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Abstract

The boundary concentrated �nite element method is a variant of the hp-version of
the FEM that is particularly suited for the numerical treatment of elliptic boundary
value problems with smooth coe�cients and boundary conditions with low regularity
or non-smooth geometries. In this paper we consider the case of the discretization
of a Dirichlet problem with exact solution u ∈ H 1+



where N is the problem size. We refer to [9] for a detailed description. In the present
paper, we focus on the local error and we will investigate the behavior of the local error on
compact subsets of the domain Ω. We prove the existence of a � > 0 such that these errors
behave as O(N����), up to logarithmic terms. For simplicity of exposition we analyze
here as a model problem a Poisson problem in two dimensions. We expect that the local
error analysis of Theorem 2.1 can be adapted to a more general class of strongly elliptic
operators with analytic coefficients. The restriction to two dimensions is likewise done for
simplicity of exposition—the techniques used in this paper are likely to have extentions
to higher dimensions. The paper is organized as follows: We start with a brief repetition
of the foundations of boundary concentrated FEM. Therafter, in Section 2, we formulate
the main theorem concerning the local error behavior of boundary concentrated FEM and
in Section 3 we present some numerical examples. In Section 4, we introduce a new hp-
interpolation operator, which is an essential tool for our local analysis. The remainder of
the paper is devoted to the proof of auxiliary results that were used in the proof of our
main theorem, and we conclude the paper with our eratfutujΩ19.6371780TdΩ(w)TjΩ8.03252 0 TdΩ(e)Tjork./R43 16.9549 06Ω12.5-39694 0 -371Ω(the)1jΩ19.496870 TdΩ(The)NotnorusedjΩ13.068530 TdΩ(exp)notn





Now we are in position to make precise statements concerning the regularity of the solution
u corresponding to Problem 1.1 and to measure the blow-up of the higher order derivatives:

Lemma 1.6. Let Ω be a Lipschitz domain. Let f be analytic on Ω and assume u ∈ H 1+�(Ω)
solves (1). Then u is analytic on Ω, and there exist C;  > 0 such that

u ∈ B̃2
1��(Cu; u):

Proof. See [9, Thm. 1.4].

1.3 The geometric mesh, the linear degree vector and the FE-
space

We will restrict our considerations to -shape-regular triangulations T of Ω consisting of
affine triangles. That is, each element K ∈ T is the image FK( ˆ



De�nition 1.9. (linear degree vector) Let T be a geometric mesh with boundary mesh
size h in the sense of De�nition 1.7. A polynomial degree vector p = (pK)K2T is said to
be a linear degree vector with slope � > 0 if

1 + �c1 log
hK

h
≤ pK ≤ 1 + �c2 log

hK

h
(2)

for some c1; c2 > 0.

We furthermore associate with each edge e of the triangulation a polynomial degree

pe := min {pK | e is an edge of element K} (3)

and denote by
p(K) := (pe1; pe2; pe3; pK) (4)

the vector containing the polynomial distribution of the triangle K ∈ T with edges {ei | i =
1; 2; 3}. An important property of a linear degree vector p is:

Lemma 1.10. Let T be a geometric mesh and p a linear degree vector. Then there exists
a constant C > 0 such that

C�1pK′ ≤ pK ≤ CpK′ ∀K; K 0 with K ∩ K 0 6= ∅

Proof. See [9].



2 Local error analysis

This section is devoted to the main result of the paper, the analysis of the local error of
Problem 1.12 in the framework of the boundary concentrated finite element method. The
main theorem is:

Theorem 2.1. (local error bound) Let Ω ⊂ R
2 be a polygonal domain and Ω0 ⊂⊂ Ω be

a compact subset. Let Assumptions 1.2, 1.3 be valid. Let uh be the solution of Problem 1.12
for a geometric mesh T with boundary mesh size h and linear degree vector p with slope
�. Then there exists a � ∈ (0; �0] such that for su�ciently large slope � and all elements
K̇ ∈ T with K̇ ⊂ Ω0 we have

‖u − uh‖L2(K̇) ≤ Ch�+� ≤ CN����; (5)

|u − uh|W k,2(K̇) ≤ Cp2k
K̇

h�+� ≤ C(log N)2kN���� ; (6)

|u − uh|W k,∞(K̇) ≤ Cp2k+2

K̇
h�+� ≤ C(log N)2k+2N����: (7)

Here,



or in weak formulation
∫

Ω

∇z · ∇vdΩ =

∫

K̇

(u − uh) vdΩ ∀ v ∈ H1
0 (Ω): (8)

• Find zh ∈ Sp

0 (Ω



reference element be marked by a hat. Then, since we assume shape regularity and since
K̇ ⊂ Ω0 ⊂⊂ Ω implies hK̇ ≥ C, we have

|u − uh|W k,2(K̇) ≤ Ch1�k

K̇
|û − ûh|W k,2(K̂)

≤ Ck|û − q̂|W k,2(K̂) + Ck|q̂ − ûh|W k,2(K̂)

for arbitrary



3 Numerical examples

In this section, we present some numerical examples to confirm the theoretical results of
Theorem 2.1. In all examples we start with a coarse grid T0 of the given domain Ω, and
we create a sequence of hierarchically nested geometric meshes {Tl}l=0;1;::: with boundary
mesh sizes hl ∼ 2�lh0 by applying a suitable mesh refinement strategy (see Figure 1 for an
example). Furthermore, we define for each mesh Tl and a common slope parameter � > 0
the polynomial degree distribution via

pK;l :=

⌊
3

2
+ � ln

(
hK

hl

)⌋
∀ K ∈ Tl; hl := min{length(e) | e is an edge inTl}

and compute the finite element solution ul ∈ Sp

0 (Ω; Tl).
In order to check the statements of Theorem 2.1, we choose an arbitrary point ẋ ∈
Ω\{e | e is an edge of Tl for some l ≤ 0} and consider the sequence {K̇l}, where K̇l denotes
the triangle uniquely determined by the conditions K̇l ∈ Tl and ẋ ∈ K̇l. Since it is not
difficult to show that there always exists an integer L such that K̇m = K̇n for all n; m ≥ L,
we can use {K̇l}l=0;1;::: to compute a sequence of local errors {‖u − ul‖H1(K̇l)

}l=0;1;::: which
is well suited for pointing out the dependence of the local error on the boundary mesh size
h.

Example 3.1. We consider the L-shaped domain Ω = (−1; 1)2\([0; 1] × [−1; 0]) as shown
in Figure 1 together with the model problem

−∆u = f on Ω u = 0 on @Ω;

where the right-hand side f is chosen in such a way that the exact solution u given by

u = r
2
3 sin

(
2

3
’

)(
1 − r2 cos2 ’

) (
1 − r2 sin2 ’

)
:

According to [5, Thm. 1.4.5.3]), we have u ∈ H
5
3

�"(Ω) ∀" > 0. Furthermore, we choose
ẋ1 = (0:4; 0:3) and ẋ2 = (0:1; 0:2).

Our computations are performed with � = 1 and the results are collected in Table 1 and
plotted in Figure 2. Since we have u ∈ H

5
3

�"(Ω), we achieve a global convergence rate

of O(N� 2
3 ) measured in the energy norm. As Figure 2 shows, the local convergence rates

are about twice the rates of the global error, which confirms our theoretical result of an
increased local convergence rate. In the second example we want to verify our theoretical
results for a domain with a more complicated boundary. To that end, we consider a domain
looking like a snow flake (see Figure 3) together with the following Dirichlet problem:

Example 3.2.

−∆u = 1 on Ω; u = 0 on @Ω:

9



Figure 1: Coarse grid and refinement level 7

T able 1:Example3.1
with

e=u−u

h



Figure 2: Results corresponding to Example 3.1
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We do not know the exact solution of Example 3.2, but extrapolation leads to the results
shown in Figure 3. As in the previous example and according to Theorem 2.1, we obtain
local convergence rates that are significantly better than the rate of O(N �0:6) observed for
the global energy norm.

4 An hp-interpolation operator

In this section, we present a new variable order hp-interpolation operator. The operator is
based on Gauss-Lobatto interpolation and is a very useful tool for our local analysis.

4.1 Properties of the Gauss-Lobatto interpolation operator

In order to define our hp-interpolation operator, we start with recalling some facts about
the one-dimensional Gauss-Lobatto interpolation operator ip:

Lemma 4.1. On the interval I = (−1; 1) let ip be the Gauss-Lobatto interpolation operator.
Then for every k ≥ 1 and r ∈ [0; 1] there exists C > 0 depending solely on k and r such
that for every u ∈ Hk(I)

‖u − ipu‖Hr(I) ≤ Cp�(k�r)‖u‖Hk(I); (10)

‖ 1√
1 − x2

(u − ipu)‖L2(I) ≤ Cp�k‖u‖



the x-variable. Since ipu = (ixpU)|Γ, we get with the trace theorem and the one-dimensional
stability results (14), (12)

‖ipu‖H1/2(I) ≤ C‖ixpU‖H1(S) ≤ C
[
(1 + p0=p)‖U‖L2(S) + ‖∇U‖L2(S)

]

≤ C(1 + p0=p)‖U‖H1(S) ≤ C(1 + p0=p)‖u‖H1/2(I):

For the last bound, estimate (16), we employ (11) with k = 1 and the inverse estimate
‖u‖H1(I) ≤ p0‖u‖H1/2(I), which is valid for all polynomials u ∈ Pp′ :

‖ 1√
1 − x2

(u − ipu)‖L2(I) ≤ Cp�1‖u‖H1(I) ≤ C
p0

p
‖u‖H1/2(I):

This estimate together with (15) implies (16).

By tensorization, the one-dimensional results can be generalized to results on the square:

Lemma 4.2. Let S = (−1; 1)2. For p ∈ N denote by ixp ◦iyp : C(S) → Qp the tensor pr



Next, we define Πp(K̂) as

Πp(K̂) := {u ∈ Πpint
(K̂) | u|Γi

∈ Ppi
; i = 1; : : : ; n}: (20)

For the edges Γi of K̂, we denote by ip;Γi
the Gauss-Lobatto interpolation operator of

degree p on that edge.
Before coming to the construction of the interpolation operator, we recall the following
polynomial lifting result:

Lemma 4.3. Let K̂ be the reference square or the reference triangle. Then there exists a
bounded linear operator E : H1=2(@K̂) → H1(K̂) such that (Eu)|@ bK = u with the following

property: if u ∈ H1=2(@K̂) is a polynomial of degree p on each edge, then Eu ∈ Πp(K̂).

Proof. See, e.g., [1, 13].

Theorem 4.4. Let K̂ be the reference square or the reference triangle. Let k > 3=2. Let
pi, i = 1; : : : ; n, pint ∈ N satisfy (19) and set

p := min
i=1;:::;n

pi; p := max
i=1;:::;n

pi ≤ pint:

Then there exists a generic constant C > 0 and a linear operator I : Hk(K̂) → Pp such
that

(i) (Iu)|Γi
= ipi;Γi

u for i ∈ {1; : : : ; n};

(ii) Iu = u for all u ∈ Πp(K̂);

(iii) ‖Iu‖H1(T ) ≤ C(1 + p0=p)‖u‖H1(T ) for all u ∈ Pp′ ;

(iv) |Iu|H1(T ) ≤ C(1 + p0=p)|u|H1(T ) for all u ∈ Pp′.

Furthermorther

erator I

pu∈Iu|iTd2(;)Tjj
/R49 11.9552 Tf
4.55694    5505HCi
(K̂)

the l
of

the u| 1

Proof. See,W12.2297 41dΩ(e)TjΩ9.718.390 TdΩ(u)TjstarΩ25.41002  TdΩ(:=)Ttheconstructionof
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the function u is extended to S via the universal extension operator of [15,





5 Auxiliary Results

This sections is devoted to the proof of all the auxiliary results that were used in the proof
of Theorem 2.1.

5.1 The weight function ωβ,T

We start with studying the most important properties of the weight function !�;T intro-
duced in Definition 2.2.

Lemma 5.1. (properties of !�;T ) Let T be a geometric mesh and let !�;T be given by
De�nition 2.2. Then there exist constants C1; · · · ; C4 > 0 depending only on the shape-
regularity constant  and the constants of De�nition 1.7 such that for all K ∈ T and
arbitrary � ∈ (0; 1]

1. inf
x2K

|!�;T (x)| ≥ C2

(
h



Next, since !�;



Next, using property 3 of Lemma 5.1, we obtain:
∥∥∥∥

f
√

!�;T
∇!�;T

∥∥∥∥
2

L2(Ω)

≤ (C2�)2
∫

Ω

(
f

r

√
!�;T

)2

dΩ (33)

= (C2�)2



and by choosing qK := !�;T ;Kg := w�;T (xK)g(x) for xK ∈ K arbitrary, we arrive at

∥∥∥∥
1

√
!�;T

∇ (!�;T g − I(!�;T g))

∥∥∥∥
2

L2(Ω)

≤ C
∑

K2T

1

!�;T ;K

|(!�;T − !�;T ;K)g|2H1(K)

≤ C
∑

K2T

1

!�;T ;K

(
‖g∇!�;T ‖2

L2(K) + ‖(!�;T − !�;T ;K)∇g‖2
L2(K)

)
:

From Lemma 5.1 we deduce !�;T ;K ≤ C!�;T ;K for all K ∈ T . Thus, repeated use of
Lemma 5.1 leads to

∥∥∥∥
1

√
!�;T

∇ (!�;T g − I(!�;T g))

∥∥∥∥
2

L2(Ω)

≤ C
∑

K2T

1

!�;T ;K

(
�2
∥∥∥g!�;T

r

∥∥∥
2

L2(K)
+ h2

K|∇!�;T |2K‖∇g‖2
L2(K)

)

≤ C�2
∑

K2T

1

!�;T ;K

(∥∥∥g!�;T

r

∥∥∥
2

L2(K)
+ !2

�;T ;K‖∇g‖2
L2(K)

)

≤ C�2
∑

K2T

(∥∥∥∥g
√

!�;T

r

∥∥∥∥
2

L2(K)

+ ‖√!�;T ∇g‖2
L2(K)

)
:

Finally exploiting Lemma 5.2 gives the desired result.

5.2 Approximation of ~B2
1−δ functions from Sp in a ω-weighted

norm

In this subsection we will use the results of [9, Section 2.3.2] to deduce an approximation
result for the !-weighted H1-seminorm. We start with recalling from [9] the following
approximation result:

Lemma 5.4. Let T be a geometric mesh with boundary mesh size h as de�ned in De�nition
1.7. Let p be a linear degree vector with slope � > 0. Let u ∈ B̃2

1��(Cu; u), Cu; u > 0.
Then there exists an element Iu ∈ Sp(Ω; T ) such that

‖u − Iu‖H1(K) ≤
{

CCKh�
K for all K ∈ T abutting on @Ω

CCKh���b′

K h�b′ otherwise
;

where C, b0 > 0 depend only on the shape-regularity constant , the constants of De�ni-
tions 1.7, 1.9, and u; C depends additionally on �. The constants CK are given by

C2
K :=

1∑

n=0

1

(2u)2n(n!)2

∥∥rn+1��∇n+2u
∥∥2

L2(K)
and we have

∑

K2T

C2
K ≤ 4

3
C2

u:

20



Proof. See [9, Proposition 2.10] for the construction of such an element.

Now, by means of Lemma 5.4, we are able to prove the follo



Remark 5.6. In the proof of Lemma 5.5 we demand � > b0�1(� + �=2). Since � ∈ (0; 1]
and � ∈ (0; 1] this claim will be ful�lled if � > 3=(2b0), independent of � and �.

5.3 Properties of z and zh

In this section we want to point out the most important properties of z and zh defined in
Definition 2.3.

Lemma 5.7. (basic properties of z and zh) Let the assumptions of Theorem 2.1 be
valid and let K̇ ⊂ Ω00 ⊂⊂ Ω0 ⊂⊂ Ω. Furthermore, let z and zh be given by De�nition 2.3
Then for constants CΩ, CΩ′, z depending on Ω, Ω0, �0 we have:

1. ‖z‖H1(Ω) ≤ ‖z‖H1+δ0 (Ω) ≤ CΩ‖u − uh‖L2(K̇)

2. z ∈ H2(Ω0) and ‖z‖H2(Ω′) ≤ CΩ′‖u − uh‖L2(K̇)

3. z|ΩnΩ′ ∈ B̃2
1��0

(CΩ′‖u − uh‖L2(K̇); z)

4. ‖z − zh‖H1(Ω) ≤ c‖u − uh‖L2(K̇).

Proof.

1. This is just a rephrasing of Assumption 1.3.

2. This expresses interior regularity for elliptic problems: From [6, Thm. 9.1.26] we
obtain z ∈ H2(Ω0) together with

‖z‖H2(Ω′) ≤ CΩ′

(
‖u − uh‖L2(K̇) + ‖z‖H1(Ω)

)
:

The desired bound now follows from this estimate and the preceding one.

3. This follows from [9, Thm. A.1]: Without loose of generality, we may assume Ω00

to be a smooth domain. Since z ∈ H1+�0(Ω\Ω� C(Csatis�esn hDe�niti25.977-1.8 T�0.6 Td
(The)Tj
23.9849 Tf91 -1.92002 Td
(HR43 11.9552 Tf
5794249 0 Td
(b)T86 52 Tf
5.98909.0586 follo)Tj
2n� zh‖ 2

(Ω) [Kc
withinf ′ Td
())Tj
/R43 ∞∞.∞4.5′46 -8.35∞76 ′v())Tj
8.3949 ′ Td
( Td
main.)Tj
2k(
)�)



Lemma 5.8. Let the assumptions of Theorem 2.1 be valid. Furthermore, let z be given by
De�nition 2.3. Then there exists an element q ∈ Y p(Ω; T ) such that

‖1z − q�‖
H−

1
2 (@Ω)

≤ Csh
s‖u − uh‖L2(K̇) ∀ s ∈ (0; �0]; (35)

where q� ∈ Y p(Ω; T )� denotes the representation of q given by the Riesz representation
theorem.

Proof. Assumption 1.3 gives us �0 > 0 such that 1z ∈ H�1=2+s(@Ω) with

‖1z‖Hs− 1
2 (@Ω)

≤ C‖�K̇(u − uh)‖L2(Ω) = C‖u − uh‖L2(K̇)

for all 0 ≤ s ≤ �0. [9, Lemma 2.8] guarantees the existence of an element q ∈ Y p(Ω; T )
such that

‖1z − q�‖
H−

1
2 (@Ω)

≤ Csh
s‖1z‖Hs− 1

2 (@Ω)
:

Combining these two inequalities yields the desired bound (35).

Lemma 5.9. Let the assumptions of Theorem 2.1 be valid. Furthermore, let z be given by
De�nition 2.3 and let !�;T be given by De�nition 2.2. Then, for � su�ciently large de-
pending only on the



Exploiting z ∈ H2(Ω̃) with ‖z‖H2(Ω̃) ≤ CΩ̃‖u − uh‖L2(K̇) (see Lemma 5.7), pulling back to
the reference triangle and making use of Theorem 4.4 we can bound the second sum as
follows:

∑

K2T2

(
h

hK

)�

|z − Iz|2H1(K) ≤ C
∑

K2T2

(
h

hK

)�

|ẑ|2H2(K̂)

≤ C
∑

K2T2

(
h

hK

)�

h2
K |z|2H2(K)

≤ Ch�
∑

K2T2

|z|2H2(K) ≤ Ch�‖u − uh‖2
L2(K̇)

; (36)

with a constant C independent of h and �. In order to bound the first sum, we exploit
z|ΩnΩ̃ ∈ B̃2

1��0
(CΩ̃‖u − uh‖L2(K̇); z). Because of Lemma 5.4 and since no K ∈ T1 has a

distance less than chK̇ from K̇ we obtain

∑

K2T1

|z − Iz|2H1(K) ≤
∑

K2T1jK\@Ω6=;

C2
K;zh

2�0 +
∑

K2T1jK\@Ω =;

C2
K;zh

2(�0��b′)
K h2�b′ :

That is, for � sufficiently large, we obtain

∑

K2T1

|z − Iz|2H1(K) ≤ h2�0C
∑

K2T1

C2
K;z ≤ h2�0C‖u − uh‖2

L2(K̇)
: (37)
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Now, Lemma 5.2 garantees the existence of � 0 > 0 and C 0
�′ > 0 such that

∣∣∣∣∣∣

∫

Ω

e∇e · ∇wdΩ

∣∣∣∣∣∣
≤ C�

∫

Ω

∣∣∣√!�;T
e

r

∣∣∣
∣∣√!�;T ∇e

∣∣ dΩ

≤ C�
∥∥∥√!�;T

e

r

∥∥∥
L2(Ω)

∥∥√!�;T ∇e
∥∥

L2(Ω)

≤ CC 0
�′�
∥∥√!�;T ∇e

∥∥2

L2(Ω)

for all � ∈ (0; � 0]. Since C�′ is a monotone increasing function of � 0, we additionally
claim CC 0

�′



that is, for � 0 sufficiently small we have

∥∥√!�;T ∇e
∥∥2

L2(Ω)
≤ C�′

∥∥√!�;T ∇e
∥∥

L2(Ω)

∥∥√!�;T ∇(z − Iz)
∥∥

L2(Ω)
;

for all � ∈ (0; � 0] and finally, Lemma 5.9 yields (38).

6 Outlook

In Theorem 2.1 we proved the existence of some � > 0 such that the local error estimates
(5), (6), and (7) hold. Since all of our numerical experiments achieve � = � we assume that
it is actually possible to prove an improved version of Theorem 2.1, where � > 0 is replaced
by � = �. Numerical evidence such as Example 6.1 below indicates that Theorem 2.1 is
not necessarily restricted to Dirichlet problems but is also true for other types of boundary
conditions such as Neumann or mixed boundary conditions.
We want to mention that the doubling of the convergence rate can be obtained using the
“standard” duality approach if a slightly different mesh is considered as proposed in [7]
(see also [8]). There, the mesh size is defined according to hK ∼ min{

√
h; h+dist(K; @Ω)}

and the polynomial degree p is defined as in Definition 1.9. The key thing to note is that
in the interior of the computational domain a quasi-uniform mesh with mesh size O(

√
h)

and fixed polynomial degree is employed. Thus, the standard duality arguments can be
used to recover a local L2-convergence rate of O(h1=2+�) for u ∈ H1+�(Ω). It should be
noted that the above choice of meshes and polynomial degree distribution also lead to a
problem size N = O(h�1).

Example 6.1. (mixed boundary conditions) We consider the L-shaped domain as
shown in Figure 1 together with the model problem

−∆u = f on Ω = (−1; 1)2\([0; 1] × [−1; 0])

1u = 0 on @ΓN = ({−1} × [−1; 1]) ∪ ([−1; 1] × {1})
u = 0 on @ΓD = @Ω\ΓN ;

where the right-hand side f is chosen in such a way that the exact solution u is given by

u = r
2
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’
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Table 2: Example 6.1 with e = u − uh

x1 = (0:4; 0:3) x2 = (0:1; 0:2)
Level h pmax ‖e‖L2(K̇) ‖e‖H1(K̇) ‖e‖L2(K̇) ‖e‖H1(K̇)

1 5.000e-01 1 3.0616e-02 2.1547e-01 4.4508e-02 1.7582e-01
2 2.500e-01 2 3.9843e-03 3.4705e-02 9.3600e-03 8.2524e-02
3 1.250e-01 2 9.3002e-04 4.0317e-03 2.0784e-03 2.0144e-02
4 6.250e-02 3 3.4768e-04 2.8333e-03 5.8271e-04 3.4600e-03
5 3.125e-02 4 1.0915e-04 4.3509e-04 2.0533e-04 1.4255e-03
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