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Abstract

In this work we consider steady state solutions of the Saint�Venant equations�
We approach these solutions by adding a small arti�cial viscosity term to the
steady Saint�Venant equations and then considering the limit as this term goes
to zero� We show that for a uniform rectangular channel� and under certain
assumptions� that this limiting process gives a unique physical solution to the
problem� We show that in these cases the limiting process also gives us a well�
behaved numerical scheme for the computation of this solution� Numerical results
are given for a set of test problems and compared with the analytic solutions�
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� Background

��� The Steady Saint	Venant Equations

The �ow of water in an open channel can be modelled by the Saint�Venant equa�
tions� This model approximates the actual �ow by a one�dimensional �ow� A
system of two conservation laws is derived using principles of mass and momen�
tum balance� For these equations to be valid various assumptions about the
channel and the �ow are required� but we will not consider the question of valid�
ity here� A derivation of the Saint�Venant equations can be found in Cunge et
al�	
�

In this work we investigate steady state solutions of the Saint�Venant equa�
tions and in particular numerical methods for their computation� By steady state
solutions we mean solutions that are constant in time� We are interested in such
solutions from a practical point of view since steady �ow often occurs in nature�

A steady form of the Saint�Venant equations� which we refer to as the steady
Saint�Venant equation� is found by assuming that all the variables are time in�
variant in the unsteady equations� We state the steady Saint�Venant equation
below�

Let the x�axis be horizontal and in a direction along the channel length�
Figure � shows a typical channel cross�section normal to the x�axis� Let y�x�
be the depth of the �ow at this section� which is the height of the free surface
�assumed to be a horizontal line� above the lowest point in the section� and Q�x�
be the discharge� the rate at which a volume of water �ows through the section�
We also need the following functions which come from the shape of the section


��x� ��� Width of the section at height � above the lowest point in the section�

A�x� y�� Cross�sectional area of the �ow passing through the section� for depth
y� and given by

A�x� y� �
Z y

�
��x� ��d�� �����

P �x� y�� Perimeter length of the �ow in contact with the channel�

Figure � shows a side view of the channel with the channel bottom a distance
z�x� below the x�axis� Let S��x� � dz

dx
be the slope of the channel bed� The

height of the free surface above the x�axis is given by y�x�� z�x��
The steady form of the conservation of mass equation is then

Q�x�� � Q�x��� �����

for any x�� x� along the channel� This equation is trivial and tells us that the
discharge is constant throughout the length of the channel� In future we will take
this constant value as a known parameter Q�

The corresponding �conservation of momentum� equation is

F �x�� y�x���� F �x�� y�x��� �
Z x�

x�
d�x� y�x��dx� ���	�

for any x�� x� along the channel� Here F is a quantity called the Speci�c Force
given by

F �x� y� �
Q�

A�x� y�
� g

Z y

�
�y � ����x� ��d�� �����

�
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Figure �
 Cross�section of channel� normal to x�axis

where g is the acceleration due to gravity� This quantity has units of force per
unit mass and has two components� The �rst term is the momentum �ux due to
the �ow of water and the second is due to hydrostatic pressure forces� The source
term d�x� y� is given by

d�x� y� � gA�x� y� �S��x�� Sf �x� y�� � g
Z y

�
�y � ��

�

�x
��x� ��d�� �����

The friction slope� Sf � models the e�ects of channel friction and turbulence� There
are several common forms for this term� we shall use the form due to Manning
�see Chow ��
�� which is given by

Sf�x� y� � QjQjn�
�P �x� y�
���

�A�x� y�
����
� �����

where n is the Manning roughness coe�cient which controls the roughness of the
channel�

From now on we shall make the assumption that Q � � without loss of
generality� since if Q � � we can simply reverse the x�direction� Also the case
Q � � is trivial�

At any point along the channel where the depth y behaves smoothly� and
as long as the channel geometry is smooth enough� we can take the limit as
x� � x� � x in equation ���	� to obtain the di�erential equation

d

dx
F �x� y� � d�x� y�� �����

It is clear that if a stretch of channel has a discontinuous �ow then this di�erential
equation does not describe the �ow globally� The integral form �equation ��	��

	







��
 Solution Pro�les for a Rectangular Channel

Although the solutions to equation ����� for a general channel shape are di�cult
to obtain� for certain channel geometries we can get a very good idea of how the
solutions behave� Suppose that we restrict attention to a uniform rectangular
channel given by ��x� �� � B� A�x� y� � By� P �x� y� � �y �B� where B � � is a
constant� We will also assume that the bed slope� S�� is constant� Equation �����
then becomes the autonomous equation

dy

dx
�

���y�

���y�
� ������

where

���y� � S� �Q�n�
��y �B����

�By���



The main question now is how do we determine the relative positions of yn
and yc� It turns out that this can be done by classifying the slope� S�� as follows
�see Chow��
�� Let us de�ne the critical slope S�c by

S�c � Q�n�
��yc �B����

�Byc�����
� ��

then
S� � � �� ADVERSE SLOPE and yn � ���

� � S� � S�c �� MILD SLOPE and yn � yc�
S� � S�c �� CRITICAL SLOPE and yn � yc�
S





�





in the previous section� but� since the channel slope now varies with x� the normal
depth also varies with x� It is easy to show that the function yn�x� is bounded�
so let M � maxfyn�x� 
 x � ��







��� Solution of Discrete Equations

Now that we know that the numerical scheme converges as we re�ne the grid� we
need to think about how we calculate the solution of the numerical scheme� This
involves solving a system of N � � nonlinear equations� The most robust method
is a pseudo time iteration� Theorem � in section � gives us the following practical
method�

Let u� � �u��� u
�
�� � � � � u

�
N 


T � �� with u�� �



��
 Post	Processing Solution at Channel Ends

In certain circumstances when invalid or arti�cial boundary values ��� �� are given
to the singular perturbation problem� we �nd that Y ��� �� �� and or Y ��� �� ���
where Y is the solution of the physical solution of the reduced problem� It is the
values of Y ��� and Y ��� that we are interested in� If we let h � � we would
expect discontinuities in the numerical solution at the boundaries� but a problem
arises since we can only solve for �nite h� and this results in these discontinuities



� Results

In this section we include numerical results from �ve di�erent test problems� For
each test problem the analytic solution is known so we can get a good measure of
the performance of the numerical scheme� The test problems were created using
an �inverse� approach and are published in MacDonald���
� Full details of the
test problems are given in appendix A� The numerical scheme used is that of
Engquist�Osher� as described in the previous section� and all the test problems
satisfy assumptions ������ so all the theory given in the previous two sections is
applicable�

For each test problem we show the exact solution� Y � as well as numerical
solutions on various grids� The numerical solution is shown by crosses for N � ���
triangles for N � ��� circles for N � �� and squares for N � ���� For each test
problem we also show the channel bed pro�le� the exact free surface pro�le� and
computed free surface pro�les�

��� Discussion of Results

The solution to test problem � is a smooth subcritical �ow� Figure � shows
the exact solution as well as numerical solutions for N � ��� ��� ��� The �ow
for this problem is controlled by the boundary condition at x � ���� so it is
not surprising that the numerical errors grow as the solution moves away from
this boundary� However� they unexpectedly decrease as the solution approaches
the other boundary� It can be seen that the numerical solutions give a good
approximation to the exact solution and also it can be seen visually that the
accuracy increases as the grid is re�ned� This has been con�rmed experimentally
by calculating the L� errors for a large range of grids and as expected the scheme
is found to give a �rst order accuracy�

The solution to test problem � is a smooth supercritical �ow� Figure � shows
the exact solution as well as numerical solutions for N � ��� ��� The �ow for
this problem is controlled by the boundary condition at x � �� and the numerical
errors grow as the solution moves away from this boundary� moreover� as in the
previous problem they eventually start to decrease� Again it can be seen that the
numerical solutions give a good approximation to the exact solution and also the
accuracy increases as we re�ne the grid�

The solution to test problem 	 is a smooth �ow that is subcritical for x � ��
and supercritical for x � ��� Figure �� shows the exact solution as well as nu�
merical solutions for N � ��� ��� This problem has no boundary conditions� the
�ow is controlled by the critical section at x � ��� This explains why the numer�
ical errors grow as we move away from this point� Again the numerical solutions
give a good approximation to the exact solution and the accuracy increases as we
re�ne the grid�

The solution to test problem � is a discontinuous �ow with a jump at x �
���		� Figure �� shows the exact solution as well as numerical solutions for
N � ��� ��� ���� For this problem a boundary condition is given at x � ����
The numerical solutions for this rather hard problem are very good� The jump
is resolved very well taking into account the coarseness of the grids used� It
can be seen visually that both the position and height of the jumps become more

��



accurate as the grid is re�ned� but unlike the previous problems with smooth solu�
tions� there are no simple methods to quantitatively con�rm this improvement in
accuracy� Further re�nement beyond that shown here continues the improvement
in the numerical solution�

The solution to test problem � is also a discontinuous �ow and has a jump
at x � ���		� Figure �� shows the exact solution as well as numerical solutions
for N � ��� ��� ��� v
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� Analysis of a Class of Singular Perturbation

Problems

In this section we prove a number of results concerning the problem



d�y�
dx�

�
d

dx
f�y��� b�x� y�� � �� y��x� � �� � � x � �� ������

y���� � ��� y���� � ���

where 
������ � �� which are relevant to the steady Saint�Venant problem and
have already been used in section �� Here bx� by� bxy � C����� �

IR��� f � C��IR��
and we have

by�x� y� � �� 	�x� y� � ��� �

 IR�� ������

We also assume that there exist m�M � � such that

�x� y� � ��� �

 ���m
 �� b�x� y� � ��
�x� y� � ��� �

 �M��� �� b�x� y� � ��

����	�

We let y � minf��� ���mg and y � maxf��� ���Mg�
This problem without the solution restricted to being positive is well known�

for example see Lorenz��
��
� The existing results do not directly apply to our
problem because they require the functions f and b to be de�ned for all y� We are
particularly interested in problems where these functions are singular at y � ��
In order to use the existing analysis we construct another problem from ������ to
which we can apply the existing results� Then� because of the way our new prob�
lem has been constructed� we can infer information about the original problem�

The intermediate problem we shall consider is as follows




d� y�
dx�

�
d

dx
 f� y���  b�x�  y�� � �� � � x � �� ������

 y���� � ���  y���� � ���

We de�ne the functions  f and  b by

 f�y� �

�������������
������������

����f
���y� � �f ��y� � f�y���y � y�� y � y



Theorem � Existence and Uniqueness
Problem ������ has a unique solution� y� � C���� �
� for all 
 � �� This solution
satis	es

y � y��x� � y� � � x � �� ������

Proof�
Lorenz��
 proves that problem ������ has a unique solution�  y� � C���� �
�



Proof�
Suppose x � ��� ��� Let rk � ��� x�	k and consider the sequence of intervals

given by I�



� Analysis of a Class of Monotone Di	erence

Schemes for the Singular Perturbation Prob�

lem

In this section we analyse a family of numerical schemes for solving problem �������
We consider a uniform grid xi � i	h� i � �� �� � � � � N and the di�erence scheme




h�
�ui�� � �ui � ui����

�

h
�g�ui��� ui�� g�ui� ui����� b�xi� ui� � �� ������

i � �� � � � � N � ��
u� � ��� uN � ���

Here the �numerical �ux function� g�u� v� � C��IR�
�� is subject to consistency

and monotonicity conditions

g�u� u� � f�u�� ������

u � g�u� v� is nonincreasing�
v � g�u� v� is nondecreasing�

������

We also require that� for any bounded set " 
 IR�
�� there is a constant L� � �

such that for all �u�� v�
T � �u�� v�
T � "�

jg�u�� v�� � g�u�� v��j � L��ju� � u�j� jv� � v�j�� ������

We shall be most interested in the C� numerical �ux function of Engquist�Osher
given by

g�u� v� �
Z u

c
minff ��s�� �gds�

Z v

c
maxff ��s�� �gds� ������

where c � � is some arbitrary value�


�� Existence and Uniqueness of Discrete Solution

Lemma � Let " � �yL� yR
� 
 IR�
�� Then for any u�� v�� u�� v� � �yL� yR


g�u�� v��� g�u�� v�� � �u� � ��	2.9999 0 TD
(�)Tj
/T11 1 	1 Tf
19 0.1 Tf
25 -0 0 bc01 0 TD
(R)d6.1 Tf
25 -0 Tj
/T9 1 Tf
25 0 TD
(�)Tj
/T11 1 Tf
19 0 TD
(�)Tj
/T����

ds�



Lemma � Let � � yL � yR� h � � and 
 � �� There exists a value !t��hyL�yR � �
such that� for � � !t � !t��hyL�yR�

!t
�
�


h�
�

�

h
�Lv�s�� s�� s��� Lu�s�� s�� s��� � by�x� s��

�
� �� ������

for all s�� s�� s�� s�� s� � �yL� yR
� x � ��� �
�

Proof�
Let

by � maxfby�x� y� 
 �x� y� � ��� �

 �yL� yR
g � �� ������

Now let

!t��hyL�yR �
�
�


h�
�

�

h
#L� � by

���
�

where " � �yL� yR
�� It is easily seen that this value satis�es the lemma�

Lemma � Let � � yL � y� yR � y� 
 � � and h � �	N � where N � � � IN � Let
us de	ne the set

$N��
yL�yR

�
n
u � �u�� u�� � � � � uN 


T � IRN�� 
 u� � ��� uN � ��� yL � u � yR
o
����	�

and the operator G 
 IRN��
� �� IRN�� by

G�u�ji �

���
��

�� i � ��
ui �!t�T �

hu�i i � �� � � � � N � ��
�� i � N�

������

where

�T �
hu�i �




h�
�ui�� � �ui � ui����

�

h
�g�ui��� ui�� g�ui� ui����� b�xi� ui� ������

and � � !t � !t��hyL�yR � Then we have the following�

�i� u�v � IRN��� yL � u � v � yR ��G�u� �G�v��

�ii� G�$N��
yL�yR

� 
 $N��
yL�yR

�

�iii� u�v � $N��
yL�yR

��kG�u��G�v� k�� �� �!t�yL�yR� k u� v k��

where
�yL�yR � minfby�x� y� 
 �x� y� � ��� �

 �yL� yR
g� ������

Note that � � ��!t�yL�yR � ��

Proof�
�i�� Let u�v � IRN��� with yL � u � v � yR� Now for � � i � N � �

G�v� ji �Gh�u� ji � wi �

!t

h�
�wi�� � �wi � wi���

�
!t

h
�g�vi��� vi�� g�ui��� ui�� �

!t

h
�g�vi� vi���� g�ui� ui����

��



�!t�b�x� vi�� b�x� ui���

where wi � vi � ui



�jw�j!t
�



h�
�

�

h
Lv�v�� u�� u��

�
� jwN j!t

�



h�
�

�

h
Lu�vN � uN � vN���

�

�jw�j!t
�



h�
�




�
 Convergence as h��� �

In section � we proved the existence of a unique physical solution� Y � NBV �
of the reduced problem �
 � ��� We now give a theorem that shows that� if
we apply the above numerical scheme then� as 
 � �� the numerical solution is
guaranteed to converge to Y �

Theorem � Let u�h � �u��h� � u��h� � � � � � u��hN 
T denote the discrete solution of ������
for 
 � � and let Uh be the piecewise constant function

Uh�x� � u��hi for ih � x � ih� h� i � �� �� � � � N � �� ������

Let fhng be a null sequence where each hn � �	�j � �� for some j � IN � then
there is a subsequence fhnkg such that

Uhn
k � Y � NBV a�e� as k ��� ������

Y is the unique function in NBV that satis	es conditions �i���ii� and �iii� in
theorem 
�

Proof�
To prove this result we take the same approach as in the analysis in section ��

We look at the numerical scheme




h�
�ui�� � �ui � ui����

�

h
� g�ui��� ui��  g�ui� ui�����  b�xi� ui� � �� ����	�

i � �� � � � � N � ��
u� � ��� uN � ���

for solving problem ������� Here  g is given by

 g�u� v� �

�����������������
����������������

g�u� v� y � u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�y� v� �H��u� y� u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�u� y� �H��v� y� y � u � y and v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�y� v� �H��u� y� u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�u� y� �H��v� y� y � u � y and v � y�

������
where

H��u� z� �
Z u

z
minf  f ��s�gds� ������

and
H��v� z� �

Z v

z
maxf  f ��s�gds� ������

Since H��z� z� � � and H��z� z



the fact that H�� H� have bounded deriv




 Conclusions and Further Work

For a rectangular channel with positive bed slope� we have shown that the unique
physical steady �ow can be obtained as the zero viscosity limit of solutions to a
sequence of viscous problems which are generated by adding an arti�cial viscos�
ity term� of strength 
� to the steady Saint�Venant equations� By this limiting
process we also obtained a family of numerical schemes which are guaranteed to
converge to the physical solution in the limit as the grid size tends to zero� We
demonstrated that these schemes are well behaved in the sense that the numerical
solution always exists and is uniformly bounded� We have also given numerical
results for a particular member of this class of schemes for a series of test prob�
lems� The results show that the numerical scheme approximates the solution well
in smooth regions and also gives very good resolution of the discontinuities�

In the future we would like to extend the theory given in this report to a less
restrictive class of channels� The extension of the analysis to certain other shapes
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A Notation

IR� �����

u Bold denotes a vector

u ji i�th component of vector

u � � u ji � � for all i� same for �� �� � and �

u � v u ji � v ji for all i� same for �� �� � and �

sg�z� sg�z� � ��� �� � for z � �� � �� � �

Cn�A�
Set of functions f 
 A �� IR that have n continuous
derivatives

u�x�� Limit u�x� ��� as �� � from above

u�x�� Limit u�x� ��� as �� � from above

BV Functions of Bounded Variation on ��� �


NBV fu � BV 
 u�x� � u�x��� for x � ��� ��� u��� � u����g

C�
� ��� �� Smooth test functions with compact support on ��� ��

kuhk� h
PN

i�� juij

	�



B Details of Test Problems

In this Appendix we give details of the test problems used in section �� The exact
solutions are illustrated in �gures �����
Problem � Subcritical Flow

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by

S��x� �

�
� �

�

g�(y�x�
�

�
(y��x� �

�

�����(y�x�
�

�
�

�
�

�

(y�x�

����

�

where

(y�x� �

�
�

g

���� �
� �

�

�
exp

�
��



x

���
�

�

�

����
�

and

(y��x� � �

�
�

g

����
�

��



x

���
�

�

�

�
exp

�
��



x

���
�

�

�

���
�

Manning�s friction coe�cient for the channel is ���	� The �ow is subcritical at
out�ow� with depth (y������ and subcritical at in�ow�

The exact solution for this problem is y�x� � (y�x��
Problem � Supercritical Flow

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by

S��x� �

�
� �

�

g�(y�x�
�

�
(y��x� �

�

�����(y�x�
�

�
�

�
�

�

(y�x�

����

�

where

(y�x� �

�
�

g

�����
� �

�

�
exp

�
��



x

���
�

�

�

����
�

and

(y��x� �

�
�
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