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Abstract

Data assimilation is a means for combining observational data with model predictions to
produce a model state that most accurately estimates the current and future states of the true
system. The technique is commonly used in atmospheric and oceanic modelling, but in this report
we consider its application within a coastal environment. A simplified one-dimensional model







Hence, we obtain the following expression for a(z, q) = a(z)

a(z) =
nAF n

1 − ε
(h − z)−(n+1) . (2.6)

The sediment conservation equation (2.3) can now be solved using the method of characteristics
[LeVeque (1992)].

2.3 Characteristics

Consider the chain rule for taking the total derivative of z with respect to t,
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Using equation (2.3) to substitute for ∂z
∂t we obtain
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Note that
dz

dt
= 0 along the curves given by

dx

dt
= a(z). (2.7)

These curves are called the characteristics of the equation, and from (2.7) we can see that z(x, t)
takes a constant value on each. We can use this property to construct a solution to (2.3).

Since z(x, t) is constant on any given characteristic so too is the slope of the characteristic a(z),
thus the characteristics are straight lines given by

x = x0 + a(z0)t. (2.8)

Here, z0 = z(x0, 0) is the value of z on the characteristic, determined by the initial data and x0 is
the point of intercept of the characteristic with the x axis (figure 2.1).

To obtain a value for the solution z(x, t) at a point x at time t we trace back along the char-
acteristic (2.8) to the initial data. The solution is given implicitly by

z(x, t) = z(x0, 0) = z(x − a(z(x, t))t, 0) for t ≥ 0. (2.9)

This concept is illustrated in figure 2.1 for an initial bathymetry given by the Gaussian exponential
function

z(x, 0) = αe−β(x−γ)2





OI seeks to minimize the analysis error variance by finding an analysis state that is as close as
possible to the true state in a root mean square (r.m.s) sense. 3D Var data assimilation can be
viewed as a different approach to solving the same problem as OI. It is based on a maximum a
posteriori estimate approach and derives the analysis by looking for a state that minimizes a cost



The operator K ∈ R
m×p is called the gain matrix [Nichols (2003)] and determines the weight given

to the observations. It is given by

K = BHT(HBHT + R)−1. (3.4)

By choosing K correctly, we can ensure that the analysis states will converge to the true states of
the system over time [Jazwinski (1970)].

This is the formal solution to the optimization problem. The OI method uses (3.4) to calculate
the matrix K explicitly and solve (3.3) directly. The idea of 3D Var is to avoid computation of the
gain matrix K and in practice the analysis is obtained iteratively through use of a suitable descent/
minimization algorithm [Bouttier and Courtier (2002), Lewis et al. (2006)].

When the observation operator h is linear the 3D Var and OI solutions are equivalent and we can
use OI to understand how variational assimilation works [Lewis et al. (2006)]. Since the dimensions
of our model are small K is relatively easy to compute. We will therefore adopt the OI method in
this work. On an operational scale OI becomes impractical and it is more efficient to apply a 3D
Var approach.

4 The model

The primary purpose of this report is to investigate and understand some of the basic principles
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2. The analysis phase in which the difference between the predicted observations given by the
new background state zb(tk+1) and the vector of measured observations y(tk+1) is used in
equation (3.3) to produce an updated analysis state za(tk+1). Observations are taken at the
start of each analysis phase; they are used only once, at the correct time, and not again.

Once the analysis phase is complete we advance to the start of the next cycle and the process is
repeated.

4.4 The error covariance matrices

Before we can implement our assimilation algorithm we need to make estimates of the background
and observation error covariance matrices B and R. We are assuming that our model is perfect, but
in practice the model equations do not describe the system behaviour completely, the background
state is not known exactly and the measured observations are imprecise. Our assimilation scheme
needs to take account of the errors that arise as a result of these inaccuracies as the precision of the
analysis is determined by the precision of the background and observations. The error covariance
matrices B and R represent our uncertainty in the background zb and observations y and their
specification has an important effect on the quality of the analysis.

The observation error covariance matrix R gives a statistical description of the errors in y.
Observation errors originate from instrumental error, errors in the forward model h and represen-
tativeness errors [Bouttier and Courtier (2002)]. Generally, it is reasonable to assume that errors
in measurements taken at different locations are uncorrelated, in which case the matrix R is diagonal.

The background error covariance matrix B = {bij} describes the estimation errors of the back-
ground state, where element bij defines the error covariance between components i and j of zb. It
is the last operator to act in (3.4) and is therefore fundamental in determining the nature of the
analysis increment. The correlations in B govern the smoothing and spreading of information from
the observations, determining how an observation at one point influences the analysis at nearby



where yj is the observation of the true bathymetry zt
j , given by (4.2), at the grid point xj . The set

of grid points xj at which observations are to be taken is determined at the start of the assimilation
process and remains fixed throughout. As our algorithm is sequential, a new set of observations is
used during each cycle. Since the observations are taken from the truth, we weight in their favour,
setting the observation and background variances to be σ2

o = 0.1 and σ2
b = 1 respectively.

We assume that the observation errors are uncorrelated and take the observation error covari-
ance matrix R to be diagonal with variance σ2

o . We consider three different ways of computing the
background error covariance matrix B:

To begin, we assume that the matrix B is diagonal with variance σ2
b , i.e.

B = σ2
b I, I ∈ R

m×m. (4.3)

However, this is a poor approximation as it ignores correlations between grid points and means that
observations have no effect on their neighbouring points.

Next, we add entries above and below the main diagonal by setting

bi−1,i = bi,i−1 =
σ2

b

2
, i = 2, . . . , m.

This gives a tri-diagonal matrix B of the form

B =
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The assimilation was run for each of the different B matrices, experimenting with various com-
binations of observations, and validating the results against the analytic solution. The effect of L

in (4.5) was also investigated, using the analysis errors εa = za − zt to try to determine its optimal
value for different observation strategies. Results are presented in the following section.

5 Results

5.1 The Matrix B









information and degradation of the analysis. In order to be able to accurately reconstruct the model
state we must ensure that sufficient weight is given to the background state.

6 Conclusions and further work

The aim of this work was to use a simple one-dimensional model of changing bathymetry to illustrate
the basic theory of data assimilation and examine some of the issues associated with its practical
implementation. We began by introducing the sediment conse
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Glossary of Symbols

A parameter for calculating the sediment transport rate

a(z, q) advection velocity/ bed celerity

F water flux

h water height

n parameter for calculating the sediment transport rate

t time

u(x, t) depth averaged current

x horizontal coordinate

z bathymetry

z0 initial bathymetry

q sediment transport rate

ε sediment porosity

α, β, γ parameters of the gaussian function

B background error covariance matrix (dimension m × m)

h observation operator (from dimension m to p)

H linearised observation operator (dimension p × m)

J (z) cost function

K gain matrix (dimension m × p)

m dimension of the state vector

p dimension of the observation vector

R observation error covariance matrix (dimension p × p)

rij distance (xi − xj) between grid points xi and xj

y vector of observations (dimension p)

zt true model state (dimension m)

23



zb background state (dimension m)

za analysis (dimension m)

σ2
b background error variance

σ2
o observation error variance

εa



Nicholls, R., Wong, P., Burkett, V., Codignotto, J., Hay, J., McLean, R., Ragoonaden, S., and
Woodroffe, C. (2007). Chapter 6: Coastal systems and low-lying areas. In Climate Change

2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change, pages 315–356. Cambridge
University Press.

Nichols, N. K. (2003). Data assimilation: Aims and basic concepts. In Swinbank, R., Shutyaev,
V., and Lahoz, W., editors, Data Assimilation for the Earth System, volume 26 of Nato Science

Series IV: Earth & Environmental Sciences, pages 9–20. Kluwer Academic.

Nicholson, J., Broker, I., Roelvink, J., Price, D., Tanguy, J., and Moreno, L. (1997). Intercomparison
of coastal area morphodynamic models. Coastal Engineering, 31:97–123.

Scott, T. R. and Mason, D. C. (2007). Data assimilation for a coastal area morphodynamic model:
Morecambe bay. Coastal Engineering, 54:91–109.

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications.

Stelling, G. (2000). A numerical method for inundation simulations. In Yoon, Y., Jun, B., Seoh,
B., and Choi, G., editors, Proc. 4th International Conference on Hydro-Science and Engineering,

Seoul, Korea.

Sutherland, J., Peet, A., and Soulsby, R. (2004). Evaluating the performance of morphological
models. Coastal Engineering, 51:917–939.

van Rijn, L. C. (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas.
Aqua Publications.

25


