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The Bi-CGSTAB nonsymmetric linear solver has the attractive conjugate gradient-like
properties of efficiency, low storage and no external parameters. However, unlike the
conjugate gradient method, it has no minimisation property.

This report is concerned with performance of Bi-CGSTAB on the linear systems
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This report is concerned with the performance of the Bi-CGSTAB nonsymmetric solver
on the linear systems which arise during one particular numerical solution method for
advection-diffusion problems.

Many discretisation techniques for problems involving advection give rise to large,
sparse, symmetric, positive definite matrix systems. These are ideally suited to solution
by the conjugate gradient (CG) method which has the advantages that,

1. the only reference to the matrix in the system is a matrix-vector product,
2. the iterates are computed efficiently due to a three-term recurrence,
3. a bound on the error exists which guarantees monotonic convergence and,

4. unlike many other iterative methods (e.g. Chebychev acceleration [8]), no external
parameters are required.

Many of the discretisation methods for advection-diffusion problems that lead to
symmetric systems treat the advection explicitly, giving rise to either a stability restric-
tion or decreased temporal accuracy (see e.g. Leismann  Frind [13]). If the advection is
treated implicitly, there is no formal stability restriction and good temporal accuracy can
be obtained but, for a standard Bubnov-Galerkin finite element spatial discretisation,
the coefficient matrix in the linear system is nonsymmetric, i.e.

= (=) where IR"*" is invertible and R"” (1)

Due to the nonsymmetry, CG cannot be used to solve (1). But, since most matrices
arising from standard spatial discretisation techniques are large and sparse, it is desirable
to use a linear solver with properties 1 and 2. This precludes the use of direct methods
based on Gaussian elimination except for cases where there is some special structure
present. Ideally, the solver should also possess properties 3 and 4. There are many
nonsymmetric solvers in the literature but, as yet, none satisfy all of these requirements.

CG may be used to solve (1) if the system is pre-multiplied by T to form the normal

equations,
T T

in which the coefficient matrix is symmetric and positive definite (SPD). There are cases
where this approach is optimal (e.g. when is unitary) but, in general, the coefficient
matrix tends to be poorly conditioned and convergence is slow.

Most of the current popular iterative solvers are Krylov subspace methods. At the
" iteration, these attempt to find the solution to (1) in a space o+ ; (where o R"
is the initial iterate and ; is a Krylov subspace of dimension ) by imposing the Petrov-
Galerkin condition,
where ; is another space of dimension . The class of Krylov subspace methods include
CG, the generalized minimal residual (GMRES, Saad and Schultz [19]), quasi-minimal
residual (QMR, Freund  Nachtigal [7]) and Bi-CGSTAB (van der Vorst [23]) methods.



based studies, where various methods are compared in practical situations (e.g. plasma
turbulence modelling [1], groundwater flow [17], semiconductor device modelling [18]),
have also shown that the relative performance of these methods depends on the situation.

Since so many comparisons of the different methods exist then, apart from some
brief results for GMRES, Bi-CGSTAB is investigated in isolation in this work and the
reader is left to use the available literature (e.g. the references cited in the previous
paragraph) for general comparison purposes.

This report contains numerical results on the behaviour of Bi-CGSTAB when applied
to the system arising from the discretisation of an advection-diffusion equation by the
implicit Taylor-Galerkin method. This approach is used in [15] for transport problems
arising in hydrology.

The next section contains a brief history of the development of Bi-CGSTAB, a review
of some theoretical convergence results for Krylov subspace methods and a statement of
the Bi-CGSTAB algorithm. Section 3 describes the nonsymmetric system used to test
the solver in this work. Section 4 contains results on the performance of Bi-CGSTAB
from numerical experiments under both moderate and harsh convergence criteria - the
latter results indicate that rounding errors can lead to divergence. Some techniques for
improving convergence behaviour are reviewed in Section 5 and a selection of these are



Bi-CGSTARB is an iterative method for approximating the solution to a linear system
in which the matrix is nonsymmetric. It is a bi-orthogonalisation Krylov subspace
method, i.e. given an initial iterate  IR", at the ** iteration the method looks for
an approximate solution ; of (1) from a space,

otspan o o ‘o... "'y
(where o= o) by imposing the orthogonalisation,
: o ( T) o ( T)2 N ( T)i—l o

In this section, the origin of Bi-CGSTAB is described. This is followed by an overview
of convergence results for Krylov subspace methods, and a description of the particular

form of the Bi-CGSTAB algorithm used.

In the CG method for SPD matrices, the residuals are mutually orthogonal, i.e.

where () is a polynomial of degree (and ;(0) = 1). A three-term recurrence
relationship exists between these residuals, and it is the exploitation of this property
that makes the algorithm economical in terms of both computing time and storage. This
three-term recurrence relation arises from the close relationship of the algorithm with
the symmetric Lanczos tridiagonalisation process (see e.g. Golub ~ Van Loan [8] for a
description of this relationship).

When  is nonsymmetric, it is not possible to construct a three-term recurrence
relationship of the type used in CG for the residuals. In this case, a possible approach

is to base the solver on the Lanczos tridiagonalisation process - this is
the origin of the earliest predecessor of Bi-CGSTAB, the bi-conjugate gradient method
(Bi-CQ) [5, 12].

In Bi-CG, the approximations are constructed in such a way that the residual vector,
i, is orthogonal to a set of pseudo-residual vectors ; (;—y . ;1) and, vice versa, ";
i (j=1,..i=1)- LThis is accomplished by three-term recurrence relationships for the
rows ; and ;. The Bi-CG residual vectors are given by,

% % 0 % % 0



This inner product can be written as,
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ITf a solution exists, the process finds this in at most n iterations.



where u is the exact solution of the linear system, u; is the ¢ iterate produced by the
conjugate gradient method and || - || 4 is the A-norm defined by,

|lwlla = Vwl Aw.

The class of Krylov subspace iteration methods to which GMRES belongs (i.e. K;
as in CG and £; = AK;) possesses the optimality property,

Il = min_If — Aw].
The existence of such a property guarantees that the residual is a monotonic function
of the iteration number.

Unfortunately, the main theorem from Faber — Manteuffel [4] states that CG-like
methods with (i) a minimisation property and (ii) cheap short-term recurrence relation-
ships exist only for special matrices. In general, CG-like methods possess either (i) or
(ii) but not both, e.g. GMRES has (i) but can be expensive to implement (the work at
each iteration grows linearly) while Bi-CG has (ii) but has no minimisation property.

An apparent exception 1s the quasi-minimal residual method which has three-term
recurrence relationships and also minimises the residual in the norm, || 2} W2 1|2, at
the ' iteration (where — and W are matrices associated with the underlying nonsym-
metric Lanczos process - see [6] for more detail). However, as the name suggests, QMR
is not a true minimisation process; the residual is minimised in a norm that changes with
each iteration. Because of this, QMR falls out of the scope of the Faber = Manteuffel
theorem.

Since it is based on three-term recurrence relationships and possesses no quasi-
minimisation property, no convergence bounds exist for Bi-CGSTAB. Current knowledge
of the practical behaviour of the method falls into two main categories:

e Investigations on the effects of the presence of extreme (large, small and negative)
eigenvalues in the eigenspectrum of the coefficient matrix (e.g. for a comparison

of this type with Bi-CG and CG-S, see Campos,filho  Rollet [2]). These studies

tend to use matrices constructed to generate a particular eigenspectrum.

e Comparisons with other solvers on matrices arising from the solution of practical
problems (e.g. Peters [17]).

The work in this report uses a coefficient matrix whose properties are controlled by
the physical values associated with the problem being solved and the size of the temporal
and spatial discretisation used in the numerical approximation of the underlying differ-
ential equation, and examines the behaviour of the Bi-CGSTAB method in isolation as
the parameters are varied.

There are many possible forms of the Bi-CGSTAB algorithm which are equivalent in
exact arithmetic but which show different behaviour in finite precision. For this reason,
the form of the Bi-CGSTAB algorithm used in this work is given in this section.

The following algorithm is similar to the one given by van der Vorst [23], but in-
corporates some of the modifications suggested in that original paper. This algorithm



searches iteratively for a solution to (1) where the matrix is preconditioned by

is an initial iterate; ¢ = :

o= = =1 1=(0 o)

do =1
= (i =00 ) (6)
= i1t ( )7 (7)



The nonsymmetric system in this work arises from an implicit discretisation of the
equation for contaminant transport in porous medium, a full description of the origin
of this system being given in [15]. In this section a brief summary of the relevant parts
of that work is presented; this includes a description of the partial differential equation
being approximated, the discretisation used and a simple test case arising from the
solution of a 1-D problem.

3.1 Governing Equation for Contaminant Transport in
Porous Media

From [15], the mass balance equation for a contaminant in a saturated porous medium

18,

P60+ (pa)-Ve= V. 6DV(pe) . (1)

where p = p(c) is fluid density , ¢ is the porosity, ¢ is the (dimensionless) contaminant
concentration, q is the Darcy velocity and D is the dispersion tensor.

In this work, p, ¢, D and q are taken to be constant. With these simplifications (11)
becomes the constant coefficient advection-diffusion equation,

0
a—j +v.Ve=V. DVe | (12)

where v = 3 is the average fluid velocity.

The advection-diffusion equation representing the contaminant mass balance is discre-
tised by an implicit Taylor-Galerkin method - using (12) to replace the temporal deriva-
tives in an approximate Taylor series expansion, and then performing a spatial discreti-
sation by the standard Galerkin finite element method. This gives the same result as
the Crank-Nicolson finite element method [17].

The fully discretised form of the contaminant mass balance equation is,

1 1 1 1
— A+ - (B HA - __A—-_(B t_F 1
x +2( +C) ¢ A 2( +C) ¢ , (13)
where
A={A}ri=1..n
B = {BU}LJ:L...,n c' = {CS}J:L...,n
C=A{Cr}rs=1,.n F={Fr}i=1. n,
and
A = 77 = " NiN;dQF
By =  Bj=  VN.DVNd

7
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IJ = IJ — I JQ

€ € Re
C
€ n €
I = = — ; I
€ € Fe
where the superscript, , denotes an element value and denotes summation over all

the elements.



In this section, the performance of Bi-CGSTAB on the linear systems arising from the
test case in Section 3 is examined. As with CG, preconditioning is an important aspect of
the behaviour of this method. However, this is not considered here - no preconditioning
(i.e. = ) is used in the moderate convergence tests (to allow a comparison with
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based) Bi-CGSTAB residuals and the true residuals (calculated by rf™¢ = f — Au;),
and also the iteration when this maximum occurs. These errors are quite small, so a
total breakdown of the recursion process has not occurred; but the small discrepancy
between the true and recursion residuals may indicate that the recursion process has
been spoiled, leading to the convergence difficulties. Indeed, comparing Tables 2 and 3,
the onset of divergence often coincides with the largest relative error in the residual.

irue

Pe| v || max M Iteration
L v i P
0.5 8.22 x 1073 8
1 2.51 x 1073 12
2 2.54 x 1073 20
115 6.49 x 107° 36
10 5.24 x 107 56
20 1.27 x 1078 70
40 3.83 x 1078 375
0.5 7.04 x 107° 8
1 4.04 x 10~ 13
2 7.60 x 1074 20
515 1.94 x 1077 35
10 1.32 x 10710 39
20 3.29 x 10711 147
40 1.09 x 10710 168

Table 3: Relative error in residuals

It Bi-CGSTAB is to be considered as a viable alternative to other nonsymmetric
solvers for this problem, the convergence difficulties highlighted by the harsh convergence
criterion tests must be overcome so that the solver is robust as well as efficient.

12



In this section, an attempt is made to prevent the divergent behaviour in the harsh con-
vergence criterion tests highlighted by Figures 1 and 2. Some techniques for improving
convergence behaviour currently in the literature are:

- it 1s known that the Lanczos tridiagonalisation process
(which underpins three-term recurrence relationship methods) is unstable and
prone to breakdown due to a loss of orthogonality between the Lanczos vectors
[8]. To remedy this, the look-ahead Lanczos process of Parlett [16] allows
the use of block pivots in the iteration steps where the scalar pivots of the stan-
dard Lanczos process is expected to encounter difficulties. This method is used in
practical versions of QMR.

variants of Bi-CGSTAB (e.g. Bi-CGSTAB2 [9], Bi-CGSTAB( ) [20] ) allow

in the construction of “;( )in (4) rather than the linear com-
ponents, (1 ; ), used in the original van der Vorst version. These methods
attempt to avoid stagnation in the convergence history of Bi-CGSTAB which oc-
curs when the eigenvalues are almost purely imaginary.

(Weiss  Schénauer [24]) - an auxiliary sequence of vectors,
", 1s generated from non-monotonic iterates, ;, by the recursion,

o — 0

o= )t s (=120
where each ; is chosen to minimise,
(1 )i+ 2

over R. ; is given explicitly by,

where ;4 = “;—1. The vectors in the auxiliary sequence, ~;, are iterates
with monotone non-increasing residual.

- the Mismatch Theorem [22] indicates that a breakdown






Since a good initial iterate, o, is available, a vector of random entries () is added

to this to generate a new initial iterate ~¢. The size of the random perturbation is

controlled by scaling and a factor, , i.e.

o= o+ 0 2 with =

i=1,..n and 1 i1
2

Table 5 shows the minimum residual achieved and the corresponding iteration num-
ber for the harsh convergence tests with different perturbation sizes.

=103 =107 =10""
( 2 Z)mm Itﬂ ( 2 Z)mm Itﬂ ( 2 Z)mm Itﬂ
05 280 107 | 20 110 107 | 20 131 107 17
1 25 503 107 | 27 190 107 | 25
2 50 42 788 107™ 41
115 39 112 107" | 79 672 107 | 69
10 196 107'° [129| 259 107 |116| 231 107 |138
20 | 316 107'5 [400 | 523 107 |414| 353 107'% | 224
40 | 770 107Y% | 413 | 236 107Y 431 894 107 | 469
05 22 201 107 24 151 107 25
1 218 107% | 29 389 107% | 25 146 107 | 25
2 498 107 | 30 410 107" | 30 583 107'% | 28
515 155 107 | 72 115 107 | 71 223 107 107
10 718 107 [135| 648 107 | 157 | 102 107'* | 149
20 | 374 1075 258 | 250 107 243 | 877 107 | 239
—15 -13 -13

1+1



(0 ) (see Section 2.3), which are highlighted because they may be close to zero without

2 2 min 2 2 min 2 2 min
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the matrix, the more sensitive the process is to rounding errors. Thus, the optimum
value of k for this problem is expected to decrease with n, v and Pe (the latter is
included because it also affects the amount of nonsymmetry in the matrix).

The requirement for the value k violates the desired property that the solver should
require no external parameters (see Section 1).

From the operation in the Bi-CGSTAB algorithm where p is used as a denominator (got
by combining (6) and (7)),

Pi 04(
Pi-1 W

= -1+ w ).
and the definition of the round-off unit (14), rounding errors can be expected to occur
in this operation if,

¢ > pi @ (]) w. (]) >} (1 . (16)

Pi—1 @ ¢—1(]) €

where () is the 7 component of . The expression is undefined when a term in the
residual vector is zero so these cases must be excluded. Hence a more suitable form

of (16) is

i-1J) =0 and e ia(y) > 4 () w () >- a) (@ g n) (7)

which is a possible restart criterion, requiring no external parameters other than the
easily available round-off unit. However, experimental investigations show that in all
the harsh convergence criterion tests, the monitor value is always well within the bounds
which indicate round-off and there is no interesting behaviour in the monitor near the
onset of convergence difficulties - hence (17) is of no use for this problem.

In the same way as round-off error in p;1; is tested for in (17), round-off can be
tested for in ( o, ) by combining (8) and (9) and using the definition of the round-off
unit to give the possible restart criterion,

() =0 ande 1) > a () >~ a(G) (4§ n) (18)

€

Again, experimental investigations show that this monitor is always well within the
bounds for all the tests, and there are no significant features in the monitor near the
onset of convergence difficulties, so this restart criterion is also of no use.

Joubert [10] uses restart criteria based on the occurrence of inner products as denomi-
nators in Bi-CG and CG-S. The general form of these criteria are that if ( , A ) is used
as a denominator then restart if,

In [10], the tolerance has the form, ()= 10" >, where is an integer.

18



Since the inner product ( ¢ ) is used in Bi-CGSTAB (10) for the calculation of
then a possible restart criterion is,

(1 (19)

(1Y

2 2 min
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