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Abstract

This report gives a brief introduction to data assimilation� and a sum�

mary of the calculus of variations and its application to optimal control

theory� It then considers how data assimilation can be expressed as an

optimal control problem�

An algorithm is described for the numerical solution of the optimal

control problem� which involves using the model and its adjoint to �nd the

gradient of the cost functional� This gradient is then used in a descent

algorithm to produce an improved estimate of the control variable�

The algorithm is tested for a simple ODE and a simple PDE model� For

each model di�erent discretisations are considered� and the corresponding

discrete adjoint equations are found directly�
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� Introduction to Data Assimilation

Data assimilation is a process for integrating observed data into a forecast model�

The crudest such method would be direct substitution of the observed values to

replace the predicted values they represent� However� if the value at an observa�

tion point is changed in this way� it no longer agrees with values at neighbouring

grid points� Data assimilation schemes therefore aim to modify the model pre�

dictions so that they are consistent with the observations�

Data assimilation has been widely used in various forms in meteorological

and oceanographic modelling since the ��
��s� The various forms use ideas from

di�erent branches of mathematics� notably probability theory� optimization and

control theory� It is interesting� however� that although the problem may be

formulated using di�erent disciplines of mathematics� the resulting schemes have

many common features and properties� �See �	� for an overview of di�erent data

assimilation techniques� and an extensive list of references��

The di�erent approaches to data assimilation could be categorised in many

di�erent ways� but choosing just three categories� data assimilation techniques

can be classed as simple correction schemes� statistical schemes and variational

schemes�

Simple correction schemes

The simple correction schemes invlove weighting functions to add some proportion

of a correction to grid points surrounding an observation� the �correction� being

the di�erence between the observation and the corresponding model value� In

the simplest cases� these weights depend on distance from the observations alone

�see �
� and ��� for examples��

Statistical schemes

Statistical schemes� for example statistical interpolation or optimal interpolation

�see ����� use the error covariances of the observations and of the model predictions

to �nd the �most likely� linear combination of the two� The Kalman �lter provides

perhaps the most sophisticated approach to this� but is very expensive to run and

is not easily extended for use in nonlinear models�

�



Variational schemes

The idea behind variational data assimilation is to minimize some �cost func�

tional� expressing the distance between observations and the corresponding model

values using the model equations as constraints� The result is the model solution

which �ts �closest� to the observations� with the measure of closeness de�ned by

the cost function �see ���� ���� and ������

In the case of data assimilation for a meterological forecast model for example�

variational data assimilation would provide means for choosing initial conditions

in such a way that the resulting �analysis� �model output� is as close as possible

to the speci�ed observed values� whilst satisfying the model equations� Varia�

tional schemes are based on optimal control theory�

Section � presents some results from the calculus of variations as background

to optimal control theory� Section � introduces optimal control theory in the con�

text of data assimilation� and describes an algorithm for the numerical solution of

optimal con



� Overview of the Calculus of Variations

The aim of this section is to give some background results in the calculus of vari�

ations which are used in optimal control theory� For a more thorough treatment

of the subject� see any text book on optimal control or the calculus of variations�

eg ���� ���� ���� and ����� The theorems and de�nitions quoted below can also be

found in these texts� although set out in a di�erent way�

��� Cost Functionals

The �fundamental problem of the calculus of variations� is�

Find the function y�t� in the set of admissible functions A which minimizes

the cost functional

J �
Z t�

t�

F �t� y�t�� y��t��dt�



De	nition �


The functional J �y� has an extremal at �y if �� � � such that J �y� � J ��y� has

just one sign � y such that jjy � �yjj � ��

Theorem �


A necessary condition for �y�A to be an extremal is that �J � � for all choices

of �y and �y��

��� Necessary Conditions for an Extremal

Any necessary conditions ensuring that �J � � give necessary conditions for an

extremal� However� to avoid evaluating the variation of �often complicated� cost

functionals� the Euler Lagrange equations give the required necessary conditions

for many problems in a neat form�

The Euler Lagrange Equations

The �rst variation of J is�

�J �
Z t�

t�

�F

�y
�y �

�F

�y�
�y�dt� ���
�

Therefore

�J �
Z t�

t�

�F

�y
�ydt�

�
�F

�y�
�y

�t�
t�

�
Z t�

t�

d

dt

�
�F

�y�

�
�ydt� ���	�

and hence

�J �
Z t�

t�

�
�F

�y
�

d

dt

�
�F

�y�

��
�ydt�

�
�F

�y�
�y

�t�
t�

� �����

From this it can be seen that for �J � � we require

�
�F

�y�
�y

�t�
t�

� � �����

and

�F

�y
�

d

dt

�
�F

�y�

�
� �� �����

which is known as the Euler Larange Equation�

�



Notice that if A restricts admissible functions y to those with �xed end points�

y�t�� � y�� y�t�� � y�� then �y�t�� � � � �y�t��� and so

�
�F

�y�
�y

�t�
t�

� �� ������

Otherwise� at a �free end�� we must enforce

�F

�y�
� �� ������

Simpli�ed forms of the Euler Lagrange equations can be derived in the case

where J does not depend on t explicitly� or when J is independent of t and y�

The Vector Case

If the functional J is de�ned in terms of an N dimensional vector y�t� and its

derivative y��t�� so that

J �
Z t�

t�

F �t�y�t��y��t��dt� ������

then we have N Euler Lagrange equations

�F

�yn
�

d

dt

�
�F

�y�n

�
� �� n � �� �� ���N� ������

��� Constraints and the Method of Lagrange Multipliers

Suppose we wish to minimize the functional J �
R t�
t�
F �t� y� y��dt subject to the

constraint G�t� y� y�� � ��

Theorem �


If y�t� �A is twice continuously di�erentiable and an extremal of J over members

of A satisfying G�y� � �� then ���� such that y is an extremal of the functional

L �
Z t�

t�

F �t� y� y�� � �G�t� y� y��dt� ������

Notes


� If y minimizes J � then we don�t know that y minimize
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� L is called the augmented functional�

In general� if we have N constraints� G�� ���GN� Theorem � holds with N

Lagrange multipliers ��� ����N and the augmented functional becomes�

L �
Z t�

t�

F �t� y� y�� �
NX
n��

�nGn�t� y� y
��dt� ����
�

Necessary Conditions for Extremals� Adjoint Equations

The same analysis as for the unconstrained case can now be applied to the aug�

mented functional�

With the notation H � F � �G� �H is sometimes called the �Hamiltonian���

we have the following necessary conditions for an extremal y of L�

G�y� � �� ����	�

�H

�y
�

d

dt

�
�H

�y�

�
� �� ������

�
�H

�y�
�y

�t�
t�

� �� ������

The second condition� the Euler�Lagrange equation� is sometimes called an

adjoint equation� and Lagrange multiplier � is sometimes called an adjoint vari�

able�

�





��� Numerical Solution of the Optimal Control Problem

We need a numericalmethod for choosing the control variable so that the resulting

model state satis�es the necessary conditions for an extremal� Therefore� given

a �rst guess for the control and the resulting model output� we need a way to

c



where K interpolates the model states to the observations and W is a weighting

matrix� which might for example weight components of y � K�x� according to

the error covariances of the observations and of the interpolation�

We wish to �nd the vector x that minimizes J � so x acts as the control

variable here� If x is also required to satisfy the forecast model� then the problem

is one of constrained minimization with the forecast model as a constraint� In

general� this constrained minimization needs to be carried out n



� An ODE Example

This section develops a method for solving the data assimilation problem in the

case of a simple ODE model� In Section ��� the example is presented� and an

algorithm based on the concepts given in Section ��� is developed to solve the

problem� In Sections ��� and ��� the problem is tackled from a slightly di�erent

angle� For two di�erent discretisations of the same model� the optimal control

problem is solved by �nding the adjoint equations directly for the discrete model

equations� The example is concluded in Section ���� with a discussion of the

results�

��� The ODE model

We suppose that our model is

!y�t� � ay�t� t��t�� t��� �����

with

y��� � 	� �����

and that we have a set of observations corresponding to y�t� which can be rep�

resented by the continuous function "y�t�� If we choose to represent the distance

between y and "y using the L� norm� then with 	 as the control variable� the

optimal control problem is�

Choose 	 to minimize

J �
Z �

�
�y�t�� "y�t���dt �����

subject to

ay � !y � �� �����

y��� � 	� ���
�

The augmented functional is

L �
Z �

�
�y�t�� "y�t��� � ��t��ay�t�� !y�t��dt� ���	�

and taking the �rst variation gives

�L �
Z �

�
���y�t�� "y�t�t



or

�L �
Z �

�
���y�t�� "y�t�� � ��t�a��ydt� ���t��y�t����� �

Z �

�

!��t��y�t��dt� �����

From this the adjoint equation is found to be

� !� � a�� ��y � "y�� �����

with

���� � � � ����� ������

so the control problem can be written�

Find 	 � y��� so that

! �� t



and

� !� � a�� ��y � "y�� ������

but this time with just

���� � �� ������

then we are left with

�L � �����y���� ������

From this it can be seen that the gradient of L with respect to the control y���

is ����� and that we need this to be zero for an optimal control�

This gives a method for �nding the optimal control 	 � y��� numerically� we

�rst discretise ����� and ������ letting yj�y�j�x� and �j���j�x�� for j � �� �� ��J �

where J � �
�x
� and then use the following algorithm�

Algorithm �

� Guess 	�

� From y� � 	 calculate yj� j � �� ��J �

� Using yj and starting from �J � �� calculate �j � �� j � J � �� ����

� Use the gradient �� in a descent algorithm to guess a new 	� and repeat

from � until j��j is small enough�

From the �optimal� 	 found� the required approximation to the optimal y�t� can

be determined for t � �t�� t���

Comments


�� �� is only an approximation to ����� the gradient of L with respect to the

control�

�� The discretised version of the adjoint equation may not be the true adjoint of

the discretised version of ������ This point inspires the work of Section ����

�




��� Euler	s method applied to a simple ODE

As mentioned in Section ���� the discretized version of the adjoint equations may

no longer be the true adjoint for the discrete version of the original equation�

This section describes how optimal control theory may be applied directly to

the discretised ODE and PDE equations� The discrete adjoint equations derived

in this way can be compared with the continuous ones derived previously� Test

cases for these methods to �nd the �optimal control� solving a data assimilation

type of problem are then described�

Euler�s scheme discretises ����� with ����� as follows�

yj�� � �� � a�t�yj� ������

y� � 	� ������

We suppose we have observations "yj approximating �������

"yj � j�t for j � �� �� ��J �



�L �
J��X
j��

���yj � "yj��t� �j���� � a�t���yj��
JX

j��

�j�yj ������

� ���y��"y���t������a�t���y��
J��X
j��

���yj�"yj��t��j�����a�t���j��yj��J�yJ �

������

So if we enforce

yj�� � �� � a�t�yj for j � �� �� ��J � �� ������

and

�j � �� � a�t��j�� � ��yj � "yj��t for j � J � �� ���� ������

with

�J � �� ������

then we are left with

�L � ����� � a�t� � ��y� � "y���t��y�� ������

so the gradient of L with respect to the control 	 � y� is

���� � a�t� � ��y� � "y���t �



The steplength s is taken to be � originally� but if 	k�� is not better than

	k� that is� if
����k���

��� � ����k�
���� the previous iteration is repeated with the stepsize

halved� and the method continued using the smaller stepsize� This is carried out

until
���	k�� � 	k

��� is small enough �in this example until
����k�

��� is small enough��

In this way� the largest corrections are made to 	 on the �rst iterations� and

then �ner corrections are made as the iteration converges to the optimal 	�

Implementation

A FORTRAN program was written implement Algorithm � using the Euler�s

scheme and its adjoint� with the steepest descent algorithm� The iteration is

continued until j��j � ����� Table � presents the results from this program with

a � ��� showing the solutions found and the n



��� Fourth Order Runge�Kutta Method for the ODE

problem

In this section� the method described in Section ��� is repeated using the fourth

order Runge�Kutta discretisation of ����� with ������ which is

yj�� �

�
ah

	
�	 � ah�� � ah�� �

ah

�
� � �

�
yj� j � �� �� ��J � �� ������

with

y� � 	� ������

Employing the same method as for the Euler example� we �nd that the adjoint

equations are�

�j �

�
ah

	
�	 � ah�� � ah�� �

ah

�
� � �

�
�j�� � ��yj � "yj��t� j � J � �� ���

������

with

�J � �� ������

which is consistent with ����� as �t � �� The gradient of L with respect to

	 � y� is �� as before�

In this case the results for the same problem� which has analytic solution

	 � ��	�
�� are given in table ��

��



Table �

�t �rst guess of y� number of iterations �nal value of y�

�
���

��	 � ��
��	

��
 � ��
���

��� � ��
���

�� �� ��
��


�
����

��	 � ��	���

��
 � ��	���

��� � ��	�
�

�� �� ��	�
�

�
�����

��	 � ��	���

��
 � ��	���



can expect inaccuracies in y� of an unknown size� Since Tables � and � show

that the rate of convergence of y� to y��� decreases for smaller vaues of �t� it

seems that the errors in the iteration scheme dominate over the errors of the

discretisation when �t is small� This suggestion is backed up by the fact that

the forth order Runge Kutta scheme should give a much better approximation to

the analytic solution than the Euler scheme� and yet the results for both schemes

are of similar accuracy for the same value of �t�

The results could be improved by continuing the iteration until j��j satis�ed a

stricter tolerence� A more e
cient descent algorithm could also be used to reduce

the number of iterations needed� This is important in the context of data assim�

ilation� because each iteration of the descent algorithm involves an integration

of the model and of its adjoint� Since forecast models are very large� this will

involve a lot of work� Therefore� the overall e
ciency of any data assimilation

scheme of this type will depend heavily on the number of iterations needed�

��



� A PDE Example

In this section the model used is the linear advection equation in one dimension�

This section follows a similar development to Section �� Section 
�� presents the

problem� conditions for its solution and an algorithm for the numerical solution of

the problem� Sections 
�� and 
�� treat two di�erent discretisations of the linear

advection equation� and describe the implementation of the given algorithm in

each case� Section 
�� discusses the results�

��� The PDE model

Suppose now that our model is the linear advection equation

ut � cux � �� �
���

with

u�x� �� � 	�x�� and u��� t� � u��� t�� �
���

where u � u�x� t�� with x���� �� and t���� ���

Suppose we have observations corresponding to u�x� t� which can be represented

b



�L �
Z �

�

Z �

�
���u� "u�� �t � c�x��udxdt�

Z �

�
���u��t��dx�

Z �

�
�c��u��x��dt� �
�	�

Necessary conditions for �L � � are�

�t � c�x � ��u� "u�� �
���

with

��x� �� � � and ���� t� � ���� t�� �
���

The control problem is now�

Find 	�x� � u�x� �� so that

�t � c�x � ��u� "u�� �
���

with

��x� �� � �� ��x� �� � �� and ���� t� � ���� t�� �
����

and

ut � cux � ��u� "u�� �
����

with

u��� t� � u��� t�� �
����

We need a numerical scheme to do this� Following the development in section

������ we take

�t � c�x � ��u � "u� �
����

with just

��x� �� � � and ���� t� � ���� t�� �
����

where u satis�es � 
��� and � 
���� so that we are left with

�L � �
Z �

�
��x� ���u�x� ��dx� �
��
�

Since the control variable u�x� �� is a continuous function for x � ��� ��� the

�relevant inner product� in ����� is the L� inner product for x � ��� ���

Hence� the gradient of L with respect to the control 	�x� � u�x� �� is ���x� ���

After discretising the original equation and its adjoints�

��



unj�u�j�x� n�t� and �nj���j�x� n�t� for j � �� �� ��J and n � �� �� ��N

Algorithm � can be used to �nd the optimal control�

Algorithm �

� Guess 	j for each j � �� ���� J � ��

� From u�j � 	j calculate unj � j � �� ��J� n � �� ��N

� Using the unj and starting from �Nj � �� calculate �nj � j � �� �� ��J�

n � N � �� ����

� Use ��j to guess new 	j� and repeat from step � until jj��jj �
P

j

�����j�x��� is
small enough�

As in Section 
��� rather than �nding the adjoint equation of the continu�

ous model equation and then discretising the model and adjoint equations� the

discrete adjoint equations are found directly from a discretisation of the model�

Algorithm � is then applied to the following test problem to examine the perfor�

mance of the data assimilation�

����� A test problem for this scheme

Suppose the �observations� are given by the analytic solution v�x� t� to vt�cvx � �

with v��� t� � v��� t� and with one of the following sets of initial conditions�

��

v�x� �� �

	




�





�

���
 x � ���


��
 ���
 � x � ��


���
 x � ��


�
��	�

��

v�x� �� �

	




�





�

� x � ���


cos�� �x����	
��





After similar manipulations to those in the Euler example� we �nd �after a lot

of �ddly algebra� that if we take as adjoint equations

�Nj � � for j � �� �� ��J � �� �
��	�

�nj � ���
��n��j �
�n��j�����u
n
j�"u

n
j ��x�t� for j � �� �� ��J��� n � N��� ���� ��





for j � �� �� ��J � �� n � �� �� ��N � ��

and the gradient of L with respect to the jth component of the control� 	j � u�j

is ���j �

The same test problem was carried out here as in the upwind scheme example�

The results from using di�erent values of �x and �t in this program are shown in

Figures 
a�
c� and Figure 	 illustrates the behaviour of the Lax Wendro� scheme

in the absense of data assimilation� with the analytic solution given for the initial

condition�

��� Discussion of the results

The Upwind Scheme

The dissipation typical of the upwind scheme for �t

�x
� �

�
is clearly seen in the

solution� The data assimilation proceedure produces a vector of initial conditions

for the upwind scheme� and inevitably� no matter what these are� dissipation will

occur�

In Figures �a��c� it can be seen that the �optimal� initial condition produced

by the assimilation over�exaggerates the corners of the square wave� so that after

the dissipation occurs� the numerical scheme at later times is not so bad� Figure

� shows similar e�ects for the di�erent set of initial conditions� As typical with

the upwind scheme� there is less dissipation when �t and �x are decreased�

keeping �t

�x
� �

� � Figure � shows the usual performance of the upwind scheme if

the analytic solution is used for the initial conditions when �x and �t are the

same as in Figure �a� Comparing Figures �a and � shows that instead of a good

approximation for t close to the initial time and a bad one for t close to the end

time� as usual for the upwind scheme� the assimilation scheme produces a solution

which is on average not too far from the observations� This is what we expect as

the solution to the optimal control problem� a numerical solution with minimum

distance from the observations over the whole time interval�

The number of iterations needed is large� and increases as �t and �x decrease�

When the tolerance on jj��jj is ����� then 
� iterations are needed in the case

�t � �
�� and �x � �


�� and ��� were needed when �t � �
���� and �x � �

����

The assimilation has not resolved very well the �ne features of the small spike

in the third set of data� as Figure � shows� This indicates that the stopping

��



criterion for the assimilation is too weak� and a smaller tolerance should be used�

The Lax Wendro
 scheme

The results of the Lax Wendro� scheme with the �rst set of initial data for di�er�

ent values of �t and �x is shown in Figures 
a�
c� Again� the data assimilation

produces initial conditions which modify the undesirable e�ects of the numerical

solution at later times� Without data assimilation� the Lax Wendro� scheme with

�t
�x

� �
�
produces spurious oscillations behind a shock� as Figure 	 shows� The

spurious oscillations produced when data assimilation is included are smaller� and

now occur ahead of the shock for the initial time and behind the shock at the end

time� Comparing Figure 
c with Figure 	 indicates the di�erence between using

the optimal value of y� found by the data assimilation and using the analytic

solution� The number of iterations needed increases as �t and �x decrease� and

is similar to the number of iterations needed with the upwind scheme�

For both schemes� the results given here illustrate how the data assimilation

scheme can use observations to counter some e�ects of model error� In the upwind

scheme� the model error takes the form of dissipation� and in the Lax Wendro�

scheme the model error consists of the spurious oscilations produced behind a

shock� Both of these undesirable e�ects were modi�ed in the solution by the

choice of control variable�

��



� Conclusions and Suggestions for FurtherWork
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