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Abstract

For the very large nonlinear dynamical systems that arise in a wide
range of physical, biological and environmental problems, the data
needed to initialize a numerical forecasting model are seldom avail-
able. To generate accurate estimates of the expected states of the
system, both current and future, the technique of ’data assimilation’ is
used to combine the numerical model predictions with observations of
the system measured over time. Assimilation of data is essentially an
ill-posed inverse problem. In four dimensional variational assimilation
schemes, the dynamical model equations provide constraints that act
to spread information into data sparse regions, enabling the state of
the system to be reconstructed accurately. The mechanism for this
is not well understood. Singular value decomposition techniques are
applied here to analyse the critical features in this process. Simpli-
fied models are used to demonstrate how information is propagated
from observed regions into unobserved areas. The impact of the size
of the observational noise and the temporal position of the observa-
tions is examined. The best signal-to-noise ratio needed to extract the
most information from the observations is estimated using Tikhonov
regularization theory.
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1 INTRODUCTION

Accurate prediction of the behaviour of very large evolutionary systems
requires both accurate numerical models for simulating the system dynamics
and accurate data for initializing the forecast. In practice, precise data
describing the current state of a system are not available, and uncertainties
in the initial data lead to significant errors between the predicted states

∗Presented at the ICFD International Conference on Numerical Methods for Fluid
Dynamics, Oxford, March, 2004

2





information from the observations can be determined.
In the next section we present the variational data assimilation method.



Problem 1 Minimize, with respect to x0, the objective function

J =
1
2

(x0−xb
0)T B−1

0 (x0−xb
0) +

1
2

N−1∑
j=0

(hj(xj)−yj)T R−1
j (hj(xj)−yj) (3)

subject to the system equations (1).

In practice the constrained minimization problem is solved iteratively
by a gradient method. The problem is first reduced to an unconstrained
problem using the method of Lagrange. Necessary conditions for the solution
to the unconstrained problem then require that a set of adjoint equations
together with the system equations must be satisfied. The adjoint equations
are given by

λN = 0, (4)

λk = F T
k (xk)λk+1 − HT

k R−1
k (hk(xk) − yk), k = N − 1, . . . , 0, (5)

where λk ∈ IRn, j = 0, . . . , N, are the adjoint variables and Fk ∈ IRn×n and
Hk ∈ IRn×pk are the Jacobians of fk and hk with respect to xk.

The gradient of the objective function (3) with respect to the initial data
x0 is then given by

∇x0J = B−1
0 (x0 − xb

0) − λ0. (6)

At the optimal, the gradient (6) is required to be equal to zero. Otherwise
this gradient provides the local descent direction needed in the iteration
procedure to find an improved estimate for the optimal initial states. Each
step of the gradient iteration process requires one forward solution of the
model equations, starting from the current best estimate of the initial states,
and one backward solution of the adjoint equations. The estimated initial
conditions are then updated using the computed gradient direction. This
process is expensive, but it is operationally feasible, even for very large
systems, such as weather and ocean systems, which may involve as many as
107 state variables.

3 APPLICATION TO THE EADY MODEL

The success of the 4DVar assimilation technique is largely due to the ac-
tion of the dynamical model equations, which spread information from the



boundaries. The density, static stability and Coriolis parameter are taken to
be constants, and it is assumed that the interior quasi-geostrophic potential
vorticity is zero.

Perturbations to the basic state are advected zonally by the basic shear
flow. The system dynamics are described by the non-dimensional equations

(
∂

∂t
+ z

∂

∂x
)b =

∂ψ

∂x
, for z = ±1

2
, x ∈ [0, X], (7)

where b is the buoyancy and the geostrophic streamfunction ψ satisfies

∂2ψ

∂x2
+

∂2ψ

∂z2
= 0, z ∈ [−1

2
,
1
2

], x ∈ [0, X], (8)

with boundary conditions

∂ψ

∂z
= b, for z = ±1

2
, x ∈ [0, X]. (9)

The buoyancy and streamfunction are assumed to be periodic in x on [0, X].

3.1 Experiments

The aim of the experiments is to reconstruct the buoyancy wave on the
upper boundary of the region from observations of the buoyancy on the lower
boundary at the beginning and end of the assimilation interval using 4DVar.
The model equations are obtained by discretizing the system equations (7)
- (9) using a leap-frog advection scheme with 11 vertical levels and 40 grid
points in the horizontal. Perfect observations representing the ‘truth’ are
generated by model runs over a time interval corresponding to 6 hours,
initiated with the most rapidly growing (or decaying) normal mode of the
system. The initial fields have a tilt with height that is associated with
vertical coupling between the upper and lower waves, leading to exponential
growth (or decay) of the solution. Uncorrelated random noise with variance
σo = 1 is added to the observations. The prior estimate of the state at time
t0
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similation interval are shown in Figure 3. The observations are assimilated
over an interval of length tf , corresponding to twelve hours, and a forecast
over a time interval corresponding to 24 hours is produced from the analysis
at time tf , the end of the assimilation interval. Observations at the end
time t = tf



where

Ĥ =
[
HT

0 , (H1M(t1, t0))T , . . . , (HN−1M(tN−1, t0))T







5 TIKHONOV REGULARIZATION

In Section 4 we have demonstrated the importance of the value of the vari-
ance ratio µ2, between the variances of the background and observational
errors, in maximizing the information that can be extracted from the obser-
vations. Good choices for µ2 can be determined by using Tikhonov regular-
ization theory [8].

We first reformulate the objective function (3) for the variational as-
similation problem by making a change of variable. We let CB and CR be
such that B0 = σ2

b CB, R̂ = σ2
oCR, and define χ = C

1/2
B (x0 − xb

0). For the
linear model (11), minimizing the objective function (3) is then equivalent
to minimizing the function

J̃(χ) = µ2‖χ‖2
2 + ‖C−1/2

R d̂ − C−1/2
R ĤC

1/2
B χ‖2

2, (19)

where µ2 = σ2
o/σ2

b .
We see that if µ2 = 0, that is, if there is no background constraint
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