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Abstract

Incremental four-dimensional variational assimilation is a method of data assim-



e–cient algorithm to be obtained. This method is currently operational in several forecast-
ing centres, for example the European Centre for Medium-range Weather Forecasting, the
Met O–ce and the Meteorological Service of Canada [25], [26], [14]. However, even with
the approximations discussed, incremental 4D-Var assimilation is a major contribution to
the computational efiort required to produce a weather forecast.

A disadvantage with incremental 4D-Var as currently implemented is that the approx-
imations in the linear model are made on the basis of practical considerations, without
necessarily taking into account whether the most important parts of the system are being
retained. In fact, usually the major simpliflcation is to run the linear model at a lower
spatial resolution or spectral truncation than the nonlinear model, where the resolution or
truncation is chosen by what can be afiorded computationally. With such a method it is
di–cult to quantify how much information is being lost through the approximation of the
model. In this paper we propose a new method for deriving an approximate linear model
for use in an incremental 4D-Var system. This method is based on the ideas of model
reduction, which has been successfully used to approximate very large dynamical systems
in the fleld of control theory [1], [8]. The advantage of our method is that it produces a
lower order version of the original linear model and observation operator, while retaining
their most important properties. Such model reduction methods have been applied to data
assimilation in the context of the Kalman fllter under certain simplifying assumptions [7].
However the method has not previously been used within incremental 4D-Var, where the
use of a tangent linear model gives a natural context for model reduction techniques. In



where the operators Hi : Rn ! Rpi map the system state to observation space. The
observation errors ηi are assumed to be unbiased, serially uncorrelated, random Gaussian
errors with known covariance matrices Ri.

For the data assimilation problem we assume that we have an a priori or background
estimate xb of the expected value of the state x0 at the initial time t0 with errors εb, so
that

x0 ¡ xb = εb: (3)

The background errors εb are assumed to be unbiased, Gaussian errors, described by
a known covariance matrix B0. These errors are assumed to be uncorrelated with the
observational errors. Then the problem of data assimilation is to flnd the maximum prior
likelihood estimate of the expected value of x0, which we refer to as the analysis xa, given
all the available information [19].

In a full nonlinear 4D-Var system this problem is solved by directly minimizing the
cost function

J [x0] =
1
2

(x0 ¡ xb)TB¡1
0 (x0 ¡ xb) +

1
2

NX

i=0

(Hi[xi] ¡ yi)TR¡1
i (Hi[xi] ¡ yi) (4)

with respect to x0, subject to the states xi satisfying the discrete nonlinear forecast model
(1). The incremental formulation of 4D-Var solves this data assimilation problem by a
sequence of minimizations of convex quadratic cost functions linearized around the present
estimate of the model state. Recently it has been shown that this procedure is equivalent
to applying an inexact Gauss-Newton method to the nonlinear cost function (4), where the
convex minimization problems are each solved approximately. If the exact Gauss-Newton
method is locally convergent, then the incremental method will also be locally convergent
to the solution of (4) provided that each successive minimization is solved to su–cient
accuracy [17].

To formulate the incremental 4D-Var algorithm we flrst write the linearization of the
nonlinear system (1) and (2) as

–xi+1 = Mi–xi; (5)
di = Hi–xi; (6)

where
di = yi ¡ Hi[xi] (7)

and Mi and Hi are the linearizations of the operators Mi and Hi; respectively, around
the state xi, and are referred to as the tangent linear operators. Then the algorithm is
given by the following steps:

† Set flrst guess x(0)
0 = xb.

† Repeat for k = 0; : : : ; K ¡ 1

{ Find linearization states x(k)
i by integrating the nonlinear model (1) forward

from initial state x(k)
0 and flnd innovations d(k)

i using (7).

{ Minimize

~J (k)[–x(k)
0 ] =

1



with respect to –x(k)
0 , subject to the states –x(k)

i satisfying the discrete tangent
linear model (5).

{ Update x(k+1)
0 = x(k)

0 + –x(k)
0 .

† Set analysis xa = x(K)
0 .

In practice this algorithm is still computationally too expensive to use in an operational
system and so a further simpliflcation is made. We introduce linear restriction operators
UT

i 2 Rr£n that restrict the model variables –xi to the space Rr with r < n, and we
deflne variables –x̂i 2 Rr such that –x̂i = UT

i –xi. We also deflne prolongation operators
Vi 2 Rr£n that map from the lower dimensional space to the original space. We can then
write a restricted version of the linear system (5), (6) in Rr of the form

–x̂i+1 = M̂i–x̂i; (9)
d̂i = Ĥi–x̂i; (10)

with

M̂i = UT
i MiVi; (11)

Ĥi = HiVi: (12)

The simplifled incremental 4D-Var algorithm is then deflned such that the inner minimiza-
tion is performed in the lower dimensional space. We obtain the following algorithm:

† Set flrst guess x(0)
0 = xb.

† Repeat for k = 0; : : : ; K ¡ 1:

{ Find linearization states x(k)
i by integrating the nonlinear model (1) forward

from initial state x(k)
0 and flnd innovations d(k)

i using (7).

{ Minimize

Ĵ (k)[–x̂(k)
0 ] =

1
2

(–x̂(k)
00



3 Model reduction using balanced truncation

In this section we give a short introduction to model reduction as it is used for linear
dynamical systems. The aim is to flnd a low order model that accurately approximates the
output response of the system to the input data over a full frequency range. The response
of the system is represented by its Hankel matrix [1]. We focus here on the balanced
truncation method [21] for flnding the reduced order model. This method ensures that
the flrst singular values of the Hankel matrix of the reduced system exactly match the
corresponding singular values of the full system Hankel matrix. A global error bound on
the expected error between the frequency responses of the full and reduced systems, based
on the neglected Hankel singular values, then exists [1]. The quality of the approximation
found by the balanced truncation method is usually very good and the method is therefore
appropriate for investigating the potential beneflt from using model reduction techniques
in data assimilation. Here we describe the method for time-invariant systems, but the
method can be extended directly to linear time-varying systems [3].

We consider the discrete-time linear model

z0 = 0;

zi+1 = Mzi + GB
1
2
0 wi;

di = Hzi

(14)

over the time window [t0; tN ], where zi 2 Rn and di 2 Rp are the state and output
(observation) vectors at time ti, respectively, and wi 2 Rn are uncorrelated white noise
inputs, normally distributed with mean zero and covariance matrix equal the identity.

The matrix B0 2 Rn£n represents the covariance of the random inputs ui = B
1
2
0 wi,



bounded in terms of the Hankel singular values of the full system [1] and the approximate
solution is expected to be close to optimal.

In the balanced truncation method the model is directly reduced by removing or ‘trun-
cating,’ those states that are least in°uenced by the inputs and those that have least efiect
on the outputs, that is, those states which are least correlated through the inputs and
which are least correlated through the outputs. In general these states do not coincide
and it is necessary to transform the co-ordinate variables so that the states to be eliminated
are the same in both cases. This is achieved by a ‘balancing’ transformation.

The balancing transform simultaneously diagonalizes the state covariance matrices P
and Q associated with the inputs and outputs, respectively. These symmetric positive-
deflnite matrices satisfy the two Stein equations

P = MPMT + GB0GT ; (17)
Q = MT QM + HT H: (18)

The non-singular balancing transformation “ 2 Rn£n is such that “¡1P“¡T = “T Q“ =
§ is diagonal and “¡1PQ“ = §2: We remark that the transformation “ is thus given
by the matrix of eigenvectors of PQ and the diagonal of § contains the Hankel singular
values of the full system.

To obtain the reduced order model, the system (14) is flrst transformed into balanced
form and then the last n ¡ r states of the balanced system, corresponding to the smallest
singular values of the transformed covariance matrices, are eliminated. The reduced system
state ẑ is then deflned to be ẑ = UT z and the reduced order system matrices are given by

M̂ = UT MV; Ĝ = UT G; Ĥ = HV; (19)

where

UT = [Ir; 0] “¡1; V = “
•

Ir

0

‚
: (20)

The restriction and prolongation operators UT and V satisfy UT V = Ir and VUT is a
projection operator. E–cient and accurate numerical techniques are available for flnding
the restriction and prolongation operators in both time-invariant and time-varying systems
of moderately large size [10],[15],[3]. For very large systems Krylov subspace methods [8]
or approximate balanced truncation (rational interpolation) methods are available [9].

We now explain how these ideas can be used to design restriction and prolongation
operators for application in incremental 4D-Var.

4 Combining model reduction with incremental 4D-Var

In order to apply a model reduction method to the inner loop of incremental 4D-Var we
have to identify an appropriate dynamical system of the form (14). From Section 2 we
see that the inner loop is solved subject to the linear dynamical system given by (5) and
(6). The initial perturbation state –x0 is assumed to be normally distributed white noise
with mean zero and covariance B0. Thus there exists a normally distributed white noise

ω 2 Rn with mean zero and covariance identity such that –x0 = B
1
2
0 ω. The dynamical

system (5){(6) that constrains incremental 4D-Var may therefore be written equivalently
in the form

–x¡1 = 0;

–xi+1 = Mi–xi + B
1
2
0 wi;

di = Hi–xi

(21)

7



with white noise inputs fwig satisfying

wi :=
‰

ω » N (0; In); for i = ¡1
0; for i ‚ 0:

(22)

The balanced truncation method may then be applied to the system (21) to obtain re-
striction and prolongation matrices
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Figure 1: Solution to least squares problem lifted back to full state space. The solid line
is the true solution, the dashed line is from the reduced order approach and the dotted
line is from the low resolution approach.

We deflne the true solution of the linear least squares problem to be the difierence
between the linearization state and this state shifted by 0:5 m. The innovation vectors
d are then the observations for this problem, which are generated from the true solution.
Where imperfect observations are used, then Gaussian random noise is added to the true
solution, with standard deviations of 0:1 ms¡1 for the u fleld and 0:2 m2s¡2 for the `
fleld, corresponding to approximately 10% of the mean fleld values. The observation error
covariance matrix R is then deflned as a diagonal matrix of these variances. In order to
generate a sensible background error covariance matrix we use the approach of [13] and
deflne the inverse covariance matrix using a second-derivative smoothing operator with a
length scale of 0:2 m.

5.2 Comparison of low order and low resolution inner loop

We begin the numerical experiments with a comparison of the low resolution and reduced
order approaches using perfect observations. For the low resolution approach the lower
spatial resolution is taken to be half that of the full resolution. Hence the low resolution
grid has a total of 100 values of u and of `, making the low order system of order 200. In
this case the restriction operator is deflned by mapping every second grid point of the high
resolution grid onto the low resolution grid, while the prolongation operator is deflned by
a linear interpolation. We compare the solution to the linear least squares problem with
that found using the reduced order approach, where the reduced order system is also taken
to be of size 200, so that the low resolution and reduced order systems are of the same
size. For the experiments of this section observations are taken to be at every second grid
point of the full resolution grid, corresponding to every grid point on the low resolution
grid.

In Figure 1 we plot the true solution of the least squares problem and the solutions
from the low resolution and low order approaches, lifted back into the full order space of
200 grid points. In this plot and all similar plots the flrst 200 points of the solution vector
correspond to values of the perturbation –u and the last 200 points correspond to values
of –`. The error in these solutions, calculated as the difierence from the true solution, is
plotted in Figure 2. We see that for this problem the solution using the reduced order
method is more accurate by approximately two orders of magnitude than the standard
method of using a low resolution system of the same size.

Rather than considering how much more accurate the low order approach is for a
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Figure 2: Error in solutions to least squares problem lifted back to full state space for
reduced order approach (dashed line) and low resolution approach (dotted line).

0 50 100 150

Figure 3: Error in solutions to least squares problem lifted back to full state space for
reduced order approach of size 80 (dashed line) and low resolution approach of size 200
(dotted line).

given size of reduced system, we may consider the question of how small we can make
the reduced order system and still match the accuracy of the low resolution approach. To
test this the least squares problem was solved with low order models of various sizes. In
Table 1 the error norms of the solutions from these tests are summarized. We flnd that
even with a reduced order system of size 80 the error norm of the solution is less than
that using the low resolution model of size 200. In Figure 3 we plot the error fleld in the
lifted solution from these two experiments. We see that the errors obtained using the low
resolution system and the much smaller low order system are of comparable magnitude
in all components of the solution vector. Thus for this experiment, using the low order
approach allows the use of a much smaller system than the low resolution approach to
obtain a given level of accuracy.

In order to test whether the same conclusions hold when the observations contain
errors, we add random Gaussian noise to the observations, as described in Section 5.1. We
compare the solution of the simplifled linear least squares problem using the low resolution
approach with that obtained using the low order model of the same size. The errors,
calculated as the difierence from the exact solution of the problem with these observations,
are shown in Figure 4. We see that, as for the case with perfect observations, the model
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Figure 4: Error in solutions to least squares problem with imperfect observations lifted
back to full state space for reduced order approach (dashed line) and low resolution ap-
proach (dotted line).

reduction approach gives a more accurate answer by two orders of magnitude. Again we
flnd that if the reduced order model is reduced to size 80, the solution is still as accurate
as with the low resolution model of size 200.

In order to understand why the low order approach shows such a beneflt when com-
pared with the low resolution approach, we examine the eigenstructure of the low order
and low resolution model matrices of size 200. In Figure 5 we compare the eigenvalues of
these two matrices with the eigenvalues of the full unapproximated model matrix. We see
that the structure of the eigenvalues is approximated much more accurately by the low
order matrix than by the low resolution matrix. Hence it appears that the generation of
the simplifled system by model reduction acts in such a way as to preserve characteristics
of the eigenstructure of the original matrix, which is not the case in the low resolution ap-
proach. This preservation of eigenstructure allows a solution closer to the original problem
to be obtained.

reduced order low resolution
l=200 0.0027 0.2110
l=150 0.0134 |
l=100 0.0623 |
l=90 0.1015 |
l=80 0.1726 |
l=70 0.2327 |

Table 1: Comparison of error norms for the low resolution and the reduced order method
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Figure 5: Eigenvalues of full matrix (top left), reduced order matrix (top right) and low
resolution matrix (bottom).
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Figure 6: As Figure 2, but without incorporating the covariance matrix into the model
reduction procedure.

matrix in the Stein equation, i.e. instead of (17), (18) we solve

P = MPMT + GGT ;

Q = MT QM + HT H:

The error covariance matrix B0 in the least squares problem remains the same as in
Section 5.2; the modiflcation is only in the calculation of the reduced order system.

In Figure 6 we compare the errors in the flnal solution from this experiment with
the errors from the solution using the low resolution approach. We see that now the
errors using the two approaches are of the same magnitude. A comparison with Figure 2
shows that not incorporating the covariance B0 in the balanced truncation procedure has
increased the error in the solution from the reduced order method by approximately two
orders of magnitude. Thus the numerical results support the theory that it is important
to incorporate the covariance information in the reduction process.

5.4 Difierent observation positions
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Figure 7: Error in solutions to least squares problem lifted back to full state space with ob-
servations of –u only, for reduced order approach (dashed line) and low resolution approach
(dotted line).

6 Conclusions

When incremental 4D-Var data assimilation is applied to large-scale systems a simpliflca-
tion of the inner loop problem is usually necessary. In this work we have proposed a new
method of simplifying this problem using model reduction ideas from control theory. This
approach is designed to approximate the full dynamical system while retaining its essential
properties. We have shown how this method naturally flts into the theory of incremental
4D-Var with an alternative deflnition of the restriction and prolongation operators. In the
numerical experiments performed we have demonstrated that the reduced order approach
to incremental 4D-Var is more accurate than the low resolution approach for the same
size of reduced system. This conclusion has been shown to hold for perfect and noisy
observations, and for difierent observation conflgurations. However, as expected from the
theory, the accuracy depends on the correct inclusion of the covariance information in the
model reduction procedure. If care is not taken to include this, then the results may not
improve on the reduced resolution approach.

This paper has presented only a preliminary study of combining model reduction and
incremental 4D-Var, and many questions remain to be answered before the method can be
applied to an operational assimilation system. The model reduction approach of balanced
truncation used in this study is not appropriate for such large scale systems and other more
appropriate reduction methods need to be investigated. E–cient methods for including
the variation of the system in time, as well as between outer loop iterates, also need to
be studied in detail. Nevertheless the results from this initial study are encouraging and
indicate that reduced order incremental 4D-Var has the potential to give an improvement
over existing approaches.
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Figure 8: Error in solutions to least squares problem lifted back to full state space with ob-
servations of –` only, for reduced order approach (dashed line) and low resolution approach
(dotted line).
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