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Abstract

The boundary concentrated nite element method is a variant of the hp-version of
the FEM that is particularly suited for the numerical treatment of elliptic boundary
value problems with smooth coe cients and boundary conditions with low regularity
or non-smooth geometries. In this paper we consider the case of the discretization
of a Dirichlet problem with exact solution u € H!*



where N is the problem size. We refer to [9] for a detailed description. In the present
paper, we focus on the local erro ’and we will investigate the behavior of the local error on
compact subsets of the domain ®7” We prove the existence of a > 0 such that these errors
behave as O(N ), up to logarithmic terms. For simplicity of exposition we analyze
here as a model problem a Poisson problem in two dimensions. We expect that the local
error analysis of Theorem 2.1 can be adapted to a more general class of strongly elliptic
operators with analytic coefficients. The restriction to two dimensions is likewise done for
simplicity of exposition—the techniques used in this paper are likely to have extentions
to higher dimensions. The paper is organized as follows: We start with a brief repetition
of the foundations of boundary concentrated FEM. Therafter, in Section 2, we formulate
the main theorem concerning the local error behavior of boundary concentrated FEM and
in Section 3 we present some numerical examples. In Section 4, we introduce a new hp-
interpolation operator, which is an essential tool for our local analysis The remainder of
the paper is devoted to the proof of auxiliary results that w used in th oof of
main theorem, and we conclude the paper with our erauﬁlﬂdg @5&‘3&&3252 0 Tdﬂ{






Now we are in position to make precise statements concerning the regularity of the solution
u corresponding to Problem 1.1 and to measure the blow-up of the higher order derivatives:

Lemma 1.6. Let Q'%e a Lipschitz dymain. Let f be analytic on i’and assumeu H'f (Q!
solves (1). Then u is analytic on ®7 and there exist C; > 0 such that

u ki (Cu u):
Proof. See [9, Thm. 1.4]. O
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We will restrict our considerations to -shape-regular triangulations 7 of Q"consisting of
affine triangles. That is, each element K 7 is the image Fy (



De nition 1.9. (linear degree vector) Let 7 be a geometric mesh with boundary mesh
size h in the sense of De nition 1.7. A polynomial degree vector p = (pk )kt IS said to
be a linear degree vector with slope > 0 if

h h
1+ Cﬂogﬁnggl—i— Cglog?K (2)
for some ¢y; ¢y > 0.
We furthermore associate with each edge e of the triangulation a polynomial degree

Pe := min {pPk | e is an edge of element K} (3)

and denote by

P(K) := (Pe1; Pe2; Pes; Px) (4)
the vector containing the polynomial distribution of the triangle K 7" with edges {e;j | i =
1;2;3}. An important property of a linear degree vector p is:

Lemma 1.10. Let 7 be a geometric mesh and p a linear degree vector. Then there exists
a constant C > 0 such that

C 'prr < px < Cp K;K' with K n K7 =
Proof. See [9].



2 Local error analysis

This section is devoted to the main result of the paper, the analysis of the local error of
Problem 1.12 in the framework of the boundary concentrated finite element method. The
main theorem is:

Theorem 2.1. (local error bound) Let Q’ R? be a polygonal domain and Qf’ Q%e
a compact subset. Let Assumptions 1.2, 1.3 be valid. Let uy, be the solution of Problem 1.12
for a geometric mesh 7 with boundary mesh size h and linear degree vector p with slope

. Then there existg a (0; o] such that for su ciently large slope and all elements
K 7 with K ®we have

U - Uplwreg) < Cpgh* <C(logN)*N (6)
U —Unlyreoy < CPE?h T <C(logN)™ N (7)

Here,



or in weak formulation

Q
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referen elemﬁnt be marked by a hat. Then, since we assume shape regularity and since
K o ®"mplies hy > C, we have

lu - Uh'Wk,Q(K) < Chi( km - uh’Wk,z(K)
< Cla - Q’sz“{) + Ck!q - ah'WkQ(K)

for arbitrary



Numerical examples

In this section, we present some numerical examples to confirm the theoretical resuys of
Theorem 2.1. In all examples we start with a coarse grid 7Ty of the given domain ®7 and
mesh sizes hy ~ 2 'hy by applying a suitable mesh refinement strategy (see Figure 1 for an
example). Furthermore, we define for each mesh 7, and a common slope parameter >0
the polynomial degree tstribution via

Pl = {; + In :—K>J K 7;; hy:=min{length(e) | e is an edge in7}

!
and compute the finite element solution u Sp(Q’T ).
Ingorder to check the statements of Theorem 2.1, we choose an arbitrary point X
@7 {e | e is an edge of 7 for some | < 0} and Cons1der the sequence {K}, where K| denotes
the triangle uniquely determined by the conditions K; 7y and X K| Since it is not
difficult to show that there always exists an integer L such that Ky, = Ky, for alln;m > L,
we can use {K|}| o:1:- to compute a sequence of local errors {|lu - |l 1(Kl)}|:0,1---- which

........

is well suited for pointing out the dependence of the local error on the boundary mesh size

h.

Example 3.1. We consider the L-shaped domain Q’: (-1;1)2\([0;1] x [~1;0]) as shown
in Figure 1 together with the model problem

~Au="F onQ’ u=20 on@Q?

where the right-hand side T is tosen in such a way that the exact solution u given by
U=rssin g’ (1~r200s2 ’) (1~r2sin2 ’)'
3 :

According to [5, Thm. 1.4.5.3]), we have u H3 "(Qy " > (0. Furthermore, we choose
X; = (0:4;0:3) and X, = (0:1; 0:2).

Our computations are performed with = 1 and ghe results are collected in Table 1 and
plotted in Figure 2. Since we have u H3 (Q% we achieve a global convergence rate
of O(N %) measured in the energy norm. As Figure 2 shows, the local convergence rates
are about twice the rates of the global error, which confirms our theoretical result of an
increased local convergence rate.  In the second example we want to verify our theoretical
results for a domain with a more complicated boundary. To that end, we consider a domain
looking like a snow flake (see Figure 3) together with the following Dirichlet problem:

Example 3.2.
—Au =1 on%,’ u=20 on@QZ'
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Figure 2: Results corresponding to Example 3.1
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We do not know the exact solution of Example 3.2, but extrapolation leads to the results
shown in Figure 3. As in the previous example and according to Theorem 2.1, we obtain
local convergence rates that are significantly better than the rate of O(N %) observed for
the global energy norm.

An hp,interpolation operator

In this section, we present a new variable order hp-interpolation operator. The operator is
based on Gauss-Lobatto interpolation and is a very useful tool for our local analysis.

4.1 Properties of the Ga bes Lo a tto interpoa tion opem tor

\

In order to define our hp-interpolation operator, we start with recalling some facts about
the one-dimensional Gauss-Lobatto interpolation operator ip:

Lemma 4.1. On the interval | = ( -1; 1) let i, be the Gauss-Lobatto interpolation operator.
Then for every k > 1 and r  [0; 1] there exists C > 0 depending solely on k and r such
that for every u  HX(I)

lu —ipulluray < Cp * Pfuflq); (10)
1 .
”m(u —ipW[leay < Cp “Jul




the X-variable. Since i,u = (ifU)Ir, we get with the trace theorem and the one-dimensional
stability results (14), (12)

XU lhi(sy < C [(1+ p=p)[IU ]l L2(s) + VU [l2(s)]
(1+p"=p) U lr(s) < C(1+ p"=p)|Iullreqyy:

lipUl a2y <
<

OO0

For the last bound, estimate (16), we employ (11) with k = 1 and the inverse estimate
Iullray < P'Mullyi/2qry, which is valid for all polynomials u "z

o’
p

(U — ipu>”|_2(|) < Cp 1|!U|’Hl(|) <C “U”Hl/2(|)2

[——
V1 -x2
This estimate together with (15) implies (16). O
By tensorization, the one-dimensional results can be generalized to results on the square:

Lemma 4.2. Let S = (-1;1)%. Forp N denote by iXei} : C(S) —Q the tensor pr



Next, we define %2) as

oK) = {u  Yem(K) Ul 7pi;i:1;:::;n}: (20)

For the edges I'j of IZ, we denote by I, the Gauss-Lobatto interpolation operator of
degree p on that edge.

Before coming to the construction of the interpolation operator, we recall the following
polynomial lifting result:

Lemma 4.3. Let K be the reference square or the reference triangle. Then there exists a
bounded linear operator E : H'**(@K) — H'(K) such that (Eu)l,z = u with the following

property: if u H1:2(@}2) is a polynomial of degree p on each edge, then Eu 1,,(-!2).
Proof. See, e.g., [1, 13]. O

Theorem 4.4. Let K be the reference square or the reference triangle. Let k > 3=2. Let
Pi, i = 1;:::;n, pine N satisfy (19) and set

..........

Then there exists a generic constant C > 0 and a linear operator | : H"(R) oo such
that

@ (Mw)lp, =ipp,ufori {1;:::;n};

(i) lu=uforallu 1K)
(i) ['Mullprry < C(1+p'=p)|lullys(ry for all u e
(iv) Mulyry < C(1+ p'=p)/ulp(r) for all u -

Furthermorther



the function u is extended to S via the universal extension operator of [15,






Auxiliary Results

This sections is devoted to the proof of all the auxiliary results that were used in the proof
of Theorem 2.1.

<1 —Le' «\'eight flnction Wa.T

Ve start with studying the most important properties of the weight function ! .+ intro-
luced in Definition 2.2.

Llemma 5.1. (properties of I .;) Let 7 be a geometric mesh and let ! .1 be given by
De nition 2.2. Then there exist constants C;; ;C, > 0 depending only on the shape-
egularity constant and the constants of De nition 1.7 such that for all K 7 and
1rbitrary (0; 1]




Next, since !



Next, using property 3 of Lemma 5.1, we obtain: (

Lf
|
|




and by choosing k := ! 1.0 :=W .1 (Xk)g(X) for Xx K arbitrary, we arrive at
‘F 1 2
| V(T rg-1(!r0)
VAN L2
1
< C (s -1 ;T;K)g'lal(K)
k2t = TK
< C Z )QV! :T|!2|_2(K)+ |[(! I :T;K)v9|’2|_2(|<)
K2t = TK 7

From Lemma 5.1 we deduce T 7.« < C1 4 for all K 7. Thus, repeated use of
Lemma 5.1 leads to

! l
1 l
=V (79 - 1(1 g9))
" VEaT L2
< CZ ! 2| gl—T‘; i +hZ IV 1% Vgl
K 11k or ek KT TK LK)
1 LA
< c? PR e A
< ;L e 97 o) ey g||_2(|<
Ll
< C 22 9 r, | + /T Vel
2
K2T L2(K)
Finally exploiting Lemma 5.2 gives the desired result. O
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In this subsection we will use the results of [9, Section 2.3.2] to deduce an approximation
result for the Y-weighted H!-seminorm. We start with recalling from [9] the following
approximation result:

Lemma 5.4. Let 7 be a geometric mesh with boundary mesh size h as de ned in De nition
1.7. Let p be a linear degree vector WIﬂ}S|O > (0. Letu B2 (Cy; u), Cu; uw>0.
Then there exists an element lu such that

lu - 1uf < CCkhy for all K 7 abutting on @Qf’_
HI(K) = | CCkhyx "h Y otherwise ’
where C, b’ > 0 depend only on the shape-regularity constant , the constants of De ni-
tions 1.7, 1.9, and ; C depends additionally on . The constants Ck are given by

1
1 ' | 2 4
2 = n+1 n-+2 9 9.
CK = Z W Ir \Y U|l L2(K) and we have Z CK < gCU
n=0 K2T

20



Proof. See [9, Proposition 2.10] for the construction of such an element.

Now, by means of Lemma 5.4, we are able to prove the follo



Remark 5.6. In the proof of Lemma 5.5 we demand >1b' !( + =2). Since (0;1]
and (0; 1] this claim will be ful lled if > 3=(2b’), independent of and

0

3 Properties of zand 2z,

In this section we want to point out the most important properties of z and zy defined in
Definition 2.3.

Lemma 5.7. '(basiﬁ propsrties 9f z and zy) Let the assumptions of Theorem 2.1 be
valid and let K @ L) ®7 Furthermoge, let z and zy, be given by De nition 2.3
Then for constants Cg, Cqo, , depending on ®7 ®7 , we have:

[EEN

Nzl mi@) < lzlhis0 @) < Calu = Unll 2k,

N

. Z Hz(qg and UZ|[H2(Q/) < CQ’”U - uh“L?(K)

3. Z’QnQ/ E% O(CQ’“U ‘uh“L?(K); Z)

SN

Nz - znlhie) <cflu - unfl k).
Proof.
1. This is just a rephrasing of Assumption 1.3.

2. This expresses ingerior regularity for elliptic problems: From [6, Thm. 9.1.26] we
obtain z  H?(®%) together with

“Z”Hz(ﬂ’) < Cq )\U — Uh“LQ(K) + ”Z|’H1(Q)
The desired bound now follows from this estimate and the preceding one.

3. This follows from [9, Thm. A.1]: Without 1 ss of generality, we may assume Qfa
to be a smooth domain. Since z ~H!' o(@x®” C(



Lemma 5.8. Let the assumptions of Theorem 2. 1 be V?hd Furthermore, let z be given by
De nition 2.3. Then there exists an element q such that

iz -q -, o) = Csh*lu —unl 2y s (0 of; (35)

where ¢ YP(QZ'T) denotes the representation of q given by the Riesz representation
theorem.

Proof. Assumption 1.3 gives us o > 0 such that ;z H 1:”3(@”’ with
az] .y o S Cl k(u -up)|l2@ =Cllu - uhHLQ(K)

for all 0 <s < (. [9, Lemma 2.8] guarantees the existence of an element q Y p(%,”]' )
such that

Il 1z —q ”H*%(@Q < Csh®|l 1z|lef_ 60’
Combining these two inequalities yields the desired bound (35). U

Lemma 5.9. Let the assumptions of Theorem 2.1 be valid. Furthermore, let z be given by
De nition 2.3 and let ! 1 be given by De nition 2.2. Then, for su ciently large de-
pending only on the



Exploiting z HQ(Q’y with [1z[l42(g) < Cqllu - Un[ 2k, (see Lemma 5.7), pulling back to
the reference triangle and making use of Theorem 4.4 we can bound the second sum as

follows: ( (
h h

: 2 : 512
) h_) Z N2 < CZ(hK) k)

K

K2T, K2T
“h
<cy h_) 2 12,
k2T, K
< Ch ) 1zRepq <Ch [lu - un[Foes  (36)
K2T,

with a constant C independent of h and . In order to bound the first sum, we exploit
Zlone k7 ,(Colu —unl2; 2). Because of Lemma 5.4 and since no K 7; has a

distance less than chy from K we obtain
b’ /
Z lz - Iz!ﬁﬂ(K) < Z Cg.,h*°+ Z cZ,hito Yh2 Y
K2T; K2T1jK\@ON6: ; K2T1jK\@Q =;

That is, for  sufficiently large, we obtain

2 .
Yz -1zl <h?°C Y CR, <h?°Cllu - un|ff, (37)

K2T; K2T;

Combining (36) and (37) gives us the TjQ’R34 7.97011 Tfﬂy.42812 0 TdQ{Hi)T?TjQ"RQthe.giVV



Now, Lemma 5.2 garantees the existence of "> 0 and C’, > 0 such that
r
r

|

' |

| / eve vwie? < C / TS T ave aof
| | r

[

[

[
[
[
[

Q Q
el ! l
T 1 T
< C ‘ VT L2(@) VA 'Tvel' L2(Q)
0 [ — | 2
g CC ’ | \/- T Vd' L2(Q)
for all (0; . Since C  is a monotone increasing function of °, we additionally

claim CC?,



that is, for ! sufficiently small we have

TV Ly < C DT 7Vl L [V TrvE - 12)

L2(Q L2(Q) *

for all (0; Y and finally, Lemma 5.9 yields (38).

-€ Outlook

In Theorem 2.1 we proved the existence of some > 0 such that the local error estimates

(5), (6), and (7) hold. Since all of our numerical experiments achieve = we assume that
it is actually possible to prove an improved version of Theorem 2.1, where > 0 is replaced
by = . Numerical evidence such as Example 6.1 below indicates that Theorem 2.1 is

not necessarily restricted to Dirichlet problems but is also true for other types of boundary
conditions such as Neumann or mixed boundary conditions.

We want to mention that the doubling of the convergence rate can be obtained using the
“standard” duality approach if a slightly different mesh is considered as proposed in [{]
(see also [8]). There, the mesh size is defined according to hx ~ min{+v/h; h + dist(K; @®7}
and the polynomial degree p is defined as in Definition 1.9. The key thing to note is that
in the interior of the computational domain a quasi-uniform mesh with mesh size O(v/h)
and fixed polynomial degree is employed. Thus, the standard duality arggiments can be
used to recover a local Lo-convergence rate of O(h'** ) for u  H!T (®%. Tt should be

noted that the above choice of meshes and polynomial degree distribution also lead to a
problem size N = O(h 1).

Example 6.1. (mixed boundary conditions) We consider the L-shaped domain as
shown in Figure 1 together with the model problem

~-Au="f on Q’: (-1;1)*\([0; 1] x [-1;0])
Wu=0 on @Iy = ({1} x[-1;1]) ([-1;1] x {1})
u=0 on @I'p=0®Iy;

where the right-hat side T is chosen in such a way that the exact solution u is given by

2 . N2, . ]
u=risin o ) (1 —r?cos®”) (14 rcosTf, 2.689eezAeaddat ().)Tj /R72552 TF 10TF 2.63999x9 -1.



Table 2: Example 6.1 with e =u — up

X1 = (0:4;0:3) X2 = (0:1;0:2)
Level h | Pmax el 2k el el 2k el
1| 5.000e-01 1 3.0616e-02 | 2.1547e-01 | 4.4508e-02 | 1.7582e-01
2 ] 2.500e-01 2 3.9843e-03 | 3.4705e-02 | 9.3600e-03 | 8.2524e-02
3 | 1.250e-01 2 9.3002e-04 | 4.0317e-03 | 2.0784e-03 | 2.0144e-02
416.250e-02 | 3 3.4768e-04 | 2.8333e-03 | 5.8271e-04 | 3.4600e-03
5| 3.125e-02 | 4 1.0915e-04 | 4.3509e-04 | 2.0533e-04 | 1.4255e-03
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