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Notation for Particle Methods In these notes, the approximation spaces
VN will have the form

VN = spanf’i j i = 1; : : : ; Ng;

as is customary in FEM, the functions ’i, i = 1; : : : ; N , will be called shape
functions. We furthermore introduce the patches 
i, which are the interior of
the supports of the shape functions, and the diameters hi of the patches by


i := (supp’i)
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Once a basis of VN is chosen, the problem (1.6) represents a linear system
of equations that has to be solved. Under suitable assumptions on the bilin-
ear form a, one has existence and uniqueness of uN together with a quasi-
optimality result, i.e.,

ku� uNkX � C inf
v2VN

ku� vkX ; (1.7)

where the constant C > 0 is independent of critical parameters (e.g., N). In
this situation it is very important to understand the approximation properties
of the space VN employed so as to be able to be give bounds on the in�mum
in (1.7).

1.2 The notion of optimality

When discussing the approximation properties of a space VN , it is instructive
to have a notion of optimality so as to be able to compare this space VN
with the best possible choice. One notion of optimality that is common in
approximation theory is that of n-width (see, e.g., [92]): For a normed space
X with norm k � kX and a subset Y � X one de�nes for n 2 N

dn := inf
En�X

dimEn�n

sup
u2Y

inf
v2En

ku� vkX ;

here, the spaces En appearing in the �rst in�mum are arbitrary linear sub-
spaces of dimension n. The quan
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Theorems 1.2, 1.3 show that the classical FEM attains already the best pos-
sible rate of convergence if the only information available about the function
to be approximated is membership in some Sobolev space Hk(
). In this
setting, the use of approximation spaces VN di�erent from the classical FEM
spaces is mainly justi�ed by algorithmic considerations.

Remark 1.4. The approximation results of these notes are obtained with a
view to an application in classical projection methods such as the Galerkin
scheme (1.6). We will not cover non-linear approximation techniques, for
which we refer to [32].

2 Polynomial Reproducing Systems

The �st class of approximation spaces VN that we analyze is one where
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Proof of Theorem 2.6. We abbreviate � := minfk; p+ 1g and denote by �j
the characteristic function of the patch 
j , i.e., �j(x) = 1 if x 2 
j and
�j(x) = 0 if x 62 
j . We note that Assumption 2.1 gives

1 �
NX

j=1

�j(x) � M 8x 2 
: (2.1)

For each patch 
i we choose with the aid of the polynomial approximation
result Theorem B.1 (and, for the case minfk; p+1g < minfk; rstabg the inverse
estimate Theorem B.3 together with the assumption hi � 1) a polynomial
�i 2 Pp such that

ku� �ikHs( eBi)
� Cr��s

i kukHk( eBi)
; s = 0; : : : ;minfk; rstabg: (2.2)

We then de�ne the desired approximation QNu by

QNu :=

NX

i=1

�i(xi)’i: (2.3)

Note that the map u 7! QNu is linear since the maps uj eBi
7! �i, whose

existence is ascertained in Theorem B.1, is linear. By 0 Td
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This concludes the proof of the theorem. ut
Theorem 2.6 assumes u to be de�ned on Rd. An extension result, e.g., The-
orem A.1, allows us to treat the case of bounded domains:

Corollary 2.8. Let 
 � Rd be a Lipschitz domain. Assume that the balls
eBi of Theorem 2.6 satisfy additionally an overlap condition, i.e., for some
M 2 N we have

sup
x2Rd

cardfi 2 N jx 2 eBig � M:

Then there exists a linear map QN : L1(
) ! VN such that for each k 2 N0

there exists C > 0 with

ku�QNukHs(Ω) � hminfp+1;kg�skukHk(Ω); s = 0; : : :
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Example 2.9. Let 
 = (0; 1) and u(x) = x�, � 2 (1=2; 1). Fix p 2 N and

� > p+1=2
��1=2 . Consider a mesh T consisting of N intervals Ii, i = 0; : : : ; N � 1,

such that

diam I0 � Ch� ; diam Ii � h dist(Ii; 0)1�1=� ; i = 1; : : : ; N � 1: (2.7)

Then, for some C > 0 independent of N we have

inf
v2Sp,1(T )

ku� vkH1(Ω) � CN�p;

i.e., the optimal rate of convergence is recovered. A speci�c mesh T that
satis�es (2.7) is determined by the nodes xi, i = 0; : : : ; N , where xi = �(bxi),
�(x) = x� , and bxi = ih for h = 1=N .

The function � of Example 2.9 maps a uniform node distribution to a highly
non-uniform one that is suitable for the approximation of the function x 7!
x�. We use this function � to create particle distributions, and we use (2.7)
as a guideline for our choice of the



Meshless Methods 11

(c) Show: Assumption 2.4 is satis�ed.

(d) Let C
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(b) Assume that the shape functions ’ij , i; j = 0; : : : ; n, that are associated
with the nodes xij satisfy additionally Assumptions 2.2, 2.3. (We will show
in Exercise 2.23 that this can be achieved by taking � su�ciently large).
Consider a function u in polar coordinates (r; ’) of the form u = r��(’),
where � > 0 and � : (�"; �=2 + ") ! R for some " > 0 is smooth. Show:
If � > p

� , then

inf
v
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If takes the form

If(x) =

NX

i=1

fi’i(x) (2.10)

for some functions ’i. Theorem 2.13 also provides an explicit formula for
the functions ’i. Their di�erentiability properties are then analyzed in The-
orem 2.20. The goal of this section is to show that the functions shape func-
tions ’i, which are motivated by the above data �tting
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We prove unique solvability of this linear system of equations by proving that
the symmetric matrix G 2 RQ�Q with entries Gkl =

PN
i=1 wi(x�)�l(xi)�k(xi)

is symmetric positive de�nite: For a 2 R
Q we compute

a>Ga =

NX

i=1

wi(x�)

�����

QX

k=1

ak�k(xi)

�����

2

;

in view of the assumption wi � 0, we conclude that G is positive semi-de�nite.
If G were not positive de�nite, then there existed a vector a 2 RQ with a 6= 0
such that a>Ga = 0. Hence, for the non-trivial polynomial e� =

PQ
k=1 ak�k,

we would have e�(xi) = 0 for all xi 2 X(x�), since xi 2 X(x�) implies
xi 2 (suppwi)

�, i.e., by wi 2 C(Rd) we have wi(x�) > 0. But then e� = 0 by
our assumption of unisolvence. We have thus arrived at a contradiction and
conclude that G is positive de�nite.
We now evaluate If(x�) = �(x�) (writing wi = wi(x�), �k = �k(x�))

�(x�) =

QX

l=1

e�l�l(x�)
(2:12)
=

X

i;k;l

e�l�kwi�k(xi)�l(xi)
(2:13)
=

X

i;k

fi�k�k(xi);

which leads to the desired representation formula (2.11). ut

Exercise 2.14. Show: For p = 0 the functions ’i are given by

’i(x) =
wi(x)PN
j=1 wj(x)

=
wi(x)P

j2n(i) wj(x)
: (2.14)

These functions are called Shephard functions, [97].

An important observation is that the functions ’i constructed by the MLS
procedure reproduce polynomials, i.e., they satisfy Assumption 2.2:

Exercise 2.15. Show that the functions ’i satisfy Assumption 2.2, i.e.,

NX

i=1

�(xi)’i(x) = �(x) 8x 2 
 8� 2 Pp: (2.15)

Remark 2.16. The representation formula (2.11) shows that the functions
’i can be evaluated at a point x 2 
 by solving a Q � Q system of linear
equations. Likewise, by di�erentiating the linear system (2.12), it is clear that
also the values of derivatives of the functions x 7! �k(x) can be obtained as
solutions of linear systems; therefore, derivatives of the functions ’i can be
determined. The question of bounds of the derivatives of the functions ’i will
be discussed in more detail in Theorem 2.20.
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The weight functions wi have to be chosen by the user. A popular form is

wi(x) = w

�
x� xi
�i

�
; (2.16)

where the window function w is of one of the following types:

1. w is radial, i.e., w(z) = ew(kzk) for some ew : R
+
0 ! R

+
0 ;

2. w has tensor product form, i.e., w(z) =
Qd
j=1 ~wj(zj).

We note that if the window function w is compactly supported, then the
parameter �i in (2.16) is a measure for the support size and �i � hi =
diam 
i. In this situation, the univariate functions ew or ewj are often taken
to be compactly supported splines, e.g., the symmetric part of the classical
piecewise cubic C2 B-spline given by

w(r) =

8
<
:

4 � 6r2 + 3r3 for 0 � r � 1;
(2 � r)3 for 1 < r � 2;
0 for r > 2.

Remark 2.17. If the window function is a radial function and has compact
support, then the norm k � k on Rd can be still be chosen. For example, the
patches 
i can be balls (or, more generally, ellipsoids) if k � k is taken as the
Euclidean norm; the patches 
i can be cubes if k � kl∞ is chosen.

Regularity of the shape functions Our analysis of the di�erentiability
properties of the functions ’i in Theorem 2.20 below will be based on the
assumption that the weight functions wi are determined by a window function
w via (2.16). This window function w will be required to satisfy

Assumption 2.18. The window function w 2 Ck(Rd) satis�es w(x) � 0 for
all x 2 R

d, and (suppw)� = B1(0).

Remark 2.19. We take B1(0) as the unit ball with respect to the Euclidean
norm. This is not essential, however, and results analogous to Theorem 2.20
below hold if we replace the Euclidean norm with another norm on Rd.

The formula (2.14) for the special case p = 0 suggests that ’i 2 Ck if
the weights wi are determined by a window function w satisfying Assump-
tions 2.18. Roughly speaking, if for every x 2 
 the number of particles in
the vicinity of x, i.e., cardn(x), is su�ciently large, then the shape functions
’i are indeed as smooth as the window function. In order to prove this result
in Theorem 2.20 below, we introduce the �ll distance function h by

h(x) := dist(x;XN ) (2.17)

and can now formulate:
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Theorem 2.20. Let 
 satisfy a cone condition with angle � and radius r.
Let � 2 (0; 1), XN = fxi j i = 1; : : : ; Ng � Rd and f�i j; i = 1; : : : ; Ng � R+.
Set

�̂i := minf�i; rg; i = 1; : : : ; N;

and assume the covering condition


 � [Ni the
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where the constant C� depends only on �, the function w, and the choice of
basis fe�l j l = 1; : : : ; Qg. The analogous bound

jD�G�1(x�)j � C���
�j�c
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where in the last step, we used � � 1=2. Hence, xj 2 B�i(xi), and thus
j 2 n(i). We conclude with Assumption 2.4

�̂i � Ccomp�̂j 8j 2 en(x�):

Together with the de�nition of � in (2.29), we arrive at the desired bound
kxj � x�k2 < ��̂i � �Ccomp�̂j � 1

2��̂j � ��̂j .
3. step: To get
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2. step: From Lemma B.4, we get

k�kL∞(B2ρ̂i
(xi)) �

�
4

z

�p
k�kL∞( eB): (2.36)

It therefore su�ces to bound k�kL∞( eB) in terms of the values of � in the

discrete set XN \B��̂i (x). Towards this goal, we construct in this 2. step an
xj 2 XN \B��̂i(x) that will be seen in the 4. step to have the property that

j�(xj)j is comparable to k�kL∞( eB). Choose x� 2 eB such that

k�kL∞( eB) = j�(x�)j:

We claim the existence of xj 2 XN \ eB \ B3��̂i(x�). To see this, we recall

that x̂ is the center of eB and de�ne the auxiliary point

x� :=

(
x� + 2��̂i

1
kx̂�x∗k2

(x̂ � x�) if x� 6= x̂;

x� if x� = x̂.

Since 3� � z, elementary considerations show kx� � x̂k2 < (z � �)�̂i; hence

B��̂i(x�) � eB. The assumption (2.34) then implies the existence of an xj 2
XN \ B��̂i (x�) � XN \ eB. By the triangle inequality we furthermore get

xj 2 B3��̂i(x�).
3. step: Let xj be the point constructed in the 2. step and set

� :=
1

kxj � x�k2
(xj � x�) if xj 6= x�.

If xj = x�, then choose an arbitrary � 2 Rd with k�k2 = 1. We claim:

fx� + t� j t 2 [0; 1
3z�̂i]g � eB:

To see this, we �rst note that the case x� = x̂ is trivial. We therefore assume
that x� 6= x̂. From the 2. step we recall

kx� � xjk2 � ��̂i; kx� � x�k2 = 2��̂i; (2.37)

so that we can conclude
kxj � x�k2 � ��̂i: (2.38)

In order to see that x� + t� 2 eB for t 2 [0; 1
3z�̂i] we write

xj = x� + (xj � x�) = x� +
2��̂i

kx̂� x�k2
(x̂ � x�) + (xj � x�):

and compute

kx� + t� � x̂k2 �
����kx� � x̂k2 � 2��̂i

kxj � x�k2
t

����+
kxj � x�k2

kxj � x�k2
t:
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Requiring ����kx� � x̂k2 � 2��̂i
kxj � x�k2

t

����+
kxj � x�k2

kxj � x�k2
t � z�̂i

is equivalent to the following two inequalities:

kx� � x̂k2 � z�̂i � 2��̂i � kxj � x�k2

kxj � x�k2
t and

t � (kx� � x̂k2 + z�̂i)
kxj � x�k2

2��̂i + kxj � x�k2
;

which are indeed both satis�ed for t 2 [0; 1
3z�̂i] in view of kx� � x̂k2 � z�̂i

and (2.37), (2.38).
4. step: We now turn to estimating j�(x�)j in terms of j�(xj)j. To that end,
we de�ne with the vector � of the fourth step the polynomial

p(tin

tj
/R13 9z2526264 .75964 0 Td
(.)Tj
6.23962 0 Td
(T)Tj
6.35303 0 Td
(o)Tj
8.51113 0 Td
(that)Tj
21.973 �
EI Q
q 10 64 Tf
6.25303 epthe�

3
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2.4 Bibliographical Remarks

The construction of the QN in the proof of Theorem 2.6 that is
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scaled versions, that is, to use the function e�(r) = �(r=h) with a suitable
scaling parameter h > 0. These RBFs can be used for scattered data interpo-
lation in any dimension. Another class is obtained by taking the fundamental
solution of the iterated Laplacian �m. For 2m � d, these RBFs are given by
�(r) = r2m�d ln r if d is even and �(r) = r2m�d if d is odd. The function
� in the special case m = d = 2 is called the thin-plate spline since in the
Kirchho� plate model, which is a biharmonic equation, the deection of an
in�nite plate under a point load coincides with � (up to scaling).

The functions of Example 3.3 do not have bounded support. As was shown
in [106,107] it is possible to construct RBFs that have compact support:

Example 3.4. A class of RBFs �d′;k, k 2 N0 for applications in spatial dimen-
sion d � d0 are the compactly supported RBFs of H. Wendland, [106,107]. A
few examples of this class are:

function smoothness for problems in Rd

�1;0(r) = (1 � r)+ C0 d = 1
�1;1(r) = (1 � r)3+(3r + 1) C2 d = 1
�1;2(r) = (1 � r)5+(8r2 + 5r + 1) C4 d = 1
�3;0(r) = (1 � r)2+ C0 d � 3
�3;1(r) = (1 � r)4+(4r + 1) C2 d � 3
�3;2(r) = (1 � r)6+(35r2 + 18r + 3) C4 d � 3

With the exception of �1;0, �3;0, the functions �k;d′ satisfy Assumption 3.5
below (see [107] and Exercise 3.6) and hence are positive de�nite. As in Exam-
ple 3.3 scaled version �k;d(r=�) for a scaling parameter � > 0 are frequently
employed as well.

3.1 Analysis of a class of RBFs

We consider the following class of RBF functions x 7! �(kxk2):

Assumption 3.5. The Fourier transform2  of the function x 7! �(kxk2)
satis�es for some � > d=2 and C > 0

C�1(1 + k�k2
2)

�� �  (�) � C(1 + k�k2
2)

�� 8� 2 R
d:

The set of RBFs that satisfy Assumption 3.5 is not empty:

Exercise 3.6. Check that the compactly supported RBF �1;1 of Example 3.4
for d = 1 satis�es Assumption 3.5 with � = 2.

2 f̂(�) = 1
(2π)d

R
Rd f(x)e−ix·ξ dx denotes the Fourier transform f̂ of a function f .

The inversion formula takes the form f(x) =
R

Rd f̂(�)eix·ξ d�.
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The strict positivity of  stipulated in Assumption 3.5 allows us to de�ne an
inner product h�; iΦ and the corresponding Hilbert space HΦ, which is called
the \native space":

hf; giΦ :=

Z

Rd

1

 
f̂(�)ĝ(�) d�; HΦ := ff j kfk2

Φ := hf; fiΦ < 1g: (3.2)

We have

Proposition 3.7. Let � satisfy Assumption 3.5. Then

1. HΦ � C(Rd).
2. HΦ = H� (Rd) with equivalent norms.
3. � 2 HΦ.
4. � is positive definite.

Proof. The second assertion is just one of several equivalent de�nitions of the
Sobolev spaces H� (Rd). The other assertions are left as an exercise. ut

Theorem 3.8. Let Assumption 3.5 be valid. Then for distinct points XN =
fxi j i = 1; : : : ; Ng and f 2 HΦ the scattered interpolation problem:

Find If 2 VN := spanf�(k � �xik2) j i = 1; : : : ; Ng
such that If(xi) = f(xi) i = 1; : : : ; N;

has a unique solution, which satisfies

hf � If; viΦ = 0 8v 2 VN (3.3)

and
kf � IfkΦ = min

v2VN

kf � vkΦ: (3.4)

Proof. Existence and unique follows from the fact that x 7! �(kxk2) is posi-
tive de�nite. The orthogonality relation can be seen as follows: The function
vk = �(k � �xkk2) satis�es vk 2 VN and bvk(�) =  (�)eixk�. Next,

hf � If; vkiΦ =

Z

Rd

1

 

�
f̂ � cIf

�
 eixk� d� = f(xk) � If(xk) = 0;

where the last step follows from the interpolation property. Hence, (3.3) is
true. This orthogonality relation implies the best approximation result (3.4)
in the k � kΦ-norm in the standard way (see, e.g., the proof of C�ea’s Lemma
in [23, Thm. 2.8.1]). ut

Corollary 3.9 (stability of scattered data interpolation). Let 
 � Rd

be a Lipschitz domain (or 
 = Rd). Let XN = fxi j i = 1; : : : ; Ng � 
 and
suppose Assumption 3.5. Then for all f 2 H� (
)

kf � IfkHτ (Ω) � C
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Proof. We will only treat the case of 
 being a Lipschitz domain. Let E :
H� (
) ! H� (Rd) be the universal extension operator of Theorem A.1. Since
XN � 
, we have Ef(xi) = f(xi), i = 1; : : : ; N . By Proposition 3.7, the
interpolant If exists and is unique. Since H� (Rd) = HΦ, we have Ef 2 HΦ.
By Proposition 3.7 and Theorem 3.8 we arrive at

kEf � Ifk2
Hτ (Rd) � ChEf � If; Ef � IfiΦ = ChEf � If; EfiΦ

� CkEf � IfkΦkEfkΦ � CkEf � IfkHτ (Rd)kEfkHτ (Rd)

� CkEf � IfkHτ (Rd)kfkHτ (Ω):

We conclude kEf�IfkHτ (Rd) � CkfkHτ (Ω). Since Ef = f on 
 and trivially
kEf � IfkHτ (Ω) � CkEf � IfkHτ (Rd), the proof is complete. ut
This stability result is the key to approximation results for the scattered data
interpolant If :

Corollary 3.10. Let Assumption 3.5 be satisfied and let 
 � Rd be a Lip-
schitz domain. Define the �ll distance

h := sup
x2Ω

min
i=1;:::;N

kx� xik2: (3.5)

Then there exists C > 0 such that for f 2 H� (
) there holds

kf � IfkHs(Ω) � Ch��skfkHτ (Ω); 0 � s � �:

Proof. We proceed in two steps.
1. step: By Theorem 3.8, the linear operator Id �I : H� (
) ! VN � H� (
)
satis�es k Id �IkHτ (Ω)!Hτ (Ω) � C. If we can show the claim for s = 0, i.e.,
k Id �IkHτ (Ω)!L2(Ω) � Ch� , then the desired bound k Id �IkHτ (Ω)!Hs(Ω) �
Ch��s for any s 2 [0; � ] follows by interpolation. We are thus left with show-
ing the special case s = 0.
2.step: Choose p 2 N0 such that � � p. By Lemma 2.24 there exist C, Ĉ > 0
depending only on 
 such that for � = Ch we have for all balls B�(x), x 2 
:

k�kL∞(Bρ(x)) � Ĉ max
xi2Bρ(x)

j�(xi)j 8� 2 Pp: (3.6)

We cover 
 � S
x2ΩB�(x). By the Besicovitch covering theorem, Theo-

rem A.4, we can extract from the cover B = fB�(x) jx 2 
g a subcover
Bj , i = j; : : : ;M , with the following properties: 
 � [Mj=1 [B2Bj

B and each
collection Bj consists of countably many disjoint balls.
We set z := f�If and assume for notational convenience, as we may using the
extension operator of Theorem A.1, that z is de�ned on Rd with kzkHτ (Rd) �
CkzkHτ (Ω). For each ball B of [Mj=1Bj we select Q 2 Pp as given by the
polynomial approximation result Theorem B.1. We can then bound with the
triangle inequality and the polynomial inverse estimate of Theorem B.3

kzkL2(B) � kz �QkL2(B) + kQkL2(B) � C
n
��kzkHτ (B) + �d=2kQkL∞(B)

o
:
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Our choice of the balls B in B guarantees 27
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4.1 Approximation Theory

Theorem 4.1. Let 
 � Rd be a Lipschitz domain and let f i j i = 1; : : : ; Ng
be a collection of W 1;1(
) functions. Set 
i := (supp i)

� � 
, hi :=
diam 
i, and assume

k ikL∞(Ω) � C1; kr ikL∞(Ω) � CG
hi

i = 1; : : : ; N;

NX

i=1

 i � 1 on 
, sup
x2Ω

cardfi 2 N jx 2 
ig � M:

Assume that each 
i, i = 1; : : : ; N , is a Lipschitz domain as well.
For each i 2 f1; : : : ; Ng let Vi � H1(
i) be given and set

V :=

NX

i=1

 iVi =

(
NX

i=1

 ivi j vi 2 Vi

)
: (4.1)

Then V � H1(
).
Assume that for a given u 2 H iLipscj
/R1358 97385 Tf
es0.5508 0 Td
(H)Tj
/R31.9.96385 Tf
5.86643 -1.43999 Td
(i)T36/R51 9.96264 Tf
3.36001 1.43999 Td
(,me)25 9.96264 Tfhavsupp72962680 Td
(given)T98 1.43999 Td
(:=)/R28 9.96264loengiv(ximatio2.7016385 Tf
 Td
(Theory)-298 6.51 1.8264 Tfximp)Tj
15.9 T164 0 Tderr ,531 020 Td
(gi)Tj
10.7935 0 Td
(a).e.,j
4.0729879/R31 9.30srupp7 9.62 0 Td
(e)ven

V230.5 0 Td
(N)4.80037 -1.43994 Td
(i)90
/R28 9.96264 Tf
6.12 1.43994 Td
(2)Tj
/R28 9.96264 Tf
9.47524 0 Td
(V)Tj
/R48 6.97385 Tf
5.76477 -1.43994 Td
(i)Tj
/528 9.96264 Tf
3.36001 1.43999 Td
(,me9
/R48 6.97385 Tf
su
18.33296658 Td
(Lip(for)Tj
798 -27.24 Td
(k)1.97328 9.2264 Tf
5.03113 0 Td
( )Tj
/R48 6.97385 Tf
8.51838 0 Td
(2)Tj
/R7 9.939/R31 9.�.47524 0 Td
(V)Tj
/R4895096385 Tf
4.80037 -1.43994 Td
(i)T139928 9.96264 Tf
6.12 1.43994 Td
(2)Tj))Tj
/R25 9.9664 Tf
5.03113 -1.8 Td
(L)Tj
/R78 4.98132 Tf
5.52 2. 0 99 Td
(1)Tj
/R391.925 9.96265.39775 0 Td
(
)Tj
//R31 9.9-1.925 9.9626Tf
11.04 - 0 99 Td
(1)Tj8=1= V =1838 0 Td 9.96264 Tf

11.76 - 1.43994 Td
(v)T8
/R664 Tf
6.23694 0 Td
(=)Tj
103.79

: kr 
 2V�L1
 1=1= V =1 
 =

: =1 v


�

hi

j 
 �v =1

838 0 Td 9.9629.96264 1.76 - 1.43994 Td
(v)T8
/R664 Tf
6.23694 0 Td
(=)Tj
103.79

� =1=V 
2

�:=v
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This allows us to bound the error e := u�PN
i=1  ivi by

Z

Ω

jej2 dx � 2

Z

Ω

�����
NX

i=1

(u� vi)r i
�����

2

+

�����
NX

i=1

 ir(u� vi)

�����

2

dx: (4.5)

The assumption supx2Ω cardfi jx 2 
ig � M implies that for each �xed
x 2 
 each of the sums consists of at most M terms. Hence, exploiting the
bound (

PM
j=1 jaj j)2 � M

PM
j=1 jaj j2, which is valid for any �nite sequence

(aj)
M
j=1, and using the bounds on the functions  i, r i, we arrive at

�����
NX

i=1

(u� vi)(x)r i(x)
�����

2

� M

NX

i=1

jr i(x)j2 j(u� vi)(x)j2

� MC2
G

NX

i=1

1

h2
i

j(u� vi)(x)j2;

�����
NX

i=1

 i(x)r(u � vi)(x)

�����

2

� M

NX

i=1

j i(x)j2 jr(u� vi)(x)j2

� MC2
1

NX

i=1

jr(u� vi)(x)j2:

Inserting these bounds in (4.5) then gives the desired estimate. ut

Remark 4.2. Theorem 4.1 is formulated for L2-based spaces|an extension to
spaces W k;q , 1 � q < 1 is possible. If the partition of unity is smoother, i.e.,
 i 2 W k;1(
) and the local spaces Vi satisfy Vi � Hk(
i), then again V �
Hk(
) and analogous approximation results in Hk can be obtained. Thus,
applications requiring subspaces ofHk(
) instead ofH1(
) as approximation
spaces can easily be constructed.

A prominent example of a partition of unity satisfying the assumptions of
Theorem 4.1 consists of the standard basis of a FEM space:

Example 4.3. Let T be a shape-regular mesh on a domain 
 � Rd. Let
fxi j i = 1; : : : ; Ng be the vertices of T and let f i j i = 1; : : : ; Ng be the
standard piecewise linear basis of S1;1(T ). Then f i j i = 1; : : : ; Ng is a par-
tition of unity satisfying the assumptions of Theorem 4.1.

Remark 4.4. Partitions of unity are systems of functions that reproduce poly-
nomials of degree p = 0. Hence, one can obtain a partition of unity with the
Shephard construction of Exercise 2.14 from a collection of particles XN =
fxi j i = 1; : : : ; Ng and corresponding weight functions wi, i = 1; : : : ; N . As
discussed in Section 2.3, the regularity of the shape functions obtained in this
way is determined by the regularity of the weight functions wi.
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Of particular note in the Shephard construction is the case when each patch

i contains an open subset 
0

i such that 
0
i \ 
j = ; for j 6= i. Then  i � 1

on 
0
i. Such a partition of unity is employed in the particle partition of unity

method of [96].

For practical implementations, it is important to identify a basis of the space
V . It appears natural to base it on bases Bi = fbi;j j j = 1; : : : ; dimVig, i =
1; : : : ; N , and consider the set B = f ibi;j j i = 1; : : : ; N; j = 1; : : : ; dimVig.
In general B is not a basis of V as the following exercise shows:

Exercise 4.5. Let 
 = (0; 1) and 0 = x0 < x1 < � � �xN = 1 be a partition
of 
. let  i, i = 0; : : : ; N , be the standard piecewise linear hat function
associated with node xi. Let Vi = Pp = spanfbj j j = 0; : : : ; pg for each
i = 0; : : : ; p. Show by a dimension argument that f ibj j i = 0; : : : ; N; j =

0; : : : ; pg is not a basis of V =
PN

i=0  iVi.

If the partition of unity is suitably chosen, then the set
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In particular, if pi = p for all i and if we set h := maxhi, then

inf
v2VN

ku� vk2
H1(Ω) � Ch2minfp;k�1gkuk2

Hk(Ω):

The size diam eBi of the ball eBi in Exercise 4.7 plays the role of the local mesh
size in the classical FEM. Graded meshes can also be simulated as illustrated
in the following exercise.

Exercise 4.8. Continue Exercise 4.7 for the approximation of singularity func-
tions of the form u(r; ’) = r��(’) as discussed in Exercise 2.11. Let 
 =
(0; 1=2)2, let XN be the particle distribution given in Exercise 2.11 with

� > p=�. Let the patches 
i be such that xi 2 
i � eBi, where eBi = B�i(xi)
with �i given in Exercise 2.11. Let Vi = Pp as in the preceding exercise. Show:
(4.6) holds, and the approximation space V satis�es

inf
v2V

ku� vkH1(Ω) � CN�p;

i.e., the optimal rate of convergence is achieved.

5 Examples of operator adapted approximation spaces

Theorem 4.1 allows us to construct approximation spaces V where the global
space V inherits the approximation properties of the local spaces Vi. These
spaces can be custom tailored to the approximation of a function u. We
illustrate this with a few examples.

5.1 A one-dimensional example

We consider the following one-dimensional model problem:

Lu := �(a(Mx)u0)0+b(x)u = f on 
 = (0; 1); u(0) = u(1) = 0; (5.1)

where M 2 N and a 2 L1(R) is 1-periodic. Additionally, we assume elliptic-
ity, i.e., 0 < a � a(x) for all x 2 R and 0 � b(x) � kbkL∞(Ω) for all x 2 
.
If M is large, then the coe�cient a(M �) is highly oscillatory 96264 Tnstr
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The error e := u � v then satis�es e(x0) = 0 and (ae0)(x0) together with
Le = f . The di�erential equation Le = f gives us �(ae0)0 = f � be so that

je(x)j �
����
Z x

x0

e0(t) dt

���� � hke0kL∞(I);

je0(x)j � 1
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for the internal nodes and the space V0 constructed in Exercise 5.4 for the
two nodes at the boundary of 
. In view of Lemma 5.2 and Theorem 4.1 we
expect convergence O(h) in the energy norm (cf. (5.2)), where the constant
in the O(h) convergence is independent M
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5.2 Laplace’s Equation

We consider the two-dimensional case 
 � R2 and solutions to Laplace’s
equation

��u = 0 on 
. (5.4)

It seems reasonable to try to approximate the solutions to a di�erential equa-
tion with systems of functions that likewise solve the di�erential equation.
For the Laplace equation one such system is that of harmonic polynomials:

HPp := spanfRe zn; Im zn jn = 0; : : : ; pg; (5.5)

where z = x + iy 2 C. Note that dim HPp =



Meshless Methods 37

0 5 10 15 20 2510−3

10−2

10−1

100

polynomial degree p

re
l. 

er
ro

r 
in

 e
ne

rg
y 

no
rm

a=1.05; n=2, 4, 8, 16

n=2
n=4
n=8
n=16

10
0

10
1

10
2

10
−5

�510
�510

2222222222102210



38 J.M. Melenk

1. Systems of plane waves, W (p), given by

W (p) := span
n
eik!n�(x;y) jn = 0; : : : ; p� 1

o
; (5.7)

where the vectors !n are given by !n := (cos 2�n
p ; sin 2�n

p )>.
2. Generalized harmonic polynomials given by

V (p) := span fJn(kr) sin(n’); Jn(kr) cos(n’) jn = 0; : : : ; pg ; (5.8)

where we employed polar coordinates (r; ’) in the de�nition of V (p); the
functions Jn are the �rst kind Bessel function.

We note that dimV (p) = O(p), dimW (p) = O(p). These spaces have the
following approximation properties:

Theorem 5.13. Let 
 � R2 be a simply connected domain, 
0 �� 
 be a
compact subset. Let u solve (5.6). Then there exist C, b > 0 such that for all
p 2 N, p � 2:

inf
v2V (p)

ku�vkH1(Ω′) � Ce�bp; inf
v2W (p)

ku�vkH1(Ω′) � Ce�bp= log p: (5.9)

Proof. The �rst estimate is proved in [80]. The second one can be proved
using the arguments detailed in Section C.2. ut

Theorem 5.14. Let 
 � R2 be star-shaped with respect to a ball. Let 

satisfy an exterior cone condition with angle ��. Let u 2 Hk(
), k � 1, solve
(5.6). Then there exists C > 0 such that

inf
v2V (p)

ku� vkH1(Ω) � C

�
log(p+ 2)
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Helmholtz equations, where the space V (p) is precisely the image of complex
polynomials under the map ReV); we refer to Appendix C and [80] for more
details on this. The representation theory of Bergman and Vekua is, due to
its close link with complex analysis, largely a two-dimensional theory. Some
extensions to three dimensions have been done in(close)3]link
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arbitrarily poorly. On the other hand, the constructions in [81] show that for
reasonable classes of right-hand sides, it is in principle possible to construct
go
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for some numbers aij 2 R and u0 2 H1+k(
).

Proof. Such decompositions can be found, for example, in [52,53]. ut

This regularity assertion allows us to design approximation spaces that re-
cover the optimal rate of convergence (in terms of \error vs. problem size"):

Exercise 6.2. Fix a cut-o� function �j 2 C1
0 (R2) for each corner Aj such

that �j � 1 in a neighborhood of Aj and such that �j � 0 in a neighborhood
of the vertices Ai, i 6= j.

(a) Show: The decomposition (6.3) can take the form

u =

JX

j=1

X

i2N

i π
ωj
<k

aij�jSij + ~u0;

where ~u0 2 H1+k(
) \H1
0 (
). Additionally, �jSi;j 2 H1

0 (
).
(b) Show: The space

VN := Sp;10 (T ) � spanf�jSj;i j j = 1; : : : ; J; i
�

!j
< kg � H1

0 (
)

satis�es
inf

2VN

ku� vkH1(Ω) � Chminfp;kg: (6.4)

Note that dimVN � dimSp;10 (T ).

The purpose of the cut-o� functions �j is to localize the singularity functions.
This could also be achieved with the aid classical FEM functions:

Exercise 6.3. Let T be a quasi-uniform mesh on the polygon 
 � R2. Let
f i j i = 1; : : : ; N1g be set of the classical piecewise linear hat functions asso-
ciated with T and S1;1(T ) = spanf i j i = 1; : : : ; N1g. Fix � > 0 and de�ne,
for each j 2 f1; : : : ; Jg, the set Ij := fi j supp i � B�(Aj)g. De�ne

VN := Sp;10 (T ) � spanf iSj;m jm �

!j
< k; i 2 Ij ; j = 1; : : : ; Jg:

Show: Also for this choice of approximation space the approximation property
(6.4) holds. Note: VN � H1

0 (
) and dimVN � dimSp;10 (T ).

The above construction involves only classical FEM functions and the sin-
gularity functions Sj;i. Of course, since � > 0 is �xed, a rather large num-
ber of nodes is a�ected (see the left picture in Fig. 6.6, where the nodes
that require multiplication with singularity functions are denoted �), namely,
O(h�2) nodes. A variety of practitioners have therefore looked at further
simpli�cations:
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factors the crack propagation is determined according to some engineering
model; �nally, the crack is extended, and the next iteration of this loop is
performed. Performing such a crack propagation analysis is costly since the
domain 
 n  on which the elasticity equations have to be solved, changes
in each iteration step thus requiring (at least local) remeshing. Additionally,
since the solution exhibits a strong singularity at the crack tip, a strongly
re�ned mesh is required near the crack tip to resolve this singularity and guar-
antee reliable results. The technique of augmenting a standard FEM space by
a few special functions to overcome these
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Remark 6.5. Some extensions of this choice would be: a) add more singularity
functions, b) use higher order discontinuity functions, e.g., H(x)�(x), where
� 2 Pp (the above construction corresponds to p = 0).

We will not analyze the approximation properties of the space VN de�ned
above. The following exercise, however, gives an indication of what can be
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boundary, [101,103,48,96]. Note that this local mesh near the boundary need
not be regular since it is only used for quadrature purposes. The structure of
the shape functions also greatly a�ects the cost of the quadrature. Consider
as an example the particle partition of unity method of [96]. There, the shape
functions whose support is contained in 
 are constructed such that they are
piecewise smooth, where the regions of smoothness are axis parallel boxes.
Clearly, this choice greatly simpli�es the design of appropriate quadrature
rules. We �nally mention that the use of numerical quadrature entails errors;
some ideas for their control are discussed in [101].

7 Enforcement of essential boundary conditions

In many applications, essential boundary conditions have to be enforced. As
a model problem we consider the classical Poisson problem: Find u 2 H1

0 (
)
such that

a(u; v) :=

Z

Ω

ru � rv dx = F (v) :=

Z

Ω

fv; dx 8v 2 H1
0 (
): (7.1)

The ideas how to enforce essential boundary conditions in meshless mehods
are essentially the same ones as in the classical FEM. They can be split into
two categories:

� Conforming methods: The approximation space VN is chosen as a sub-
space of H1

0 (
), i.e., VN � H1
0 (
). This can be achieved by

– using cut-o� functions;

– combining the classical FEM near the boundary with particle meth-
ods in the interior;

– creating H1
0 (
)-conforming spaces in the framework of the partition

of unity method by properly selecting the local approximation spaces
Vi near the boundary.

� Non-conforming methods: In these methods, the variational formulation
is changed. These methods include

– Lagrange multiplier methods,

– collocation of boundary conditions,

– penalty methods,

– Nitsche’s method.

7.1 Conforming methods

For the model case (7.1) the approximation space VN has to be chosen to
satisfy VN � H1

0 (
).
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A simple approach The simplest approach is to select from a given set
B = f’i j i = 1; : : : ; Ng of shape functions only those that satisfy ’i 2 H1

0 (
),
i.e., to take

VN;0 := spanf’i j (supp’i)
� � 
g: (7.2)

Good approximation properties cannot be expected of VN;0, however, even if
the function to be approximated is smooth:

Exercise 7.1. Let VN := spanf’i j i = 0; : : : ; Ng be the space of piecewise
linear functions associated with the mesh given byen
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Combination with the classical FEM A technique proposed, e.g., in
[68], is to combine shape functions of the classical FEM with general particle
methods. In the vicinity of the boundary @
, a standard mesh is de�ned and a
standard FE space is employed. This space guarantees optimal approximation
properties and gives the exibility of the classical FEM to handle boundary
conditions. For the approximation in the interior of 
, any system can be
used, e.g., systems VN;0 of the form (7.2). These ideas can be shaped into
several forms. In order to illustrate what can be expected, we present the
following example:

Example 7.5. Let 
 � R2 be a polygon, and let 2 � k � p. Let VN � H1(
)
be an approximation space with the property

inf
v2VN

ku� vkL2(Ω) + hku� vkH1(Ω) � ChkkukHk(Ω): (7.3)

Let Sh := fx 2 
 j dist(x; @
) < hg be a tubular neighborhood of @
. Let T
be an a�ne, quasi-uniform triangulation of mesh size O(h) of a set 
0 � 

that satis�es Sh � 
0. Let Sp;1(T ) be the standard �nite element space of
piecewise polynomials of degree p on the mesh T and set Sp;10 (T ) = Sp;1(T )\
H1

0 (
0). Note that by extending functions of Sp;10 (T ) by zero outside of 
0,
we may think of Sp;10 (T ) as a subset of H1

0 (
). Let f i j i 2 I@Ωg � S1;1(T )
be the standard piecewise linear hat functions associated with the nodes on
@
 and set

! :=
X

i2I∂Ω

 i:

Again, by the support properties of the piecewise linear hat functions  i, we
may think of ! as being de�ned on 
. We observe:

! � 1 on @
; ! � 0 on 
 n 
0;

! 2 W 1;1(
); kr!kL∞(Ω) � Ch�1:

We select as the approximation space

Vp;N := (1 � !)VN � Sp;10 (T ) � H1
0 (
):

We claim that for u 2 Hk(
) \H1
0 (
)

inf
v2Vp,N

ku� vkH1(Ω) � Chk�1kukHk(Ω): (7.4)

(7.4) is shown using the same ideas as in the proof of Theorem 4.1. Let
uN 2 VN be an approximation of u from VN such that

ku� uNkL2(Ω) + hku� uNkH1(Ω) � ChkkukHk(Ω):

We will take the approximant to u from Vp;N of the form (1 � !)uN + v,

where v 2 Sp;10 (T ) will be determined below. The error can be written as
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u � (1 � !)uN � v = (1 � !)(u � uN) + (!u � v). For the �rst term, we
calculate

k(1 � !)(u� uN)kL2(Ω) + hk(1 � !)(u� uN)kH1(Ω) � ChkkukHk(Ω);

which has the desired form (7.4). We now turn to the de�nition of v 2 Sp;10 (T ),
which approximates !u. We select Ip�1u 2 Sp�1;1(T ) by a standard FEM
interpolation procedure. Then, (Ip�1u)j@Ω = 0 and

ku� Ip�1ukL2(K) + hkr(u� Ip�1u)kL2(K) � ChkjujHk(K) 8K 2 T :
Here, we exploited the assumption p � k. As the product of a piecewise linear
function and a piecewise polynomial of degree p � 1, the function !Ip�1u

satis�es !Ip�1u 2 Sp;10 (T ). We conclude using the support prop
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7.2 Non-conforming methods: Lagrange Multiplier methods and
collocation techniques

The essential boundary condition could also be enforced in a weak sense. The
simplest such approach is to collocate the boundary condition in a (�nite) set
of points Y � @
 as was proposed, for example, in [2,54,111]. Such methods
are, however, di�cult to analyze even in the setting of the classical FEM.
Early references to the Lagrange Multiplier Method are [3,4]. One introduces
a bilinear form b : H1(
) �H�1=2(@
) by

b(v; �) := h0v; �iH1/2(@Ω)�H
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Exercise 7.8. Show: N = 0 implies that the matrix representing the linear
system (7.6) is not invertible.

In the classical FEM, various combinations of spaces VN and MN are known
to be \stable" in the sense that (7.6) holds for a constant independent of
the mesh size; we refer to [100] for a more detailed discussion and appropri-
ate references. In the context of the classical FEM, a key ingredient in the
stability proofs for pairs VN , MN are inverse estimates. To the knowledge of
the author, such estimates are not available for meshless methods, and an
analysis is therefore hard. We will encounter a similar di�culty in our anal-
ysis of Nitsche’s method below; the appropriate inverse estimate is therefore
stipulated as Assumption 7.13.

7.3 Non-conforming methods: penalty method

In the conforming FEM, one would have to choose VN � H1
0 (
). In the

penalty method, the essential boundary conditions are weakened by changing
the problem: Taking VN � H1(
) and  � 1 the problem is to �nd uN 2 VN
such that

a (uN ; v) := a(uN ; v) +

Z

@Ω

 uNv ds = F (v) 8v 2 VN : (7.8)

We recognize this as the Galerkin approximation to the following problem:

Find u 2 H1(
) s.t. a (u ; v) = F (v) 8v 2 H1(
): (7.9)

The strong form of this problem is:

��u = f on 
; @nu +  u = 0 on @
: (7.10)

One sees that, if  ! 1, then u ! u, where u is the solution of (7.1). We
will make this more precise below.

Theorem 7.9 (penalty method). Let 
 � Rd be a Lipschitz domain. Let
k � 2. Assume u 2 Hk(
) is the solution of (7.1). Let � 2 Hk�1(
) solve

��� + � = 0 on 
; �j@Ω = @nu on @
. (7.11)

Assume that the approximation space VN � H1(
) satisfies:

inf
v2VN

ku� vkL2(Ω) + hkr(u� v)kL2(Ω) � Chk; (7.12)

inf
v2VN

k� � vkL2(Ω) + hkr(� � v)kL2(Ω) � Chk�1: (7.13)

Then there holds for a C > 0 independent of  and h

ku� uNkH1(Ω) � C
n
 �1 +  �1=2hk�3=2 +  1=2hk�1=2 + hk�1

o
:
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Setting  = h� with the optimal value � = 2k�1
3 gives

ku� uNkH1(Ω) � h� ; � =
2k � 1

3
:

Remark 7.10. The regularity assumption � 2 Hk�1(
) is satis�ed, for exam-
ple, if @
 is smooth.

Proof of Theorem 7.9. The proof follows the exposition of [3, Thm. 7.2.2].
From the Lax-Milgram Lemma (see, e.g., [23, Thm. 2.7.7]) we have upon
equipping the space H1(
) with the norm k � k :=

p
a (�; �), which is equiv-

alent to the standard k � kH1(Ω) norm,

ku � uNk = inf
v2VN

ku � vk :

We now write

u = u +
1

 
� + �:

The function � satis�es

a (�; v) = a(u; v)|

|1
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Remark 7.11. In the case k = 2,
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where we appealed to the inverse assumption. Choosing now � = (2C2
inv)

�1

gives the desired bound (7.22).
The bound (7.23) follows from the trace theorem. ut

Remark 7.16. Lemma 7.15 shows that the problem (7.18) is well-de�ned and
leads to a symmetric positive de�nite sti�ness matrix, provided that the
parameter  is choosen su�ciently large. A good estimate on Cinv is required
for that. Determining Cinv can be formulated as an eigenvalue problem, and
a numerical scheme that works well has been proposed in [51,96].

The consistency result Lemma 7.12 allows us to get quasi-optimality of the
Nitsche method:

Lemma 7.17. Set a
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We required k � 2 in the proof of Theorem 7.18 for convenience only. The
follow exercise shows that k > 3=2 is in fact su�cient:

Exercise 7.19. Use Theorem A.2 to show that the approximation result of
Theorem 7.18 is true for k 2 (3=2; 2) provided

inf
v2VN

ku� vkL2(Ω) + hku� vkH1(Ω) + hkku� vkHk(Ω) � ChkkukHk(Ω):

Remark 7.20. The approximation properties of VN stipulated in Theorem 7.18
required simultaneous approximation properties of VN in three norms. Such
results were established in Theorem 2.6 and Proposition 3.11.

A Results from Analysis

Theorem A.1 (universal extension operator). Let 
 � Rd be a Lip-
schitz domain. Then there exists a linear operator E : L1(
) ! L1(Rd) with
the following properties:

(i) (Eu)jΩ = u for all u 2 L1(
).
(ii) For each k 2 N0, p 2 [1;1], there exists C > 0 such that kEukWk,p(Rd) �

CkukWk,p(Ω) for all u 2 W k;p(
).

Proof. See [99, Chap. VI.3]. ut

Theorem A.2 (multiplicative trace theorem). Let 
 � Rd be a Lip-
schitz domain, s 2 (1=2; 1]. Then there exists a constant C > 0 such that for
all u 2 Hs(
) the trace 0u = uj@Ω satisfies

k0ukL2(@Ω) � Ckuk1�1=(2s)
L2(Ω) kuk1=(2s)

Hs(Ω):

Proof. The case s = 1 is well-known (see, e.g., [23, Prop. 1.6.3]). For the case
s 2 (1=2; 1), a proof that is based on elementary techniques can be found in
Exercise A.3. A short proof resting on the theory of interpolation spaces is
as follows. From [104, Thm. 2.9.3], we can infer the trace theorem

k0ukL2(@Ω) � Ckuk
B

1/2
2,1 (Ω)

; (A.1)

where the Besov space B
1=2
2;1 (
) = (L2(
); H1(
))1=2;1; here, the K-method

of interpolation, [15,104] is employed. For s 2 (1=2; 1], the reiteration theo-

rem then allows us to recognize B
1=2
2;1 as an interpolation space between L2(
)

and Hs(
), namely, B
1=2
2;1 (
) = (L2(
); Hs(
))�;1, where � = 1=(2s). Insert-

ing into (A.1) the interpolation inequality kuk
B

1/2
2,1 (Ω)

� C�kuk1��
L2(Ω)kuk�Hs(Ω)

then gives the desired result. ut
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Here, the notation (�)+ represents the function x 7! (x)+ = maxfx; 0g. The
constant Cp;q;k depends only on p 2 N0, q 2 [1;1), d, and k � 0. The bound
(B.2) also holds for q = 1 if k and s are restricted to integer values s,
k 2 N0.
If q 2 (1;1) and k > d=q or if q = 1 and k � d, then additionally

ku�QpukL∞(B) � ~Cp;q;kh
minfp+1;kg�d=qkukWk,q(B); (B.3)

where ~Cp;q;k depends only on p, q, d, and k.

Proof. The L1-bound (B.3) will be treated in the following Exercise B.2.
We elaborate the arguments of [23, Chap. 4] in order to show the statements
(B.1), (B.2). We proceed in several steps.
1. step: Let F : B1(0) ! B be an a�ne bijection. We x;� uB(u �x; ) k

L∞( L 1 ) !uku �) kW,q1ωstep: (B.3)
1. step:ts

d argumenan

1.) !(

LB(x; ( B 1

for) 2 1 for2~2�2~)2 N1and)2
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of � to l can be viewed as a univariate polynomial, the one-dimensional result
(B.9) implies

j�(y)j � k�kL∞(l) �
�

diamBr2(x2)

r1

�p
k�kL∞(l\B1) �

�
2r2
r1

�p
k�kL∞(B1):

Since y 2 Br2(x2) was arbitrary, the desired bound (B.8) follows. ut

C Approximation with adapted function systems

In this appendix, we prove Theorems 5.13, 5.14, and 5.17. These results are
restricted to two-dimensional problems and make use of complex variables.
We will identify R2 with the complex plane C where appropriate without
explicit mention.

C.1 The theory of Bergman and Vekua

We consider equations of the form

��u+ a@xu+ b@yu+ cu = 0 on 
 � R2, (C.1)

where the constants a, b, c are real. The theory of S. Bergman [16] and
I.N. Vekua [105] asserts the existence of a bijection between (suitably nor-
malized) holomorphic functions and the solutions of (C.1). This bijection is
even bicontinuous in Sobolev norms:

Lemma C.1. Let 
 � C be a simply connected Lipschitz domain. Fix z0 2

. Let H := f’ j’ holomorphic on 
 and ’(z0) realg. Then there exists a
linear map ReV with the following properties:

1. ReV(’) solves (C.1) for every ’ 2 H.
2. For every solution u of (C.1) there exists a unique ’ 2 H such that

ReV(’) = u.
3. k ReV(’)kHk(Ω) � Ck’kHk(Ω) for all ’ 2 H and k � 0.

4. If u 2 Hk(
), k � 1, solves (C.1), then the corresponding ’ = ReV�1(u) 2
H is likewise in Hk(
) and k’kHk(Ω) � CkukHk(Ω).

In the last two estimates, the constant C depends on k, 
, and the differential
operator.

Proof. See [80]. Corresponding bicontinuity results in H�older spaces have
been obtained in [38]. ut

Remark C.2. The case of Laplace’s equation is particularly simple. Then ReV
reduces to the operator Re, i.e., taking the real part of a holomorphic function.
Lemma C.1 can be generalized to the case of real analytic coe�cients a, b, c;
we refer to [80] and [16,105] for the precise statements.
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An important observation is that the operator ReV can also be computed for
Helmholtz’s equation. For z0 = 0 and writing (x; y) in polar coordinates, it
is shown in [80] that

ReV[zn] = n!

�
2

k

�n
cos(n’)Jn(kr); (C.2a)

ReV[izn] = �n!

�
2

k

�n
sin(n’)Jn(kr);y)
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2. step: For � > 0 we de�ne the strip S� := fz 2 C j j Im zj < �g. We
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Lemma C.4. Let 
 � R2 be star-shaped with respect to a ball B�(z0). Let
the displacement field u = u + iv 2 Hk(
) for some k 2 N. Let z0 2 
. Let
’,  be the holomorphic functions appearing in the representation formula
(5.14), which are uniquely determined by stipulating ’(z0) = 0. Then

k’kHk(Ω) + k kHk−1(Ω) � CkukHk(Ω);

where C > 0 depends only on the Lamé constants, upper bounds on diam
,
and lower bounds on �.

Proof. We will only show the case k = 1 and leave the case k > 1 to the
reader. Equation (C.12b) implies that Re’0 2 L2(
) with k Re’0kL2(Ω) �
CkukH1(Ω). Equation (C.12c) then shows that also Im’0 2 L2(
) with
k Im’0kL2(Ω) � CkukH1(Ω). The condition ’(z0) = 0 then allows us to infer
from Lemma C.9 that k’kL2(Ω) � Ck’0k
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Then Tm is defined on 1
1�"
 and

kTmkL2( 1
1−ε Ω) � CkukHm(Ω); (C.16)

kTmkH1( 1
1−ε/2

Ω) � C"�1kukHm(Ω); (C.17)

kg(0) � TmkL2(Ω) + "kg(0) � TmkH1(Ω) � C"m+skukHm+s(Ω): (C.18)

Proof. The bound (C.16) follows from the change of variables � = (1�")z, an
inspection of the de�nition of the terms g(j), j = 0; : : : ;m, equation (C.12),
and Lemma C.4. The proof of (C.17) follows along the same lines. Estimating
@z1z(j

(
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 ap 2 Hp of degree p such that

k’1 � ’apkW j,∞(Ω) � Ch��(1 + h)�pk’1kL2(Int(L4h)); j = 0; 1; 2; (C.21a)

k 1 �  apkW j,∞(Ω) � Ch��(1 + h)�pk’1kL2(Int(L4h)); j = 0; 1; 2; (C.21b)

here, Lh = f’Ω(z) j jzj = 1 + hg, where ’Ω : C n B1(0) ! C n 
 is the
unique conformal map with ’Ω(1) = 1 and ’0

Ω(1) > 0. The constants
C, � > 0 are independent of h and p. By geometric considerations (see [80,

Lemma 2.3]), we can ascertain the existence of D > 0 such that for h�̂ = D"
we have IntL4h � 1

1�"=2
. Hence, combining (C.19), (C.20), (C.21), we can

conclude for j 2 f0; 1g

ku � (�z’0
ap �  ap + �’ap)kHj (Ω)

� C"m+s�
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Lemma C.9. Let 
 � C2 be star-shaped with respect to 0 and assume that
B�(0) � 
. Then for f 2 H1(
) holomorphic on 
 we have

kf � f(0)kL2(Ω) �
p

2diam 


"
1

�
+

�
2 diam


�

�2
#1=2

kf 0kL2(Ω): (C.23)

Proof. We de�ne � := �=(2 diam
) < 1. Since 
 is star-shaped with respect
to
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