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Abstract

This report gives a brief introduction to data assimilation and discusses

how this can be treated as an observer design problem� The particular

observer design investigated here endevours to make the resulting observer

system as robust as possible to perturbations in the model equations�

This observer is tested in the context of data assimilation for a simple

discrete model� Issues investigated include the choice of eigenvalues to be

assigned to the observer� a choice of a suitable observation matrix� and

modi�cations for the case where observations occur less frequently�

Finally� the choice of the weighting matrix in the Cressman data assim�

ilation scheme is compared to the feedback matrix of the observer system�

This facilitates a theoretical evaluation of the Cressman scheme�
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terms of observers�

In Section �� theory for developing a robust dynamic observer for a simple

model is put forward� and an algorithm for implementing the observer is given�

Section  describes experiments carried out with such an observer� using the heat

equation with the �theta method� discretisation as a model� Experiment � inves


tigates the best eigenvalue assignment in the development of the observer� aiming

for quick convergence of the observer to the true solution� Experiment � looks at

a suitable choice of the observation matrix C and Experiment  investigates the

performance of the observer when the observations are infrequent� In Section �

the Cressman scheme� a simple �successive correction� method for data assim


ilation� is compared to the observer method� both theoretically and practically�

Section � summarises the conclusions drawn from the study� and gives suggestions

for future work�

�



� Eigenvalue assignment

We consider the follo



We want to construct the feedback matrix G so that �wk � wk as k � ��

regardless of the true initial condition w�� which is unknown�

Subtracting ���� from ����� and using ����� we have�

E�wk�� � �wk��� � A�wk � �wk��GC�wk � �wk�� �����

so de�ning ek � wk � �wk� we have the error equation

Eek�� � Aek �GCek� �����

Hence� for ek � � as k � �� we require that the eigenvalues of E���A � GC�

have modulus less than unity�

If E is invertible �as assumed� and S is observable� then we can construct

G to do this� in fact we can choose G to assign any eigenvalues we wish to the

system S � ��� Since this �inverse eigenvalue problem� is not uniquely determined

�	�� we have a certain amount of freedom to choose the eigenvectors as well� We

can use this freedom to make the system as robust to perturbations as possible�

In �	� it is shown that for a robust system we require cond�X� to be as small as

possible� where X is the modal matrix whose columns are the right eigenvectors

corresponding to our chosen eigenvalues� Our objective� then� is for a suitable

eigenstructure assignment�

��� Eigenstructure assignment � theory

Eigenvalue assignment

We suppose that the set of eigenvalues we wish to assign is

� � f��� ��� ���� �ng� ���	�

where

�i � C� j�ij � �� and �i � �	 �� � � for i � �� ���� n� �����

We let D � diag��i� and let X be the modal matrix of right eigenvectors of

E���A � GC� and Y be the modal matrix of E�T �AT � CTGT �� Then our

problem is to choose G and X to satisfy

�A�GC�X � EXD� ��� �

�



or� equivalently� to choose Y and GT to satisfy

�AT � CTGT �Y � ETY D� �����

For our purposes� we work with equation ������

If we calculate the QR decompostion of CT � we �nd that

CT � � !Qc� Qc�

�
�� Ro

�

�
�� � ������

where !Qc is n
 p� Qc is n
 �n� p��



Eigenvalue assignment for robustness

The sensitivity of eigenvalue �i to perturbations in the components of A�E�C

and G is given by

ci �
kxik�kETyik�
jyT

i Exij
� ����	�

where xi are the columns of X� and yT
i the rows of Y T �see �	��� If we scale xi

and yi such that

kETyik� � � ������

and 


yT
i Exi




 � �� ���� �

then to minimize ci we must minimize kxik�� For the optimal conditioning we

must minimize all the ci together� and hence we must choose the columns of X

to minimize

� �
X
i

c�i �
X
i

kxik
�
� � kXk

�
F � ������

where k�k





We want yi to be as close to orthogonal as possible to this set� Calculating the

QR decompostion gives

Y�i � � !Zi� zi�

�
��

!Yi

�

�
�� � ������

where � !Zi� zi� is orthogonal� !Yi is upper triangular and nonsingular� and zi is an

n 
 � vector� This gives us the vector zi which is orthogonal to Y�i� but zi may

not be in Si� which would violate condition a�� Choosing yi to be the orthogonal

projection of zi into Si ensures that yi is as orthogonal as possible to the set Y�i

whilst satisfying condition a�� So� after normalization to ensure ������ holds� we

take

yi � SiS
T
i zi	kE

TSiS
T
i zik�� �����

When all the columns have been modi�ed in this way� the same procedure can then

be repeated to modify the yi again� until k�Y TE���kF reaches a local minimum�

The feedback matrix G can then be calculated from ������� using the Y derived�

This method for improving the robustness of the system can not be guaranteed

to converge to the minimum possible value of k�Y TE���kF � but in practice it has

been found to reduce its initial value signi�cantly�

��� An algorithm for a robust observer

�� Calculate the QR decomposition of CT into

CT �
h
!Qc� Qc

i
�
�� Ro

�

�
�� � �����

�� For each i � �� ��� n�

calculate the QR decomposition of �A� �iE�Qc into

�A� �iE�Qc �
h
!Si� Si

i
�
�� Ri

�

�
�� � �����

� Choose columns from each of the Si as columns of the �rst guess Y� in such

a way that Y is invertible�

�� For i � �� ���� n� modify the columns yi of Y as follows�

��



�a� calculate the QR decomposition of Y�i � fy�� ���yi���yi��� ���yng into

Y�i � � !Zi� zi�

�
��

!Yi

�

�
�� � ����

�b� project the vector zi into space Si to satisfy condition a� and then

normalize�

yi � SiS
T
i zi	kE

TSiS
T
i zik�� �����

�� repeat step � until k�Y TE���kF reaches a local minimum�

	� using the Y found� let the feedback matrix be G where

GT � R��
o

!QT
c �A

TY � ETY D�Y ��� �����

�

��



� Implementation of the method

In this section� the theory of Section � is tried out for a simple model� which

is introduced in Section ��� Experiment � described in Section �� investigates

how the choice of the set of eigenvalues � a�ects the results� In Experiment �

�Section ��� di�erent forms for the observation matrix C are developed� and the

e�ect that these di�erent choices have on the results is examined� Finally� Exper


iment  �Section ��� looks at how the method may be modi�ed if observations

are not available at every timestep�

��� The theta method for the �D heat equation

The �D heat equation on x � ��� �� with a point heat source of strength �
�
at

x � �
�
is�

wt � 
wxx �
�


��x�

�

�
�� ����

where � is the Dirac delta function� For this equation� with initial and boundary

conditions

w�x�



��

s�x�

��
��

� � if x � �
�

� � if x �� �
�

��	�

�� Z �

�
s�u�du �

�


� ����

If we choose the vector s so that its jth component sj is given by

sj �

��
��

�
��x

if j � J

�

� otherwise�
�� �

then sj is a good approximation to s�j"x� in ��	� as "x� �� Note also that

JX
j��

sj"x �
�


� ����

where the left hand side is the rectangular rule approximation to the left hand

side of ����� given that sj  s�j"x� for "x small� Hence in the limit as "x� ��

���� is satis�ed�

The discrete model

The discretisation can be written in matrix form as follows�

Ewn�� � Awn � u �����

where

wn � �wn
� � w

n
� � ���� w

n
J���

T � �����

and where the vector u containing the boundary conditions and the source term

has the form

u � �wa� �� ����
"t

"x
� �� ���� wb�

T � �����

�the non
zero elements of u are uj where j � �� j � J	� and j � J � ��� The

�J � �� 
 �J � �� tridiagonal matrices E and A are given by

E �

�
BBBBBBBB�

�� � ���� ���

��� �� � ���� ���
���

���
���

���
���

���

	
CCCCCCCCA
� ����

��



A �

�
BBBBBBBB�

�� � ���� � ��� ���� ��

��� � ���� �����



��� Experiment �� Changing the eigenvalues

As discussed in Section ��� the observer ���� we wish to construct will converge to

the �true� solution provided that the eigenvalues of E���A�GC� have modulus

less than unity� Apart from this restriction� we are free to choose this set � of

eigenvalues as we like� The aim of Experiment � is to try out di�erent choices of

eigenvalues for the set �� and to see which choice gives the fastest convergence of

the observer solution to the observations�

The choice of the observation matrix C used in this experiment is rather

arbitrary� if there are p observations� then C is the p
 �� matrix

C �

�
BBBBBBBB

B



ues were reduced in modulus by ����� since both sets of eigenvalues overall had

similar modulus� As would be expected� choosing large eigenvalues distributed

between 
� and 
��� gave worse results still� some �� or more observations were

needed for reasonable convergence in this case�

��� Experiment �� Changing the observation matrix

The matrix C can be considered as an interpolation of the model values wk

from the grid points to the observation points� Choosing the matrix C therefore

determines what linear combination of grid point values should be used as the

model equivalents to each observation� The theory demands that C should be

full row rank �ie� rank p� for constructing the observer� The matrix C used in

Experiment � was chosen arbitrarily rather than using physical considerations�

In Experiment �� it is supposed that observations are available at anything from

� to �� observation points� which do not in general coincide with grid points� The

aim of Experiment � is to develop an observation matrix which will represent a

linear interpolation from the grid point positions to the observation positions�

For this� it is at �rst supposed that the �� observ



Figure � illustrates the performance of the observer in the case p � �� � � ��

The positions of the observations are marked with a � on the x
axis� Comparing

Figures � and � shows that convergence to the observations is almost as fast as

when the matrix C of Experiment � is used� in which the observation positions

coincide with the grid point positions� This was the case for all values of � tested�

and for p � ��� If more than �� observations were used� however� C was no longer

of rank p� and the method failed�

Table  in the Appendix gives a di�erent set of the observation positions�

The same linear interpolation is used� but C no longer has the neat structure of

����� since the observations are ordered at random� Figure  shows the results

obtained in this case with p � � and � � �� The convergence to the observ



��� Experiment �� Less frequent observations

We now consider the situation where observations are not available at every

timestep� This is an important consideration in the context of data assimila


tion where in practice there will not in general be a complete set of data at every

model timestep� Experiment a examines the behaviour of the observer after a

supply of frequent observations runs out� In Experiments b and c it is supposed

that observations are available every second� fourth or eighth timestep� and two

modi�cations to the data assimilation scheme are considered for dealing with this�

The observ



model�

In this case� the observations are generated from a model run with one value of

�� and the numerical model uses another� So� the observer model not only starts

with the wrong initial conditions� but also contains in itself model error� due to the

incorrect values of �� The observer can correct for the wrong initial conditions by

driving the model solution to the true solution� but when the observer is switched

o�� the model solution is expected to drift away from the true solution�

As usual� plots were done for t � ����� t � ���� t � ���� and t � �� However� if

observations were available every other timestep� so that the timestep length was

doubled� then these plots showed the solutions at ��� �� � � and �� timesteps�

If the observations were available every fourth timestep� the plots showed the

solutions at �� ��� �� and �� timesteps� Experiments � and � show that the

observer needs enough timesteps to �settle�� so the results at �� timesteps were

not expected to be very good�

Even so� when observations were available every other timestep the results

were pleasing� �see Figure ��� on the whole the observer solution converged quite

quickly to the true solutions� Generally� the results improved as p increased�

When observations were available only every fourth timestep� the results were

signi�cantly poorer� �see Figure  �� and if the observations were available every

eighth timestep� then satisfactory results were found only for p � ���

This approach to the problem of infrequent data is rather unsatisfactory be


cause of its limited practical application� since models generally run with the

largest timestep feasible anyway� It also has the disadvantage that p needs to be ationsev





� Data assimilation using successive correction

Some of the earliest attempts at data assimilation in the late ����s used an ap


proach known as �successive correction�� Since then� this conceptionally simple

approach has been developed into schemes which are sometimes quite sophisti


cated� The basic idea is to modify the model solution in the light of the observa


tions� In its simplest form� this means adding some proportion of the di�erence

between an observation and its model counterpart to the model solution at all

grid points within some �radius of in#uence� of the observation� In the Cressman

scheme ���� the proportion to be added to a particular grid point depends on its

distance to the observation� If wij is the weight or proportion of the correction

to grid point i with respect to observation point j� then

wij �

��
��

�
�i

R�dij

R�dij
if dij � R

� if dij � R
�����

Here R is the radius of in#uence� and dij is the distance of grid point i to observa


tion j� and i is the number of nonzero entries in row i� In ��� the correction stage

of each model timestep is repeated several times with successively smaller values

of R� Here just one value of R is used since this is only a small scale problem�

The weight wij forms the ijth element of the Cressman weighting matrix W �

This section discusses how W relates to the observer feedback matrix G� and

compares the performance of the Cressman scheme to the observer for the same

model as used in Section �

��� Comparison of the observer and successive correc�

tion techniques

Suppose the true state of the atmosphere is described by the discrete linear time

invariant system

S � Ewk�� � Awk �Buk �����

and that we have observations yk of the state wk given by

yk � Cwk� ����

In a general sucessive correction method� each model timestep involves two stages�

a model update� and then a correction� Writing !wk�� for the updated model state�

��



and �wk�� for the corrected model state� we have

Stage � model update

E !wk�� � A �wk �Buk� �����

Stage � correction

�wk�� � !wk�� �W �yk�� � C !wk���� �����

Substituting ����� 
 ����� into ����� gives

�wk�� � E���A �wk �B



��� Experiments with the Cressman scheme

The Cressman scheme as described in ����� was implemented for the system �����

to compare its performance with the observer G developed in Section �� In this

experiment� the matricesE�A�B�C� the input u and the initial conditionw� were

chosen as in Section ��� The Cressman scheme was tested for di�erent values of

� and p� and for di�erent values of R� the radius of in#uence� As before� plots

were produced comparing the �Cressman solution� �solid line� with the original

numerical solution �dashed line� and the �true solution� �plotted ooo�� at ��� ���

	�� and  � timesteps�

For all values of �� the success of the scheme for driving the model solution

to the true solution depended strongly on the number of observations used� For

R � ��� using just one observation had almost no impact on the solution� and

using  observations gave some improvement to the n





tions� Reformulating data assimilation schemes in terms of observers introduces

the possibility of using results from control theory to carry out analysis on these

schemes� This could perhaps explain some of the successes and failings of the dif


ferent schemes� The experimen





APPENDIX

Table �� System eigenvalues

The eigenvalues of E��A de�ned in equation ����� for � � �� � � ��� and � � �

are�

� � � � � ��� � � �

�����	 ��� � ��� ��

��	��� ������ �����	

�� ��� �� ��� �����

�� ��� �� � 	 �� ���

����� ������ ���� 	

��� �� ��	��� ����	 

��� �� ������ ��		��

��	�� ������ ��	�� 

����� ����	� ���			

������ ������ ��	��

������ ����� ������

������� ��� ������

������� ����� ���	��

����� �� 	� ���� �

����	�� ���	�� ������
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