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Abstract

We consider the approximation of highly oscillatory weakly singular surface inte-
grals, arising from boundary integral methods for solving high frequency acoustic
scattering problems in three dimensions. As the frequency of the incident wave
increases, the performance of standard quadrature schemes deteriorates. Naive ap-
plication of asymptotic schemes also fails due to the weak singularity. We present
here a new scheme based on a combination of an asymptotic approach and exact
treatment of singularities in an appropriate coordinate system. We demonstrate that
the computational cost of evaluating many integrals over the surface of a scatterer



1 Introduction

This paper is concerned with the approximation of integrals of the form

Mψ(x) :=
∫

∂D

m(x,y)

|x − y|
eik[|x−y|+d̂.(y−x)]ψ(y) ds(y), x ∈ ∂D, (1)

where m(x,y), ψ(y) are smooth and slowly oscillating functions, d̂ is a fixed
unit vector (the incident wave direction), and ∂D is the surface of a three di-
mensional convex obstacle D. Such integrals arise in boundary integral meth-
ods for acoustic scattering problems, and if the acoustic size kA is large (where
A is the size of obstacle), corresponding to the high frequency problem, the



In particular, for scattering by convex three dimensional obstacles with smooth
boundaries a number of very efficient high order boundary integral schemes
have recently been proposed [2,4]. These schemes exhibit extremely fast (su-
peralgebraic or even exponential) convergence rates for frequencies starting
from the resonance region to a medium level (size of the obstacle is about a
hundred times the wavelength). But they break down for shorter wavelengths.
One of the main reasons for this is the expense of evaluating many highly
oscillatory integrals of the form (1) in the scheme.

The unique radiating solution u of (2) can be represented as [3, p.59]

u(x) = −
∫

∂D

Φ(x,y)v(y) ds(y), x ∈ R3\D,

where Φ(x,y) := eik|x−y|/(4π|x − y|), and the unknown density v ∈ C(∂D) is
the unique solution of the boundary integral equation

1

2
v(x) +

∫
∂D

[
∂Φ(x,y)

∂n(x)
− iΦ(x,y)

]
v(y) ds(y) =

∂ui

∂n
(x) − iui(x), x ∈ ∂D. (3)

We write v(x) = φ(x)eikx.d̂, where φ is slowly oscillating compared to eikx.d̂

(see e.g. [1]). This reduces (3) to the second kind boundary integral equation

φ(x) +
∫

∂D

m(x,y)

|x − y|
e



2 Singularity-free formulation

Under the assumption that the surface ∂D of the convex scatterer can be
described globally in spherical coordinates, we write x ∈ ∂D as

x = q(x̂) = r(θ, φ)p(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π], (6)

where x̂ ∈ ∂B (the unit sphere), is given by

x̂ = p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ)T, θ ∈ [0, π], φ ∈ [0, 2π].

With J being the Jacobian of q, we get for any integrable ψ on ∂D,∫
∂D

ψ(x) ds(x) =
∫

∂B

ψ(q(x̂))J (x̂) ds(x̂), (7)

and using (6) and (7), we rewrite (1) as

Mψ(q(x̂))=
∫

∂B

m(q(x̂),q(ŷ))

|q(x̂) − q(ŷ)|
eik[|q(x̂)−q(ŷ)|+d̂.(q(ŷ)−q(x̂))]ψ(q(ŷ))J (ŷ) ds(ŷ).(8)

Recalling that d̂ is a fixed unit direction vector, |d̂| = 1, we write d̂ = p(θd, φd),
for some θd ∈ [0, π], φd ∈ [0, 2π]. To simplify the weak singularity in (8), we
then use the same transformation matrix as in [4]. For each x̂ ;o∇ each))] sin02



With ẑ = p(θ′, φ′) (and noting that θ′ is then the angle between n̂ and ẑ,
equivalently the angle between x̂ and ŷ), and recalling (9) and that Tx̂ is an or-
thogonal transformation, it is straightforward to show that T−1

x̂ ẑ = p(θ′x, φ
′
x),

where θ′x and φ′x are functions of θ, φ, θ′, φ′ satisfying

sin θ′x cosφ′x = sin θ′(cos θ cosφ cos(φ−φ′)+sinφ sin(φ−φ′))+cos θ′ sin θ cosφ,

sin θ′x sinφ′x = sin θ′(cos θ sinφ cos(φ−φ′)−cosφ sin(φ−φ′))+cos θ′ sin θ sinφ,

cos θ′x = cos θ cos θ′ − sin θ sin θ′ cos(φ − φ′).

Using (6), we then get the following equalities;

f̃1(x̂, ẑ) =
√

[r(θ′x, φ
′
x)−r(θ, φ) cos θ′]2+[r(θ, φ)]2 sin2 θ′=:f1(θ, φ, θ′, φ′),(10)

f̃2(x̂, d̂, ẑ) = r(θ′x, φ
′
x)h(θd, φd, θ

′
x, φ

′
x) − r(θ, φ)h(θd, φd, θ, φ),

=: f2(θ, φ, θd, φd, θ
′, φ′). (11)

where h(a, b, c, d) := sin a sin c cos(b−d)+cos a cos c. Hence using the notation

f(θ, φ, θd, φd, θ
′, φ′) := f1(θ, φ, θ′, φ′) + f2(θ, φ, θd, φd, θ

′, φ′), (12)

H(θ, φ, θ′, φ′) := m(r(θ, φ)p(θ, φ), r(θ′x, φ
′
x)p(θ′x, φ

′
x))

2 sin(θ′/2)

f1(θ, φ, θ′, φ′)
J (p(θ′x, φ

′
x)),

(13)

and noting the 2π periodicity of the integrand with respect to φ′, we get

(Mψ)(r(θ, φ)p(θ, φ)) =
2π+φ∫
φ

π∫
0

H(θ, φ, θ′, φ′)eikf(θ,φ,θd,φd,θ′,φ′)ψ(r(θ′x, φ
′
x)p(θ′x, φ

′
x)) cos

θ′

2
dθ′ dφ′. (14)

Recalling the smoothness of m(·, ·) and J (·), and noting that

∣∣∣∣∣ 2 sin(θ′/2)

f1(θ, φ, θ′, φ′)

∣∣∣∣∣ ≤ min

(
1

|r(θ, φ) cos(θ′/2)|
,

1

|r(θ′x, φ′x) − r(θ, φ) cos θ′|

)
,

we have that H(θ, φ, θ′, φ′) is a smooth (analytic) function in θ, φ, θ′, φ′.
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3 Evaluation of critical points

It is well known (see e.g. [6]) that the main contribution to the generalized
Fourier integral (14) comes only from the values of the integrand at three
types of critical points:

(i) Stationary points, at which ∇f :=
(

∂f
∂θ′ ,

∂f
∂φ′

)T
= 0.

(ii) Points on the boundary, at which one of the following equations holds.

∂f(0, φ′)

∂φ′
= 0;



In general, the nonlinear system (16)–(17) cannot be solved analytically. For
notational simplicity and analytical calculations, in the remainder of this paper
we will assume r ≡ 1 and d̂ = [0, 0, 1]T . Using (11)–(13), we get

H(θ, φ, θ′, φ′) =H(k, θ′) :=
1

4π

[
−1

2
+ i

(
k sin

θ′

2
− 1

)]
, (18)

f(θ, φ, θ′, φ′) = 2 sin
θ′

2
+ cos θ(cos θ′ − 1) − sin θ sin θ′ cos(φ − φ′), (19)

∂f

∂θ′
= cos

θ′

2
− cos θ sin θ′ − sin θ cos θ′ cos(φ − φ′), (20)

∂f

∂φ′
= − sin θ sin θ′ sin(φ − φ′) (21)

In the following theorem, we describe critical points of type (i).

Theorem 3.1 The stationary points (θ′, φ′) ∈ [0, π] × [φ, 2π+φ) of the phase
function in (19) are as follows:

• If θ = 0 then ∇f = 0 for (θ′, φ′) = (π/3, φ′), (π, φ′).
• If θ ∈ (0, π/2) then there are five solutions of ∇f = 0, given by (θ′, φ′) =

(π−2θ, φ), ((π−2θ)/3, φ), ((π+2θ)/3, φ+π), (π, φ+π/2) and (π, φ+3π/2).
• If θ = π/2



i.e. if θ′ = (π(1 + 4n)



(Mjψ)(p(θ, φ)) :=


∫ 2π+φ

φ

∫ π
0 Gj(θ, φ, θ′, φ′)eikf(θ,φ,θ′,φ′) dθ′ dφ′, j = 1, . . . , N(θ),∫ 2π+φ

φ

∫ π
0 g(θ, φ, θ′, φ′)eikf(θ,φ,θ′,φ′;�6, j



(M̂N(θ)+1ψ)(p(θ, φ)) =

2πiH(k, 0)ψ(p(θ, φ))

k| cos θ|
− 2πH(k, 0)ψ(p(θ, φ))

k2 cos4 θ

[
1+

1

2
sin2 θ

]
−

2π ∂H
∂θ′ (k, 0)ψ(p(θ, φ))

k2| cos3 θ|

−H(k, 0)

k2

2π+φ∫
φ

∂ψ(p(θ′x, φ
′
x))

∂θ′

∣∣∣∣∣
θ′=0

dφ′

(1−sin θ cos(φ−φ′))2
.



where

J(n) :=
n−1∑
s=0

(
i

k

)s+1∫
Γ

(us.n)eikf dσ, gs+1 := (∇.us), us+1 :=
∇f

|∇f |2
gs+1,(35)

Γ is the positively oriented (anticlockwise) boundary of supp(g), σ is the arc
length of Γ, and n := (n1, n2) is the unit outward normal vector to Γ. We
immediately deduce that for n = 1, 2, . . .,

|(MN+1ψ)(p(θ, φ)) + J(n)| ≤ 1

kn

∣∣∣∣∣∣∣
∫ ∫
supp(g)

gneikf dθ′ dφ′

∣∣∣∣∣∣∣ ≤ C(θ, φ)

kn+1
‖gn‖∞. (36)

Next we evaluate∫
Γ

(us.n)eikf dσ =(6(7.-TJ/7(Tf(+(Tf(.(-.7(T̂[(76Tf(.66((T̂[()-(()]TJ/F6(.(Tf(.((T̂[(n)]TJ/F6(7.7(Tf(fTf(.7(.77(T̂[77TJ/F6(.Tf()]TJ/n



where

P (θ′, φ′) :=
fθ′θ′ + fφ′φ′

f 2
θ′ + f 2

φ′
− 2

f 2
θ′fθ′θ′ + 2fθ′fφ′ + f 2

φ′fφ′φ′

(f 2
θ′ + f 2

φ′)2
.

From the definition of χj, j = 1, . . . , N , g and all its derivatives, and hence gs,
s = 0, 1, . . ., then vanish on all other sections of Γ (Γ7, Γ8 and Γ9 in Figure 1,
plus four other semicircles in the case θ ∈ (0, π/2)). Thus

∫
Γ

(us.n)eikf dσ=

2π+φ∫
φ

gs(θ, φ, 0, φ′)

1−sin θ cos(φ−φ′)
dφ′+

eik(2−2 cos θ)

sin θ

2π+φ∫
φ

gs(θ, φ, π, φ′)

cos(φ−φ′)
dφ′.(40)

Using (39),

gs+1(θ, φ, 0, φ′) =
cos θ

(1 − sin θ cos(φ − φ′))2
gs(θ, φ, 0, φ′) +

∂gs

∂θ′ (θ, φ, 0, φ′)

1 − sin θ cos(φ − φ′)
,

(41)

gs+1(θ, φ, π, φ′) =

(
1/2 − cos θ

sin2 θ cos2(φ − φ′)

)
gs(θ, φ, π, φ′) +

∂gs

∂θ′ (θ, φ, π, φ′)

sin θ cos(φ − φ′)
, (42)

and since p(θ′x, φ
′
x)|θ′=0 = p(θ, φ) and p(θ′x, φ

′
x)|θ′=π = p(π − θ, φ),

g(θ, φ, 0, φ′) = H(k, 0)ψ(p(θ, φ), g(θ, φ, π, φ′) = 0,

g1453 Td[(0)]TJ/F27 11.957f2; �; � ; �
′) = 0 00

xk, 0)ψ

2
, φx ) |



+
eik(2−2 cos θ)H(k, π)ψ(p(π−θ, φ))

2 sin2 θ

2π+φ∫
φ

[
1−∑N

j=1 χj(θ, φ, θ′, φ′)
]

cos2(φ − φ′)
dφ′. (44)

Applying Lemma 4.2 and the fact that H(k, π) is of order k in (43) and (44),
the result (33) follows from (35) (with n = 2), (34) and (32). 2

Remark 4.4 Using (40), (41) and Lemma 4.2, we see that for θ = π/2 ± δ,
the leading order term of

∫
Γ(us.n)eikf dσ for fixed k as δ → 0 is of order

2π+φ∫
φ

coss θ

(1 − sin θ cos(φ − φ′))2s+1
dφ′ ∼ coss θ

| cos θ|4s+1
∼ 1



We computed the exact value of (Mψ)(p(θ, 0)) for θ ∈ S1001, where the set
S1001 consists of 1001 equally spaced points on [0, π], including the end points.
We computed the approximation (Mappψ)(p(θ, 0)) with θ ∈ S1001 \{0, π/2, π}.

In Figures 2 and 3, we plot the exact value (Mψ)(p(θ, 0)) for θ ∈ S1001 \{0, π},
and approximate solution (Mappψ)(p(θ, 0)) for θ ∈ S1001 \ {0, π}, |θ − π/2| >
10k−1/3, for k = 1, 310, 720 and k = 2, 621, 440. Our approximations are seen
to be qualitatively correct (in the sense that the crosses for the approximate
values lie inside the circles representing the exact values) outside a region
of width of the order of k−1/3 around θ = π/2. Evaluation of just the one
dimensional inner integral for the exact solution of (Mψ)(p(θ, 0)) with θ ∈
S1001, k = 1, 310, 720 and k = 2, 621, 440 took over 44 hours and 94 hours
of CPU time respectively on a AMD Opteron 2.0Ghz computer, while our
approximation (Mappψ)(p(θ, 0)) with θ ∈ S1001 \ {0, π/2, π} was computed for
both the cases in less than 0.03 seconds.

In Figure 4 we plot the error E(k, θ) for |θ − π/2| > 10k−1/3, for k = 10240,
k = 40960, k = 163840, k = 655360 and k = 1, 310, 720, to demonstrate
efficiency of our formula for computing (1) within a few seconds of CPU time.

Figure 2: Exact and approximate solutions for k = 1, 310, 720.

Figure 3: Exact and approximate solutions for k = 2, 621, 440.

14



Figure 3: Errors E(k, θ) for |θ − π/2| > 10k−1/3, various k > 10000.

6 Conclusions

Outside of a band of width Ck−1/3


