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where A; € R



The above statements follow from [6, Theorem 2.1] in which we use the funda-
mental nullspace basis of R

2:. _'lehz ’:

Remark 2.1. Finding such a permutation closely relates to the problem of
finding a nullspace basis of A; since if A; is nonsingular, then we can form the
fundamental nullspace.

If the permutation f moves all the large diagonal entries of H into R,y;
then the eigenvalues of (6) will start to cluster around 1 as we move towards the
optimal solution of (2) and the preconditioned system will be well conditioned.
Conversely, if all large diagonal entries of H were moved into R,;; the eigenval-
ues of (6) would have magnitude O() and the preconditioned system will be
very ill-conditioned. "

3 Permutation methods

Dollar [3] flrstly found a permutation f; such that the diagonal entries of
TIHTl are sorted in non-decreasing order. A permutation f, was then ob-

tained by carrying out an LU factorization of TTAT with threshold row pivot-
ing. The hope was that by using a threshold we could reduce the number of
large diagonal entries of H that were moved back into M,,; where f="Ffif2:
Unfortunately f, was frequently far from being the identity so many of the
large entries ended up in Ihlu:

In an attempt to improve on this method she also looked at finding a permu-
tation #, such that the diagonal entries of ] H ¢ are sorted in non-increasing
order. As before, a permutation #, is obtained by carrying out an LU fac-
torization of #TAT with threshold row pivoting. The resulting permutations
f=fifzand €




the two, the numerical tests carried out in the thesis [3] imply that there might
be another method to flnd a permutation f which, for convenience, can be
coded using standard Matlab® functions and is more efiective than the above
method.

Let us consider how the LU factorization command [L,U,P] = lu(A,thresh)
works in Matlab®: The variable thresh is a pivot threshold in [0,1]. Pivoting
occurs when the diagonal entry in a column has magnitude less than thresh
times the magnitude of any sub-diagonal entry in that entry. In our code, we
carry out the command [L,U,Pi] = Tu(A”,thresh). We would like the rows
of AT that correspond to large entries of H to be avoid being chosen by the LU
threshold method, so we would like to scale these rows so that their entries are
small relative to those corresponding to small diagonal entries in H: There are
two obvious ways to do this scaling:

e set A= AD™!; find f by carrying out an LU factorization with threshold
pivoting on A

e set A=AD"z; find f by carrying out an LU factorization with threshold
pivoting on A
where D = diag(H):

The flrst idea comes from simply scaling the columns of A by a value in-

versely proportional to the corresponding diagonal entry in H: The second idea
was obtained by symmetrically scaling the original saddle-point system so that



Table 1: Comparison of interior point and PPCG iterations for the LUH, LUD
and LUDsq permutations.

LUH LUD LUDsq
Name m n k 8, 8, k 8 8 k 8 8,
AUG2DQP 1600 | 3280 || 436 | 2292 553 || 20 | 1397 | 1524 || 21 | 1427 | 1536
AUG2DCQP | 1600 | 3280 87 | 3591 | 5001 || 22 | 1508 | 1651 || 20 | 1407 | 1535
AUG3DQP 1000 | 3873 12 847 882 || 11 419 425 || 28 | 1311 | 1137
AUG3DCQP | 1000 | 3873 13 896 946 || 11 701 704 || 20 | 1336 | 1206
CONT-050 2401 | 2597 6 20 19 6 20 19 6 20 19
CVXQP1M 500 | 1000 9 792 811 9 353 357 9 294 298
CVXQP2_M 250 | 1000 11 222 231 || 11 378 382 || 11 253 258
CVXQP3_M 750 | 1000 10 766 774 || 10 247 252 || 10 214 214
DUALC1 215 223 15 53 62 || 11 39 41 || 11 37 37
DUALC2 229 235 31 174 181 7 26 25 7 26 25
DUALCSH 278 285 6 15 15 6 19 19 6 20 20
DUALCS 503 510 17 144 165 8 35 35 8 35 35
KSIP 1001 | 1021 10 32 33 9 29 30 9 29 30
MOSARQP1 700 | 3200 10 738 743 || 12 232 235 || 12 454 458
PRIMAL1 85 410 10 369 367 || 10 359 358 || 10 337 331
PRIMAL2 96 745 12 544 549 || 12 625 620 || 12 549 549
PRIMAL3 111 856 9 534 532 9 600 602 9 563 562
PRIMAL4 75 | 1564 7 565 561 7 424 426 7 402 403
PRIMALC1 9 239 31 126 134 || 27 102 113 || 27 97 106
PRIMALC?2 7 238 40 64 87 || 21 56 59 || 21 57 57
STCQP2 2052 | 4097 14 14 14 || 14 14 14 || 14 14 14

We note that each iteration of the PPCG method will be comparable in CPU
time and memory usage for each of the difierent permutation methods. The
method used in my thesis to find the permutation will be denoted by LUH, and
the ideas presented in this note will be denoted by LUD and LUDsq respectively.

The results are given in Table 1. We observe that the methods LUD and LUDsq
are generally using a signiflcantly reduced number of PPCG iterations to solve
the QP problems compared with the LUH method. To help us further analyze
the results the total number of PPCG iterations used are compared using a per-
formance proflle, Figure 1. We observe that, as expected, the methods LUD and
LUDsq are generally performing signiflcantly better than the LUH method. The
LUD and LUDsq methods are performing similarly for around 75% of the prob-
lems, but LUD is generally performing better for the remaining problems. This
is because LUD method is more likely to \detect™" columns in A corresponding
to large diagonal entries in H early on in the interior point method.
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Figure 1: Performance proflle comparing the total number of PPCG iterations.

4 Conclusions

We have shown how the choice of permutation used to obtain a non-singular A;
can have a dramatic efiect on the number of PPCG iterations required during
a run of an interior point method for solving quadratic programming problems
and that, for certain choices of preconditioner, taking the entries of the H into
account when forming A; can be advantageous.

The currently proposed methods will not be suitable for very large problems
s0 the next stage of this work will be to develop a similar method which is also
suitable for large values of n and m:
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