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Abstract

Racantly Roa [2] has suggastad solving systams of first ordar consar-
vation laws numarically and simultanaously adapting tha computational
grid using a laast squaras minimisation procadura on tha fluctuations to-
gathar with a staapast dascant itaration approach to solva tha rasulting
minimisation problam. In this raport, tha procadura is rapeatad for tha
Cauchy-Riamann systam writtan in complax form and suggastions mada
for othar possibla functionals to ba minimisad in tha scalar casa. In @ach
casa, stespast dascant updates are written axplicitly for simpla choicas of

tha functional.

*This work has been carried out as part of the Oxford /Reading Institute for Computational
Fluid Dynamics and was funded by EPSRC.



1 Introduction

The problem which will be addressed in this brief report is the minimisation of

the functional
1
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This quantity arises from the numerical solution of systems of first order con-
servation laws via least squares minimisation of the associated fluctuations ¢,..
The sum in (1.1) is taken over the grid cells (1) of a triangulated computational
domain and the (7 are positive definite symmetric matrices. The ¢, will be
defined precisely later in this report and the ()7 will be chosen appropriately for
each case considered.

F' can be considered as a function of solution values stored at the grid nodes
and of the coordinates of the nodes themselves so it can be minimised with respect

to any or all of these variables. The minimisation can be achieved iteratively using



2 Split Sc 1 r Fluctu tions

Consider the steady state linear advection equation in two dimensions,
i-Vu =0, (2.1)

where the advection velocity @ = (a,b)T is constant over the whole domain.
Alternatively, in any case where @ is divergence-free, equation (2.1) can be written

as
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The fluctuation in a triangle 7" associated with (2.1) is given by

or = —// @ Vu dady
A
— 7 dn 2.3
¢ ui-di. (2.3)

where 77 represents the inward pointing normal to the boundary of the cell. Under
the assumption that u varies linearly over each triangle and its approximation is

continuous across the cell edges the discrete fluctuation is evaluated to be
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where k is a vertex of the triangle (¢ and j are the other two) and iy is the normal
to the edge opposite vertex k scaled by the length of that edge.
In [2] ¢7 is considered as a single scalar quantity but it could be split into

components before the steepest descen



The simple choice of Qr = é], where ST is the area of the triangle gives

Fey (¢1T)2+(;@2+(¢%)2 = S, (2.6)

and the individual element contributions to this sum can be written
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where (-)* indicates the positive part, so that only contributions to the fluctuation
from inflow edges are considered in the minimisation of F' (2.6).

One further option is to define the fluctuation within each triangle to be
dependent only on perturbations of the variables at the upwind vertices, so if the

upwind vertices of a chosen cell are 1 and 2 then

9o 9o
5, = a;u’féul + a;ufm (2.11)

and there is no dependence on dus. Effectively, the fluctuation is redefined to be
independent of the variables at the dowstream vertices. The disadvantage of the
resulting scheme, and of the process of allowing only upwind cells to contribute to
the least squares iteration at a node, is that the stencil for the update to a node
may change at each iteration, leading to a discontinous change in the definition
of F' between iterations which may even increase its value. Note that it is more
likely that upwinding would be used on the solution variables rather than the
grid variables since the former arises from a hyperbolic differential equation.

It may also be possible to combine the ideas behind (2.10) and (2.11) by

defining an update of the form

Do D¢’ ¢>
5?11 = 8;1;;5U1 + 8;125UQ + a;uf;&u:g R (212)

where the ¢% is the k™" component of a vector such as (2.10). This does not
discount the possibility of discontinuities in the resulting definition of the func-
tional being minimised but does allow more flexibility in the upwinding of the
algorithm.

Also, the suggestion for splitting ¢ in (2.10) is not unique. Another choice,
for example, might be to divide the fluctuation into components proportional to
those derived from multidimensional fluctuation distribution schemes [1]. This

would lead to differen






leads directly to the Cauchy-Riemann equations,

8 = wbm = Ux+W =0
W o= w = Vx—-Uy = 0. (3.3)

In [2] (3.3) was kept as a system of equations with real coefficients and the fluc-

tuation was evaluated as
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where I = (U, V)T and &



where @ = (1,7)" and W is defined in (3.7). Note that (3.12) bears a striking
resemblance to the scalar advection equation (2.1) although the coefficients are

now complex.

Equations (3.10) and (3.12) are integrated to give the complex fluctuation
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and the assumption that U/ and V' both vary linearly over each triangle leads to

the discrete form of the fluctuation which is given by
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and the fact that
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