calculated from u∞

j via point
source method. We combine these two methods to calculate the total wave

u = ui + us = ui + us
1 + us

2

around each obstacle Dj, j = 1, 2. Then we can use the zero points set of u to
construct the boundary ∂Dj.

2.4 Determination of splitting domains via the range test

So far we have used the assumption that we know two domains G1 and G2 which
contain the two componentsD1 andD2 of a scattererD with the important condition
G1 ∩ G2 = ∅. Here we will discuss how these domains can be determined from the
knowledge of the far field pattern u∞ from one scattered time-harmonic wave. We
will employ the range test as suggested by Kusiak, Potthast and Sylvester [12].

The range test exploits solvability arguments for the equation (14). Consider the
equation in dependence of the unknown domain G = G1 ∪ G2. Then we have the
following result proven in [12].

Theorem 2.10. If the scattered field us defined by its far field pattern u∞ can be
analytically extended into the set Rm \G, then the far field equation

(37) S∞ϕ = u∞

does have a solution in L2(∂G). In this case, us expressed in terms of the density ϕ
can be extended to Rm \G. If the field cannot be analytically extended into Rm \G,
then the equation (37) does not have a solution.

The solvability of the equation (37) can be numerically tested by calculating the
regularized Tikhonov solution

(38) ϕα := (αI + S∞,∗S∞)−1S∞,∗u∞

and observing the behaviour of the norm ||ϕα||L2(S) for α → 0. The key ingredient
is Theorem 3.7 of [12] adapted to our notation.
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Theorem 2.11. If the scattered field us defined by its far field pattern u∞ can be
analytically extended into the set Rm \G, then

(39) ||ϕα||L2(S) < ∞, α → 0.

On the contrary, if the field cannot be analytically extended into
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4. Calculate an approximation u(α) to the total field u in G2 \ D2 by adding us
1

and the incident field ui

(41) u(α) = ui + S1ϕ1 + us
2,α

in case of splitting by potential theory, or

(42) u(α) = ui +K1ϕ1 − S1ψ1 + us
2,α

with ψ1 = Bϕ1, if the wave splitting is based on the Green formula.

5. Search for the zero curve of uα to calculate an approximation to the boundary
∂D2, provided that the component D2 has the sound-soft type boundary.

6. ∂D1 can be reconstructed analogously.

Obviously the above shape reconstruction scheme can be applied to multiple
obstacle with other kinds of boundary conditions on each component of D.

In the remaining part of this section we will give more details and a convergence
analysis of step 3, that is, reconstruction of us

j , j = 1, 2, in Gj \ Dj from its far-
field pattern by point source method. Notice, the expression (15) (or (35)) gives the
scattered wave us

j(x) only outside Gj. Here we give the basic idea of the point source
method based on potential theory as suggested by Liu, see [8, 11]. This approach to
the point source method extends it to the reconstruction of general radiating fields,
whereas the use of reciprocity relations as employed in [10] limits it to fields arising
from scattering of plane waves.

Since in our boundary reconstruction problem, ∂D2 is unknown, we try to ap-
proximate ∂D2 by the zero-curve of total wave near ∂D2. So in practice, we compute
us

2 outside some chosen domain H2 ⊃ D2. The initial specification of H2 depends on
some a-priori information of D2. With some rough zero-curve of total wave outside
H2, we can shrink H2 continuously to get a better reconstruction of ∂D2.

Algorithm 3.2. The point source method for the recovery of us
2 in the known do-

main G2 \H2 for given H2 uses the following steps.

1. Approximate the point source Φ(·, x) for any fixed x ∈ G2 \ H2 by a superpo-
sition of plane waves

(43) Φ(y, x) =

∫
S
eiκy·dgx(d)ds(d), y ∈ ∂H2.
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2. Express the scattered wave us
2(x) outside H2 as well as its far-field pattern in

terms of the density function by

(44) us
2(x) =

∫
∂H2

Φ(y, x)ρ(y)ds(y), x ∈ R2 \H2,

(45) u∞
2 (x̂) = γ

∫
∂H2

e−iκx̂·yρ(y)ds(y), x̂ ∈ S.

3. By inserting (43) into (44) and exchanging the order of integral, it follows that

(46) us
2(x) =

1

γ

∫
S
u∞

2 (−d)gx(d)ds(d), x ∈ G2 \H2

in terms of (45), which reconstructs us
2(x) from its far-field pattern.
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(a) (b)

Figure 1: (a) Simulation of the scattered field (b)Point source method using some
circular approximation domain without splitting and without modifications which
might take into account the non-convexity of the scatterer. The non-convex part of
the fields and domains cannot be reconstructed since it is outside of the illuminated
area of the method

4 Numerical examples

In this last section we demonstrate the feasibility of the splitting procedure by
an application to the inverse acoustic scattering problem from two obstacles with
Dirichlet boundary condition. For simplicity we restrict our attention to the two-
dimensional case.

We have carried out a simulation of the wave scattering problem via a Brackhage-
Werner potential approach

(50) us(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) − i

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ Rm \ ∂D,

leading to boundary integral equations of the second kind

(51) (I +K − iS)ϕ = −2ui on ∂D,

compare [5] or [10] for a detailed presentation. Employing Nystöm’s method for the
numerical solution of the integral equation and quadrature based on the trapezoidal
rule the density potential can be evaluated on subsets of Rm. Figures 1(a) and
2(a) show a plot of the modulus of the total field u = ui + us in a rectangle Q =
[−10, 10]x[−10, 10]. The wave number has been chosen to κ = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The images show the simulated field for scattering by two obstacles (a),
the full reconstructed scattered field us via the splitting procedure with a single-
layer approach following Algorithm 2.3 in figure (b), the field us

1 + ui calculated via
the splitting procedure in (c) and the field us

2 + ui in (d). Reconstruction of us
1 + ui

from u∞
1 on two illuminated areas around D1 via the point source method is shown

in (e) and (f). In particular, in (e) we obtain a reconstruction in an area where the
point source method in its simple implementation cannot reconstruct the field.
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(a) (a)
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ing operations into a full reconstruction of the total field in Rm \D = Rm \(D1 ∪D2).
This is shown in Figure 3. From the reconstructed total field we are able to find the
shape of the domains D1 and D2 searching for points where |u(x)| is zero or close
to zero. Since this is along the lines of [10] we omit further details and point to the
literature.
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