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Abstract

There is an established framework that describes a class of ensemble Kalman

filter algorithms as square root filters (SRFs). These schemes carry out anal-

yses by updating the ensemble mean and a square root of the ensemble co-

variance matrix. The matrix square root of the forecast covariance is post-



1 Introduction

Data assimilation seeks to solve the following problem: given an imperfect discrete

model of the dynamics of a system and noisy observations of the system, find esti-

mates of the state of the system. Sequential data assimilation techniques break this

problem into a cycle of alternating forecast and analysis steps. In the forecast step

the system dynamical model is used to evolve an earlier state estimate forward in

time, giving a forecast state at the time of the latest observations. In the analysis

step the observations are used to update the forecast state, giving an improved state

estimate called the analysis. This analysis is used as the starting point for the next

forecast.

Sequential data assimilation techniques include the optimal linear Kalman filter

(KF) and its nonlinear generalisation, the extended Kalman filter (EKF) (Gelb,



the ensemble size is small, but not so small that it is statistically unrepresentative,

then the extra work needed to maintain an ensemble of state estimates is more than

offset by the work saved through not maintaining a separate covariance matrix. The

EnKF also does not use tangent linear operators, which eases implementation and

may lead to a better handling of nonlinearity. The KF aspect of the EnKF appears

in the analysis step, which is designed so that the implied updates of the ensemble

mean and ensemble covariance matrix mimic those of the state vector and covariance

matrix in the standard KF.

The EnKF was originally presented in Evensen (1994). An important subsequent

development was the recognition by Burgers et al. (1998) (and independently by

Houtekamer and Mitchell (1998)) of the need to use an ensemble of pseudo-random

observation perturbations to obtain the right statistics from the analysis ensemble.

Deterministic methods for forming an analysis ensemble with the right statistics have

also been presented. The former approach to the EnKF is comprehensively reviewed

in Evensen (2003), whilst previously-published variants of the latter approach are

placed in a uniform framework in Tippett et al. (2003). These variants include the

ensemble transform Kalman filter (ETKF) of Bishop et al. (2001), the ensemble

adjustment Kalman filter (EAKF) of Anderson (2001), and the filter of Whitaker



formulations of the analysis step of the EnKF whilst excluding those filters that do

not have the desired analysis ensemble statistics.

This paper adopts a formal style of presentation with explicitly stated definitions

and theorems. The purpose of the definitions is to clarify key concepts, especially

the distinctions between the different types of filter. The theorems are stated ex-

plicitly to help distinguish them from the rest of the text. S



space. The ensemble mean is the vector defined by

x =
1

m

m∑

i=1

xi. (1)

The ensemble perturbation matrix is the n × m matrix defined by

X =
1√

m − 1

(
x1 − x x2 − x . . . xm − x

)
. (2)

The ensemble covariance matrix is the n × n matrix defined by

P = XX
T =

1

m − 1

m∑

i=1

(xi − x)(xi − x)T . (3)

If the members of {xi}





P
a = (Xf − KY

f )(Xf)T , (10)

K = X
f (Yf )T

D
−1, (11)

D = Y
f(Yf )T + R. (12)

An EnKF is semi-deterministic if its analysis step is deterministic.

There is an alternative approach to extending an EnKF from linear to nonlinear

observation operators, described in, for example, Evensen (2003, section 4.5). In

this approach the state vector is augmented with a diagnostic variable that is the

predicted observation vector:

x̂ =




x

H(x)


 (13)

and a linear observation operator is defined on augmented state space by

Ĥ




x

y






Definition 2 An ensemble square root filter is an ensemble filter in which the

analysis ensemble is obtained by adding a column n-vector x̃ to the columns of a

n × m matrix
√

m − 1X̃ where x̃ and X̃ satisfy

x̃ = xf + K(y − yf), (15)

X̃ = X
f
T, (16)

TT
T = I − (Yf )T

D
−1

Y
f . (17)



Theorem 2 If T satisfies the matrix square root condition (17) and U is an m×m

orthogonal matrix, then TU also satisfies (17).

Proof. Recall that an orthogonal matrix satisfies U
T
U = UU

T = I. Thus (TU)(TU)T =

TUU
T
T

T = TT
T and so TU satisfies (17) if T does. 2

Theorem 3 If X1 and X2 are two n × m matrices such that X1X
T
1

= X2X
T
2
, then

there exists an orthogonal matrix U such that X2 = X1U.

Proof. This proof makes use of the singular value decomposition (SVD) of a matrix;

see, for example, Golub and Van Loan (1996, section 2.5). Start by taking the SVD

of X1:

X1 = FGW
T (19)

where G is an n × m diagonal matrix (in the sense that gij 6= 0 if i 6= j) and F and

W are orthogonal matrices of sizes n × n and m × m respectively. Without loss of

generality it may be assumed that G can be expressed in the form

G =




G0 0

0 0


 (20)

where G0 is a nonsingular diagonal matrix of size r × r for some r. The orthogonal

matrix F can then be expressed in the form

F =
(

F0 F1

)
(21)

where F0 and F1 are column-orthogonal matrices of sizes n × r and n × (n − r)

respectively (a column-orthogonal matrix is one in which the column vectors are

orthonormal and thus the matrix satisfies F
T
0
F0 = I). Similarly, W can be expressed

in the form

W =
(

W0 W1

)
(22)

where W0 and W1 are column-orthogonal matrices of sizes m × r and m × (m − r)

respectively. It may be verified by substitution in (19) that

X1 = F0G0W
T
0
. (23)
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Let ran(X1) denote the range of X1 (the space of all n-vectors of the form X1u

where u is an arbitrary m-vector). It follows from (23) that ran(X1) ⊆ ran(F0G0).

Furthermore, since any r-vector v can be written in the form v = W
T
0
u by setting

u = W0v, it follows that ran(X1) = ran(F0G0).

Let P = X1X
T
1
. Then P = F0G0W

T
0
W0GF

T
0

= F0G
2

0
F

T
0
. Thus ran(P) ⊆

ran(F0G0). Furthermore, since any r-vector v can be written in the form v = G0F
T
0
u

by setting u = F0G
−1

0
v, it follows that

ran(P) = ran(F0G0) = ran(X1). (24)

By the hypothesis of the theorem P = X2X
T
2

as well. Therefore

ran(X2) = ran(P) = ran(F0G0). (25)

It follows that every column of X2 can be expressed as a linear combination of the

columns of F0G0. Thus there exists an m × r matrix W̃0 such that

X2 = F0G0W̃
T

0
. (26)

Now

F0G
2

0
F

T
0

= P = X2X
T
2

= F0G0W̃
T

0
W̃0G0F

T
0
. (27)

Pre-multiplying the first and last terms of this chain of equations by G
−1

0
F

T
0

and

post-multiplying by F0G
−1 gives I = W̃

T

0
W̃0. Thus W̃0 is a column-orthogonal

matrix and may be extended to a full m × m orthogonal matrix

W̃ =
(

W̃0 W̃1

)
. (28)

It may be verified by substitution that

X2 = FGW̃
T

(29)

and thus

X2 = X1WW̃
T
. (30)

Here W and W̃ are orthogonal matrices, and so therefore is WW̃
T
. Thus the theorem

is proven by setting U = WW̃
T
. 2
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matrix U such that X
a = X̃U. Let T = T0U. Then X

a = X
f
T and T satisfies (17)

by theorem 2. 2

The results of this section make it possible to characterise the structure of the

set of all ensemble SRF filters in terms of a well-known group of matrices; see

appendix A for details.

4 Bias

A fact that appears to have been overlooked by Tippett et al. (2003) is that the

ensemble SRF framework encompasses filters that are not EnKFs. To see this,

suppose that an arbitrary ensemble SRF is a semi-deterministic EnKF. Then it

follows from (9) and (15) that x̃ equals the analysis ensemble mean xa and that X̃

equals the analysis ensemble perturbation matrix X
a. However, (2) implies that the

sum of the columns of an ensemble perturbation matrix must be zero, and this does

not necessarily follow from (16) and (17), which are the only constraints on X̃. To

see this, let T be a particular solution of (17). Then by theorem 2 a more general

solution is TU where U is an arbitrary m×m orthogonal matrix. The corresponding

general value of X̃ is

X̃ = X
f
TU. (32)

Now let 1 be a column m-vector in which every element is 1; that is

1 =




1
...

1




. (33)

The sum of the columns of X̃ is

X̃1 = X
f
TU1. (34)

Thus X̃ is a valid ensemble perturbation matrix if and only if U1 lies in the null

space1 of



ensemble collapses to a point), there will be at least some choices of U that give

X̃1 6= 0 and hence an X̃ that is invalid as an ensemble perturbation matrix. In these

cases the ensemble SRF cannot be a valid semi-deterministic EnKF.

To see the effect of treating an ensemble SRF that is not a valid semi-deterministic

EnKF as though it were, let x′

i denote the ith column of
√

m − 1X̃, and let





deviations are close to one-tenth of the amplitude of the oscillations in the truth.

The same covariance matrix is used in generating a random initial ensemble, centred

on the true initial state.

Fig. 1 shows the difference between the filter and the truth for θ and r. There are

considerable intervals of time during which the true state of the system (represented

by zero on the vertical axis) is outside the band defined by the ensemble mean ±
ensemble standard deviation. This suggests that the ensemble statistics may be

inconsistent with the actual error. This is confirmed by computing the fraction of

analyses having an ensemble mean within one ensemble standard deviation of the



perturbation matrix and thus has columns that sum to zero. Therefore X̃1 = 0 and

the ensemble SRF is unbiased.

Suppose conversely that a filter is an unbiased ensemble SRF. Unbiasedness

implies that x̃ is the mean of the analysis ensemble and X̃ is the analysis ensemble

perturbation matrix. Equation (15) implies that xa satisfies (9) in the definition of

a semi-deterministic EnKF, whilst theorem 1 implies that P
a satisfies (10) in the

same definition. Therefore the filter in a semi-deterministic EnKF. 2

6 Conditions for an unbiased ensemble SRF

Definitions 2 and 3 in conjunction with theorem 8 reduce the problem of construct-

ing a semi-deterministic EnKF to finding a solution T of the matrix square root

condition (17) and checking that the matrix X̃ defined by (16) satisfies X̃1 = 0. It

would be useful to replace this condition on X̃ with one on T, so that the problem

of finding a semi-deterministic EnKF is reduced to one of finding T satisfying cer-

tain conditions. Such conditions for T are provided in this section. It is assumed

throughout that T satisfies the matrix square root condition (17). The first the-

orem gives an additional sufficient condition for the resulting ensemble SRF to be

unbiased.

Theorem 9 If 1 is an eigenvector of T, then the ensemble SRF is unbiased.

Proof. By hypothesis T1 = λ1 for some scalar λ. Therefore X̃1 = X
f
T1 = λX

f1 =

0. Therefore the filter is unbiased. 2

An important special case is that of a symmetric T. This is the subject of the

following theorem and its corollary.

Theorem 10 If T is symmetric, then 1 is an eigenvector of T.

Proof. Since Y
f is an ensemble perturbation matrix, it satisfies Y

f1 = 0. Therefore

it follows from (17) that T
21 = 1 for symmetric T. Thus 1 is an eigenvector of T

2.

But the eigenvectors of the square of a symmetric matrix are the same as those of

the original matrix. Therefore 1 is an eigenvector of T. 2
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Corollary 11 If T is symmetric, then the ensemble SRF is unbiased.

Although not as general as theorem 9, corollary 11 provides a particularly simple



Proof.







Since C
T
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augmented state space of the type discussed at the end of section 2 must be used to

apply it to a nonlinear observation operator. Tippett et al. (2003, section 3a) outline

how the EAKF may be expressed in post-multiplier form (16), but the demonstra-

tion glosses over a few details2. Therefore an alternative proof is presented here.

This proof is based on the SVD of X
f instead of on the eigenvalue decomposition of

P
f as in Tippett et al. (2003).

The first step is to construct the reduced SVD of X
f as in the proof of theorem 3:

X
f = F0G0W

T
0

(46)

where G0 is an r × r diagonal matrix of the nonzero singular values of X
f and F0



related to G0, F0, and W0 by (20), (21), and (22). The eigenvalue decomposition

(47) extends to

(HFG)T
R

−1
HFG = C̃Γ̃C̃

T
(51)

where C̃ is orthogonal, Γ̃ is diagonal, and both are m × m. This is achieved by

setting

C̃ =




C̃0 0

0 C̃1


 , (52)

Γ̃ =




Γ̃0 0

0 0


 , (53)

where C̃1 is an (m−r)×(m−r) orthogonal matrix. It may be verified by substitution

that (51) is satisfied. Similarly it follows by substitution that X
a defined by (49)

also satisfies

X
a = FGC̃(I + Γ̃)−

1

2W
T = X

f
T



require a linear observation operator, but it will be shown below that this restriction

can be eliminated. The filter is given by

X
a = (I − K̃H)Xf (57)

where K̃ is a solution of

(I − K̃H)Pf(I − K̃H)T = (I − KH)Pf , (58)

K being the standard Kalman gain defined by (6). This equation ensures that the

ensemble covariance matrix updates as in (5). A solution of (58) is given in Whitaker

and Hamill (2002), based on Andrews (1968). This solution is

K̃ = P
f
H

T

[(√
HP

f
H

T + R

)T
]
−1 (√

HP
f
H

T + R +
√

R

)
−1

= X
f(Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

(59)

where, given a symmetric positive definite p × p matrix V, the square root
√

V

stands for a p × p matrix such that
√

V
√

V
T

= V. The general solution (59) is not

considered in Tippett et al. (2003), which instead concentrates on the case of scalar

observations where p = 1. However, it is not difficult to show that the more general

form fits into the ensemble SRF framework. To do this, expand (57) and substitute

(59) to obtain

X
a = X

f − K̃Y
f

= X
f − X

f(Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

= X
f
T (60)

where

T = I − (Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f . (61)

Note that the linear operator H does not explicitly appear in this post-multiplier

form of the filter, which may therefore be applied when the observation operator is

nonlinear. It may be shown that T satisfies (17) as follows (which adapts a proof of

Andrews (1968)):

TT
T =

[
I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

]
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×
[
I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

]T

= I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

×
[√

D

(√
D +

√
R

)T
+

(√
D +

√
R

) √
D

T − Y
f (T



The analysis ensemble statistics produced by a biased ensemble SRF are unde-

sirable for a number of reasons beyond the simple fact that a biased mean tends to

put the filter’s best state estimate in the wrong place. Such a bias would not be

too great a problem if it were accompanied by an increase in the size of the error

estimate provided by the filter’s covariance matrix. Users of the output would then

be aware of the increased error, although they would remain unaware that part of

the error is systematic rather than random. However, as is shown in section 4, there



a best state estimate is maintained separately from the ensemble, which still pro-

vides the measurement of estimation error. The forecast and analysis perturbation

matrices are taken relative to the forecast and analysis best state estimates rather

than the ensemble means. It is not necessary for the columns of these matrices to

sum to zero and hence there is no need to impose an unbiasedness condition in the

analysis step: the ensemble perturbation matrices may be updated using X
a = X

f
T

where T is any solution of the matrix square root condition (17). An example of

such a filter is the maximum likelihood ensemble filter (MLEF) of Zupanski (2005),

in which the analysis step updates the best state estimate using 3D-Var (with a cost

function that uses the forecast ensemble covariance matrix instead of a static back-

ground error covariance matrix) and updates the ensemble perturbations using the

ETKF. Although that paper references the original ETKF of Bishop et al. (2001),

it is in fact the revised ETKF of Wang et al. (2004) that is used3.

Finally, it must be stated the the type of bias discussed in this paper is not the

only type of bias that may be encountered with an EnKF. Inconsistent ensemble

statistics have been observed in formulations of the EnKF other than the origi-

nal ETKF. Houtekamer and Mitchell (1998) present results showing problems with

a stochastic EnKF and Anderson (2001) discusses the issue in the context of the

EAKF. The causes of the inconsistencies in these cases must be different to that

of the ETKF bias established in section 8.1. The authors attribute them to the

use of small ensembles and to other approximations made in the course of deriving

the filters. Various solutions to the problem have been proposed in the literature.

Houtekamer and Mitchell (1998) use a pair of ensembles with the covariance cal-

culated from each ensemble being used to assimilate observations into the other.

The justification for such an approach is discussed further in van Leeuwen (1999)

and Houtekamer and Mitchell (1999). Anderson (2001) uses a tunable scalar co-

variance inflation factor. The more fundamental problems of model and observation

biases are not addressed here. Such biases may be estimated using data assimilation

with an augmented state vector (e.g., Nichols (2003)). The incorporation of these

3By Zupanski (2005, (10) and (12)) the post-multiplier matrix is V(I+Λ)−1/2V
T in the notation

of that paper, which corresponds to (45) in this paper

28



techniques into the ensemble SRF framework is left for future work.
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A Structure of the set of ensemble SRFs

This appendix uses the results of section 3 to describe the se



cancelled from both sides of this equation to give U = U3. Therefore U is unique.

2

Theorems 2 and 18 imply the following description of the set of all solutions T

of (17) in terms of the group O(m) of all m × m orthogonal matrices.

Corollary 19 Let T1 be a solution of (17). Then U ↔ T1U defines a one-to-one

correspondence between O(m) and the solutions T of (17).

Thus the set of all ensemble SRFs is in one-to-one correspondence with O(m).

B The Two-Dimensional Swinging Spring

The two-dimensional swinging spring (Lynch, 2003) consists of a heavy bob of mass

m suspended from a fixed point in a uniform gravitational field of acceleration g

by a light spring of unstretched length `0 and elasticity k. The bob is constrained

to move in a vertical plane. The system coordinates are polar coordinates r, θ (r

measured from the point of suspension, θ measured from the downward vertical)

and the corresponding generalised momenta pr, pθ. The equations of motion are

θ̇ =
pθ

mr2
, (64)

ṗθ = −mgr sin θ,



Theorem 20 Suppose that X
f is nondegenerate and that T1 is the post-multiplier

matrix of an unbiased ensemble SRF. Then U ↔ T1U defines a one-to-one cor-

respondence between the subgroup of all matrices U in O(m) that have 1 as an

eigenvector and the set of post-multiplier matrices of unbiased ensemble SRFs.

Proof. This follows from corollary 19 and theorems 13 and 14. 2

The subgroup in theorem 20 is given more concrete form by the following theo-

rem.

Theorem 21 There is a one-to-one correspondence between the subgroup of all ma-

trices in O(m) that have 1 as an eigenvector and the group O(1) × O(m − 1).

Proof. Let W be an orthogonal matrix in which the first column is a scalar multiple

of 1. Then U ↔ W
T
UW is a one-to-one correspondence between O(m) and itself.

Under this correspondence, matrices U that have 1 as an eigenvector correspond to

matrices that have the coordinate vector

e1 =




1

0
...

0




(68)

as an eigenvector. The latter matrices are those of the form



U1 0

0 U2


 (69)

where U1 is an element of O(1) (that is to say U1 = ±1) and U2 is an element of

O(m − 1). This establishes the required correspondence. 2

Thus, in the case of nondegenerate X
f , the set of all unbiased ensemble SRFs is

in one-to-one correspondence with O(1) × O(m − 1).
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