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The Legendre transformation is used as the basis of a method to generate irreg-
ular triangular grids in two dimensions. The method also generates piecewise

linear approximations to functions. Grids are created for several functions in-



1 Introduction

In this report we present a method for generating an irregular two-dimensional
grid and creating a piecewise linear approximation to a function on the grid
by an application of the Legendre transformation. The method is also used to
give an approximate representation of semi-geostrophic frontogenesis in which the
numerical issues involved in the time evolution are discussed.

Section 2 deals with the methods of creating the grid and approximating
functions using the Legendre transformation. In section 3 some background to
the meteorological problem of semi-geostrophic frontogenesis is presented and an
initial approximate solution is found. A method to integrate the solution in time
is outlined in section 4. In section 5 problems associated with the boundaries of

domains are discussed and a method to overcome them is proposed.

2 The Legendre Transformation in Two Dimen-

s1ons

Given a function P of two variables = and z we seek a piecewise linear approxi-
mation P to P.

One method of creating such an approximation would be to form a regular
triangular grid in the zz plane and then consider the plane above each triangular
element which intersects the surface of P vertically above the three vertices of
the triangle. The set of these triangular plates is a ‘chordal’ type approximation
to the function P.

It may be possible to improve on this approximation by using an irregular
triangular grid in the zz plane and/or seeking alternative values of the approx-
imation above the vertices of each triangle instead of using the corresponding
value of the function P. An irregular grid can be created using the Legendre
transformation (cf. [1]).

In one dimension, an application of the Legendre transformation leads to the
generation of an irregular distribution of nodes along an axis and a piecewise
linear approximation to a function of one variable [2]. It was found that, on
the interval between any two adjacent nodes x;_; and x; on the axis, the second

derivative of the function to be approximated, u, was equidistributed such that
/ l u"(z)dx = constant. (2.1)
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A consequence of this was that the nodes of the approximation tended to cluster
in regions where the second derivative of the function was largest. By analogy

with the method in one dimension, it may be that an irregular two dimensional



grid, generated using the Legendre transformation, exhibits a similar property
and the nodes of the grid cluster in regions where the second derivatives of the
function to be approximated are largest.

Returning to the two dimensional problem, consider the coordinates (m, 6, R),
dual to the original coordinates (x,z, P). The Legendre transformation gives a

relationship between these sets:

ap 0P
oR oR
P+ R=max+0z. (2.4)

So, given P(x,z), m and 6 can be found as functions of x and z from (2.2).
Provided these functions are invertible it is possible to express & and z as functions
of m and § and, using (2.4), to find an expression for the dual function R in terms
of m and 6.

One property of the Legendre transformation is that a part of a plane in one
space transforms to a point in the dual space. Thus, if the surface in one space is
to consist of triangular plates, the dual surface must consist of non-overlapping
plates where the projections onto the m# plane of no more than three plates
meet at any point. In particular, a surface which consists of hexagonal plates is
sufficient to ensure that the dual surface is made up of triangular plates. Adjacent
hexagons transform to points in the dual space which may be thought of as two of
the vertices of a triangle, and three hexagons whose projections onto the m# plane
have a common node transform to the three vertices of a triangle (see figure 1).

Generating a regular hexagonal grid in the m# plane, forming a linear approx-
imation to the function R, then performing a Legendre transformation back to
the original space, gives a set of points in the xz plane which may be used as
nodes for an irregular triangular grid, and a set of values for the approximation
to P at each node. Then one piecewise linear approximation to P is the set of
planes, one above each triangle, which pass through the approximate values of P
corresponding to each node of the triangle.

A regular grid of hexagons is set up in the m#f plane. Over each hexagon the

best fit plane approximation to the surface R may be found by minimising
|R — max — 0z 4 P|| (2.5)

with respect to P,z and z. The best fit plane above each hexagon transforms to
a point in the original space.

Consider hexagon . To find the corresponding point (a5, z;, ;) minimise



over ; ; 4. Thisleads to the equations

D, ; i+ ) =0
i i i) =0 (27)
D, i i+ ) =0
where the integrals are over the th hexagon in the plane. This gives rise to

the matrix equation

25)
to be solved for ; ; and ;, where the integrals are again over the th hexagon.
This is done for each hexagon.

The point in ( ) space, transformed from hexagonal plate in ( )
space, is joined by straight lines to all other points transformed from hexagonal
plates neighbouring plate . In this way a piecewise linear approximation to the
function  is constructed from the triangular plates formed when three points
are joined by three lines (see figure 1).

This process has been performed for several trial functions. Irregular trian-
gular grids are generated in the  plane and piecewise linear approximations to

the functions are found. The grids generated for the trial functions
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where ;( ) is the gradient in the direction and ;( ) is the gradient in the

direction of the surface



to be solved for  and

The equations could be solved by Newton’s Method as follows. Let
()= 2 (0 T T+ e T (4.9)

L) = (4.10)

— =2 (« "o+ o+ e+ e

1 = 7 (4.12)
—2 = (4.13)
—2 =0 (4.14)
The Jacobian matrix is given by
oF,  oF,
_ oR
= oF, R (415)
R g

Let * ¥ be previous guesses to the solution of (4.7). Improved values may

be found by solving

. k1 k k
1

k+1 k = k (4 16)
2

for A1 F1 where the k superscript denotes quantities evaluated at  * .

This can be simplified by using various properties of matrix (4.15), in particular
the entries of matrix (4.14) are all zero and matrix (4.11) will have some zero
rows and columns where the values of corresponding to several of the nodes in
the momentum space do not contribute to the area function (4.4) of any triangle

in the physical space.
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where Ry is (r—1x 1), Rois (I x 1), F, is (r—1x1)and Fgis (I x 1), (Ry,Ro)T

is a rearrangement of R and (Fl, FO)T is a rearrangement of Fy. This leads to

AR —RM) + BT (A — A = —F) (4.19)
BI(AMT — A% = —F¢ (4.20)
Bi(R{™ —RY) + By(Rg* —Rg) = —Fj (4.21)

to be solved for R REFY and AM'. Manipulation of these equations gives
explicit equations for R¥! REHT and AF:
-1 .
RiY =R+ (B (BA™'B]) ' By) (=Ff — BI (BiA™'BY )7\ (F} — BIAT'FY}))
(4.22)

AL = X (BAT BT (FE 4 Bo(REY - RY) — BIAT'EY) (4.23)
RiT' = Rf— A~ (Ff + B/ (A" - A)). (4.24)

The iteration process is likely to be computationally expensive since matrix
A, which must be inverted in the iteration, varies with the solution R and may
need to be updated. The solutions at the previous time step could be used as
the initial values for the iteration at the present time step, the iteration process
being continued until the vectors R and A change by less than some tolerance.
This may converge to a solution for R after some iterations. The positions of
the triangle nodes in the xz plane can be recovered from the gradient of this
approximation over each hexagon, and the values of P at each node can be found
from (2.8). In this way the approximate solution, ]5, to the problem may be
integrated forwards in time ([3],[4]), and by a projection of the solution on to the

xz plane, the motions of air parcels may be studied.

5 Domain Boundaries

In this section we outline a problem with the domain boundaries under the Leg-
endre transformation and suggest a method to rectify it.

In the meteorology problem, consider the domain I' in the momentum space
and the domain € in the physical space from which I' is derived in (3.18). In
section 3, the smallest rectangular region completely enclosing I' is discretised
into regular hexagons. Those hexagons which lie entirely within the boundary of
I' are used as the domain, I'y, for the transformation which creates the irregular
triangular grid in the zz plane in physical space. The region covered by this
triangular grid does not correspond exactly to the original domain € but the
boundary of the region appears well conditioned. Thus the approximate solution

is found on a domain which is different from the domain of the original problem.
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In an attempt to make the region covered by the irregular triangular grid closer
to 2, those hexagons on the boundary of I'y are extended outwards from I'y so
that the domain covered by the hexagons, some of them now irregularly shaped,
is exactly I However, under the transformation, this results in an irregular
triangular grid in the  plane with a badly conditioned boundary.

One possible, but untested, method which may create a triangular grid cov-
ering a region closer to () in size and shape is as follows. Discretise the physical
domain ) into regular triangles so that all internal nodes of the grid are vertices
of six triangles. Use a piecewise linear approximation, A, of the function in

physical space to create a grid of points in the momentum space by an appli-



Numerically the semi-geostrophic equations of motion can be solved easily
in the dual momentum space. The problem of advancing the physical solution
with time is that of solving a constrained minimisation, the minimisation being
to approximately satisfy conservation of mass in the physical space subject to
a constraint imposed by the necessary piecewise linearity of the function in the
momentum space.

Problems exist with the boundaries - the approximate solution is derived on
a domain which differs from that of the original problem. A possible remedy for

this is proposed.
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Figure 1: Legendre transformation from 3 hexagonal plates to a triangular plate

in the dual space.

Figure 2: Grid for P(z,z) = 2* 4 2°.
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Figure 3: Grid for Pz, z) = e84 78,

Figure 4: Set of seven nodes for ¢;(R).
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