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A model for saline intrusion - an example of non-passive, non-reactive, single-
species contaminant transport in a porous medium - is presented. A computa-
tional algorithm for approximating the solution of this contaminant transport
model is given.

An implicit Taylor-Galerkin method is used to discretise the contaminant
continuity equation (which takes the form of an advection-diffusion equation).
This discretisation method gives a non-symmetric matrix system (due to the fully

implicit treatment of the advection term) which is solved by the Bi-CGSTAB non-
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This report is concerned with the numerical modelling of non-passive, non-reactive,
single-species contaminant transport in saturated porous media. In this type of
flow, a contaminant is carried through a porous medium by a fluid; the contami-
nant does not undergo any chemical or biological reactions but its presence does
affect the physical properties of the fluid, e.g. density, viscosity.

A common example of this type of flow is saline intrusion - saltwater moving
inland and mixing with less dense freshwater. In regions where coastal aquifers are
utilised for water supply, saline intrusion leads to a degradation of groundwater
quality. To control this, an accurate and reliable model for the shape and position
of the saltwater front is required to predict the response to changes in usage
patterns. A solution of this type of problem is the object of this work.

There is a transition zone between the freshwater and the saltwater caused by
hydrodynamic dispersion. In some circumstances, the width of this zone is small
relative to the thickness of the aquifer so that it may be approximated as a sharp
interface [1]. This report is concerned with flows in which the sharp interface
approximation is not valid and a full variable density model must be used.

Variable density transport models are well documentedctiont;i));y tre






In non-passive contaminant transport, the presence of the contaminant affects
the properties of the fluid; it is assumed that only the density of the fluid is
affected in this work. The contaminants considered are non-reactive so there are
no chemical effects to consider. A mathematical model which governs flows of

this type in porous media can be formulated in terms of

1. a continuity equation for the fluid,

2. a continuity equation for the contaminant, and



In this work, it is assumed that is constant and equal to the viscosity of the
non-contaminated fluid, o. Hence the fluid flux equation can be written in terms

of the piezometric head as

= _ +0 ) (1)

kog

where _ = == is the hydraulic conductivity tensor (LT™Y). From [1], in the
absence of source terms the fluid mass balance equation for saturated flow (i.e.
flow in which the moisture content is equal to the porosity and hence independent

of time) is
—+ ( )=0 (2)

where is the porosity of the porous medium. Substitution of from (1) into

(2) constitutes the fluid continuity equation.

From [1], in the absence of source terms the contaminant mass balance equation

for saturated flow is

—+ _ () =0 (3)
where = _ () is the dispersion tensor (L*T~!). The ( ) entry in the disper-
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A Taylor-Galerkin method for the advection-diffusion equation was given in Donea



2 1

S HA) o A ()
so that the Taylor series becomes
A 3
()= +a) - —C +4a)+—( ) +0(4) (8)

It is interesting to note that the Taylor-Galerkin formulation used here for the
advection-diffusion equation leads to a standard Crank-Nicolson temporal dis-

cretisation. Using (7) to replace the temporal derivatives by spatial ones gives
2

nodes

nodes ) 2




Although this leads to a symmetric system, it has the stability restriction of the
explicit Taylor-Galerkin method.

In the remainder of this report, the un-split implicit Taylor-Galerkin method
for the advection-diffusion equation given by (9) is used in the solution of prob-
lems involving transport of non-reactive, single-species contaminants in saturated

porous media.
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4 Numerical Solution of the Governing

Equations

In this section, the methods used to discretise and solve the governing equations

from Section 2 are described.

4.1 Partial Coupling

Owing to the dependency of the fluid density, p, on the contaminant concentra-
tion, ¢, in the constitutive equation (4), the fluid mass and contaminant mass
balance equations are coupled (and the contaminant mass balance equation is
non-linear).

In order to solve such a problem, the mass balance equations must either be
solved simultaneously with a non-linear iteration (which doubles the order of the
problem) or an iteration must be performed between them at each time step,
with a non-linear iteration performed on the contaminant mass balance equation
during each coupling iteration.

However, in the types of problems considered in this report, the coupling is
of a relatively weak nature (i.e. g—i is small). Hence, for transient computations,
a “partially coupled” approach is adopted in which the term that causes the
coupling (the density) is treated explicitly. This linearises the contaminant mass
balance equation and also allows the two mass balance equations to be solved
separately during each time step [7], dramatically decreasing the complexity and

computational cost.

With this partially coupled approach, the structure of each time step is

1. The fluid density at this time step is approximated explicitly by lin-

ear extrapolation of the densities from the two previous time steps, i.e.

At n+1 B
P ((A)t)n (0" = "),

2. The fluid continuity equation ( (1)  (2) ) is solved for the piezometric
head.

3. The Darcy velocity field is calculated using the fluid flux equation (1).
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4. The contaminant mass balance equation (3) is solved for the contam-

inant concentration.



method to give

n+1 (I)n—l—l n+1 Q o —
) " + ) 4+ RA( r

where the superscripts denote the discrete time level. This weak form is then
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is symmetic and positive definite if the tensor __ "+

is symmetric and positive
definite ([4], p212). For a reasonably fine spatial discretisation, the system is also
large and sparse so an iterative solution method is preferable. A suitable solution

technique is the incomplete Cholesky preconditioned conjugate gradient method

(ICCG) [11] which is used in this work.

An average value of the Darcy velocity of the fluid on each element, which is
needed in the contaminant mass balance part of the model, is calculated using
the fluid flux equation (1).

Expressed in terms of the transformed variable, ®, which is calculated in the

solution of the fluid continuity equation, the fluid flux equation is

This equation is discretised by the standard Galerkin finite element method.
Treating the material and fluid properties in the same manner as for the fluid

continuity equation then leads to the matrix system

nodes nodes n+1
n+1 e __ n+1 = e
I J Q — q)J n+1 I J Q
ne ne
J=1 € J=1 €
o n+1 7 Qe
e Ke
(=12. )

The matrix in this system €2

n+1



4.4 Contaminant Mass Balance Equation

Substituting (2) into (3) leads to the following form of the contaminant mass
balance equation,
p(/ﬁg; +(pq).Ve = V. {¢DV(pc)} . (10)
This is an advection-diffusion equation, which is discretised by the implicit Taylor-
Galerkin method outlined in Section 3 by using (10) to replace the tempo-
ral derivatives in an approximate Taylor series expansion of the form (8), and
then performing a spatial discretisation by the standard Galerkin finite element
method.
This leads to the following matrix system which is the fully discretised form

of the contaminant mass balance equation

1 1 1 1 1
{A_I_(Bn—l—l_l_cn—l—l)}cn—l—l :{A_(Bn+cn)}cn_2(Fn+l_|_Fn)7

At 2 At 2
where
A= {AZ}J}I,JZI,...,nodes
Bi = {B}J}I,JZL...,nodes Ci = {CS}J:L...,nodes
Ci = {C;J}I,JZL...,nodes FZ = {F;}I:17~~~7n0d557
and

Ay = S A, =% /R NN

B, = ZB;;}:Z/R&VNI.QVVNJCZQS

Cry = ZC?:}':Z@- /R NIV N9

T eq <qz>2 e
= 0= gy et

The angled brackets have the same meaning as in the discretisation of the fluid
continuity equation.
The matrix in this system has three components, the mass matrix A which

is symmetric and positive definite, the stiffness matrix B"*! which is symmetric
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and positive definite (with the same assumptions on the structure of ntl

as

n

for __ "*!in Section 4.2) and the advection matrix "*! which is non-symmetric

and indefinite. Hence the system is non-symmetric and, as with the discrete fluid



L T m
h=700m &=1
A
q,= g,=0
2000m 0°=0 0°=0
QZ
l X
4%
h=500m g.=0
-t 10m —
-5



The Courant and mesh Peclet numbers for this problem are

z

A A
A L
where A is the time step and A is the vertical mesh size.

Initially, the concentration of the tracer is zero everywhere inside the region.
The tracer front moves down the column under the action of gravity and this front
disperses as it moves. Until the tracer reaches the bottom of the column, this

problem can be analysed as one on a semi-infinite domain in which the boundary

conditions are,

(2000 ) = 1
K ) =0
A00) =0
S100 ) =0

The analytic solution to this problem has been derived in [12] as

1 .(2000 2000 - 2000 5
( ):E exp ¥ erfc 5 + erfc 5 +
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is almost a discontinuity. To reduce the oscillations this may cause, for the case
with = 5, the time step is started from A =5 10* s. (corresponding to
= 05) and increased by a factor of 1.2 at each time step to a maximum value

of A =5 10°s. (corresponding to = 5).
ie. (A )pew =min(12 (A )ye 5 10°s.)

From Table 1, for =05 1 the solution is monotone, but for = 5 oscillations
in the solution cause un-physical extrema to be created (the maximum value of
the dimensionless concentration is greater than one).

Non-physical concentrations can be disastrous in reactive transport models
where they affect the chemical terms. Flux-corrected transport methods [2, 19]
- i.e. local averaging of the scheme with a positive! lower order scheme - may
be used in these cases to control the oscillations. However, as this report is not

concerned with reactive transport, oscillations are regarded as acceptable as long

1 Positivity is the multidimensional generalisation of monotonicity.
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The Henry problem [§] is a 2-D, saturated, groundwater flow problem which in-
volves fresh-water in a confined aquifer discharging to a vertical open sea bound-
ary over a diffuse wedge of sea-water that has intruded into the aquifer. An
approximate analytic solution to the Henry problem was given in the original
paper but no known numerical model matches this solution.

In [17] it is suggested that there may be an inaccuracy in the approximate

analytic solution caused by missing higher-order terms which were originally dis-

g.=0 q,"=0
4 -
q,=0 g
- -
P= pgz '« 0.,=6.6 x 10°m/s
1.0m : .
_ «— C=0
z, c=1 AZ .
-
X -
N
g.=0 q,’=0
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consists of two components as shown in Figure 6. On the lower part of the coastal
boundary (0 1) the dimensionless salt concentration is set to unity, while
on the remainder of the coastal boundary ( Im) the prescribed dispersive
solute mass flux, ¢, is set to zero.

Now 1 is not known but there are two ways of determining this

value. In the first (used in e.g. [9]), an initial guess for ; is made and a solution
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6 oncluding Remarks

The variable density model for contaminant transport in porous media with a
Taylor-Galerkin discretisation for the contaminant continuity equation gives tran-
sient results which agree well with analytical solutions and with those from the
literature.

The partially coupled approach, in which the weak dependence of the fluid
density on the contaminant concentration is exploited by treating the term which
causes the coupling between the fluid and contaminant continuity equations (the
density) explicitly, is valid for the problems encountered in transient saline intru-
sion modelling. This approach leads to a substantial decrease in the computa-
tional cost.

The fully implicit Taylor-Galerkin method with linear basis functions is equiv-
alent to the Crank-Nicolson finite element method. Although this discretisation
method is demonstrated for problems on two-dimensional regular grids in this
report, it is fully multi-dimensional and operates on irregular grids in the same
way.

For the test cases presented, the diagonally preconditioned Bi-CGSTAB solver
converges in an acceptable number of iterations (e.g. < \/n, where n is the order
of the matrix). However, as the Courant number is increased, the advection
part of the global matrix (i.e. the component which causes the non-symmetry)
becomes more dominant, which may lead to a degradation in the performance of
the Bi-CGSTAB solver. The performance of the non-symmetric solver has not
been investigated in this report, this aspect of the solution method is the subject

of a future study.
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