


Abstract

Hamilton’s principle is used to create a variational principle which has as its
natural conditions the equations of irrotational motion in an incompressible, ho-
mogeneous fluid with a free surface.

By applying the shallow water approximation to the flow variables, this varia-
tional principle is reduced to one whose natural conditions are the corresponding
shallow water equations of motion. For unsteady shallow water flow four func-
tionals, whose integrands are related by Legendre transformations, are generated.
Boundary terms are added to these functionals to give variational principles whose
natural conditions include boundary conditions and initial conditions as well as
the equations of motion. These variational principles are reduced to correspond-
ing variational principles for steady shallow water flows by assuming that the flow
variables are independent of time. The natural conditions of the variational prin-
ciples derived by this method then include the steady state equations of motion
in shallow water and boundary conditions on certain flow variables.

Constrained variations are made on the unsteady and steady shallow water

functionals and some reciprocal variational principles are established.



The purpose of this report is to identify variational principles for non-linear,
irrotational, free surface flows of a homogeneous, incompressible fluid over a fixed,
prescribed bed profile. The application of such principles to the computation of
approximations to flows will be considered in a later report.

Luke [1] showed that a variational principle in which the integrand is taken
to be the fluid pressure, as given by Bernoulli’s energy integral, has as its natural
conditions the equations governing a free surface flow. These are Laplace’s equa-

tion for the velocity potential, in the fluid domain, the no-flow condition across
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[1] at this stage in ignoring boundary and initial conditions, and show that, with
this limitation, the Eulerian version of Hamilton’s principle, constructed as we
have indicated, is the same as Luke’s ‘pressure’ principle. Thus Luke’s principle
is merely a disguised version of Hamilton’s principle.

The same interpretation of Hamilton’s principle is equally successful for shal-
low flows, as is shown in Section 3. Moreover, we can implement the shallow
water approximation in Hamilton’s principle for general free surface flows, and
show that the resulting principle is identical to that obtained by an ab initio
approach to the shallow flow problem.

Alternative representations of the variational principle for shallow flow are
available, based on the notion of a closed quartet of Legendre transformations
introduced by Sewell [6]. In particular one version of the principle involving the
pressure and another version identifiable as Hamilton’s principle are connected
by a Legendre transformation. These two principles are Luke’s principle and
Hamilton’s principle for a general free surface flow, as modified by the provisions
of shallow water theory. Referring to the construction (1.2), the appearance of a
Legendre transformation here is not surprising.

In Section 3 we complete the shallow flow principles by including bound-
ary terms. The modified variational principles then have, as natural conditions,
boundary and initial conditions in addition to the field equations. There is some
latitude in the variables which need to be assigned on lateral boundaries and
initially, which is a matter of significance from a practical viewpoint. We do not
explore here how to overcome one particular undesirable feature of these princi-
ples, that conditions are given on both time boundaries, ¢ = ¢; and t = t,, say.
This is a long-standing difficulty, which is present in the classical Hamilton prin-
ciple (1.1). One simple theoretical remedy is to consider only variations which
vanish at ¢t = t5, but it is not clear at present how this device can be translated
into an approximation method.

The latter issue is not present, of course, in steady flows which are considered
in Section 4. We also give some constrained principles which lead to the notion of
reciprocity, for both unsteady and steady flows. In the latter case, Bateman’s [7]
principles emerge. Other points of contact with existing literature are mentioned
in Section 5.

This report is not intended to give an exhaustive account of all possible aspects
of variational principles for free surface flows. Its main aim is to provide a clear

theoretical base for the development of numerical approximation methods.



In this section the equations of irrotational motion of an inviscid, incompressible,
homogeneous fluid with a free surface are shown to be the natural conditions
of two variational principles derived from different viewpoints. It is shown that

these principles are, in fact, closely related.

Let be cartesian coordinates, with measured vertically upwards, and
let be the time. Consider the domain, (2, extending over a fixed region, ., in
the plane and enclosed by the surfaces = ( )and = ( ), where
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which yields the natural conditions
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The condition that the functional is stationary with respect to variations is then
related to Hamilton’s principle in the sense described in the Introduction. Al-
though Luke [1] mentions this more traditional form of the Lagrangian and notices
that the difference between ‘Hamilton’s principle’ and (2.3) is related to conser-
vation of mass he does not pursue this observation.

In the fixed domain ) conservation of mass,

=0 (2 13)

must be enforced (see Introduction). The kinematic free surface condition, which

ensures zero mass flow across this surface, in the form

(+4+ =+ ) .y =0 (2 14)
and the condition of zero flow through the bed,

( 24+ 4+ ).y =0 (215)

must also be enforced. These requirements are met by adding (2.13)—(2.15) to

t z Y z=n r Y z=—h






Shallow water theory offers an approximation to free surface flows in circum-
stances where the water depth is much less than some other characteristic length
scale of the motion, such as the radius of curvature of the surface. To lowest order,
this theory can be generated by assuming that the fluid pressure is hydrostatic.
That is,

K )= ) (31)

taking the assumed constant surface pressure to be zero as a matter of conve-
nience. The hypothesis (3.1) implies that the horizontal velocity components,
and , are independent of and that the vertical velocity component  is

negligible compared with  and . This can be summarised as

L=0 .=0 =0 (32)
Details may be found in, for example, Stoker [8].
We can use (3.1) to determine the vertically averaged pressure = ( )
defined by
I
I

from which it follows that






terms evaluated at these levels. The result is the functional 5 = o ) given
by
TS s G (O (39
t D 2 2

Assuming that variations vanish on the space and time boundaries then the nat-

ural conditions of

are
i+ ;. =0
= in 0 (39)
«+ () =0
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which allows the definition of a new function ( ) by substituting for in the

pressure % 2, namely
1
L=y

which has the values of pressure.

The integrand of the functional being constructed is now
() 4+ J+ ( ) (317)

which is the integrand of (3.10) modified in the manner outlined above. For the



conditions for ¢ are sought on ¥, and for Q on Xg for ¢t € [t1,%2]. Similarly the
domain is divided into two by = 4+ 4 and conditions at the time boundaries
t, and t; are sought for din 4 and for ¢ in 4.

By this method a new functional is constructed — one which includes bound-
ary terms. Let the functional I1(F,Q,d,v, ¢) be given by

h= /tt //D (p(v, E) =d(E+¢) + Q. (v = V¢)) dvdy di
[ comars [T [ o-panasa
[, (@6 =R, = (@d(6 = h))L,) dedy
+//D (¢l 92— ¢l,, 1) dady (3.18)

where f = f(x,y,t), C = C(x,y,t) are given functions on ¥, and Y respectively
and ¢; = gi(z,y), hy = hi(x,y) (1 = 1,2) are given functions on , and
respectively.

The natural conditions of the revised ‘p’ principle

5]1 - 0
are
pv+Q =0
pe—d =0
d;+V.Q =0 in Q,
E+¢, = 0
v—V¢ = 0
C—Qmn = 0 on Yg for t € [ty,1,],
o—f =0 on Y, for t € [t1,12],
dl, —¢gi = 0 in 4for:=1,2,
¢ti_hi = 0 in 4 fors=1,2,
where
3] \% 1 3] 1 1
Thus the first two conditions in the domain, , are
1 1 1
—V<E—V.V)—|—Q:0 and(E—v.v)—d:(),
g 2 g 2

which together give
1
Q=dv and F =gd+ 3V-V>
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so that the last three natural conditions in ) are the conservation laws and the
irrotationality condition.
Consider now the ‘t” principle. The domain and domain boundary are again

divided into two, as for the ‘p’ principle, to provide a choice of boundary and

initial conditions. Using the same functions, = ( ), = ( ) i =
(), = () ( =1 2), asecond functional 5 ) can be derived,
namely,
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A sequence of Legendre transformations can be used to generate a quartet of
functionals which have as natural conditions of their first variations the unsteady
shallow water equations. Two such functionals — based on the p and r functions
— have already been described and were independently derived. Two further
functionals are now sought.

By applying the divergence theorem and integration by parts, the ‘p’ func-
tional (3.18) can be expressed in the form

L= ' (o \E) Ed+ . +é(di+ . ) dedydt

i1 D
12 t2

+ $(C . )dsdt fo. dsat

11 EQ t1 Eq&

(3.20)

Comparing this with , as given by (3.19), suggests that there is a relationship
between the two functions ( ) and ( ) such that

co)=0) +

in value, which can be confirmed directly using (3.5). The relation is in fact a
Legendre transformation as we will now show.
The Legendre transform () of ( ), with  and as dual active vari-

ables and  passive, is defined by

()= C ) (321)

and is such that

Using (35)2  can be constructed from (3.21) and is
1, 1
( )= 5 T3
Notice that  is equal to the total energy of a fluid particle. The function s
also a Legendre transform of ( ), with  active and passive, in that, using

(3 5)1, we may write
( )= () (322)

having first derivatives
d = d v =

This implies the required connection, that

()= co)=0 ) 4
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in value.
We can of course bypass the intermediate function R and connect p and r
directly by a Legendre transformation. Since py = — and pg = d, then if and

FE are both active variables, the transformation of p is
T( 7d): : —Ed—l—p( 7E)
and
rq= , rq=—k.

A fourth function P( , E) completes a closed quartet of functions related by
Legendre transformations and is derivable from p, r and R by using appropriate

active variables. P cannot be given explicitly, but is defined by eliminating and

d from | |

The function P is related to p and r by
p( 7E)_P( 7E) = - - (323)
r( ,d)—P( ,F) = —Fd. (3.24)

We can now formulate two further functionals, the natural conditions of the
first variations of which are expected to include the equations of motion in shallow
water. The process is to use (3.23) to substitute for p in the integrand of (3.18)
and (3.22) to substitute for r in the integrand of (3.19) by what is essentially
a change of variables using (3.5). We note here that although (3.21) could be
used to substitute for p in (3.18) and (3.24) could be used to substitute for r
in (3.19) this would not change the nature of the functionals being generated.
For instance integration by parts and the divergence theorem can be used on the
‘P’ functional generated by substituting (3.24) into (3.19) to give the functional
formed by substituting (3.23) into (3.18).

Let the functional I3(E, ,d,¢) be defined by

t2

I3 = . D(P( E)— . ¢—d(E+¢)) dedydl
+ 7 Cedsdiy (- f) . dodt
t N toT,
+ (d(¢  ha))y, (d(¢ h1)), drdy
Dy
+ o, b9 b0 drdy. (3.25)
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The natural conditions of this ‘P’ principle

5]3 - 0
are
Pq—-V¢o =0
Pr—d =
B 0 in €,
E+¢. =0
di+V.Q = 0
C — Qn = 0 on ZQ fOf t - [t17t2]7
¢ — f = 0 on Z(b fOf t - [t17t2]7
dti_gi =0 g fore=1,2,
¢, —hi = 0 in 4 fore=12
The first condition in € is
v—V¢=0.

Thus if equations (3.5) are assumed, the ‘P’ principle yields the conserva-
tion laws and the irrotationality condition as natural conditions in €} and gives
boundary conditions on ¢ and Q at space boundaries and on d and ¢ at time

boundaries.

The ‘R’ Principle

Now consider a principle based on the function R. Let the functional I,(Q,d, v, ¢)
be given by

li= /1552// R(v,d)+ Qv+ ¢(d: + V.Q)) dudy dl
/ (C —Q.n) dXdt — /: 2¢fQ'ndZdt
—// 6(d= @), — (6(d—a0))l,) dody
_// dl,, hy —d|, ) dz dy. (3.26)

The natural conditions of this ‘R’ principle

5]4:0
are
—fa—d =0 in €,
v—V¢p = 0
4,+V.Q = 0
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C .. =0 on Yg for t  [ty,1s],
o f =0 on Y4 for t  [ty,1s],
d, g =0 in 4 for:=1,2,
¢, hi =0 in 4 fore=12
The first two conditions in 2 may be written
1
d + =, gd 5 ¢ = 0.

Thus the natural conditions of the ‘R’ principle include the equations of motion

in shallow water and boundary conditions on the variables.

So there exists a quartet of functionals (3.18), (3.19), (3.25) and (3.26), based
on the four functions p, r, P and R, from which the shallow water equations
can be derived as the natural conditions of the first variations. Notice that the
statements of the natural boundary conditions of all of the variational principles
are identical and that the natural conditions in the domain are the same equations

expressed in different variables.

Variational principles can be constrained by assuming that the variations are
made subject to the requirement that the variables satisfy one or more of the
natural conditions. The principles constrained in this way will have the remaining

natural conditions as natural conditions ([9]).

The functional used in the ‘p” principle (3.18) has an integrand which contains the
integrated conservation of momentum equation and the irrotationality condition
explicitly. It seems natural to constrain the ‘p’ principle to satisfy these two

conditions. This can be done by specitying

E = ¢
= ¢

which results in the functional [; reducing to a functional jl( ,d,¢). The con-

(3.27)

strained principle is given by

~ t2 t2

1= () + Y

11 D 11 EQ
t2

+ C ) ¥+ CC 2D, 0 1)y

11 E¢ Dq&

_I_ N t 2 4 1 = 0 (328)
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Reciprocal ‘P’ and ‘R’ Principles
Now consider the other two variational principles — based on P and R. The
integrands of the ‘P” and ‘R’ functionals are not expressible in the form

P or R function + multiplier x conservation law

so there is no corresponding way of constraining the variational principles and
the functionals cannot in the same way be reduced to depend on one variable.
However, the following structure can be deduced.

Consider the ‘P’ functional (3.25). Let ¥ = ¥ and ;= , and constrain
the variables to satisfy conservation of momentum using the first of (3.27). Then

the variational principle becomes

{/151 // (Q,—d:) — QV¢)dxdydt+/ /CqﬁdZdt
+ //D 61, 92— 01, o) do dy} =0, (3.33)

where the variables are Q and ¢. The natural conditions are given by

Po—Vo =0
Q ¢ in €,
(P—¢t)t +V.Q =0

C — Qn = 0 on X for t € [t17t2]7
0 in  forz=1,2.

9i — Py,

The first two conditions may be rewritten as

v-Ve =0 in
d+V.Q =0 ’

which are the irrotationality condition and the conservation of mass equation.
In the ‘R’ functional (3.26) let ¥, = ¥ and , = and constrain the
variations to satisfy conservation of mass by imposing (3.30). Then the variational

principle becomes

5{/; //D(—R(V,V.gb)—ibt.v) d:z;dydt—k/:/zfzbt.ndZ dt

_ //D (Vl,, ho — V.|, hy) da dy} 0, (3.34)

which involves a functional of v and . The natural conditions are given by

- ¢t = 0 .
in €,
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. = 0 on X for [1 2]
= in for =12

" ;= 0 on Y for =12
The first two equations are

) t in Q
¢+ +

o=

the second of which is conservation of momentum. This, together with the natural
condition in  for 4, implies the irrotationality condition in  for [1 2]
The constrained ‘P’ and ‘R’ principles (3.33) and (3.34) are reciprocal since
the constraint of conservation of momentum in (3.33) is a natural condition of
(3.34) and the conservation of mass constraint in (3.34) is a natural condition of

(3.33). The irrotationality condition is a natural condition of both principles.

The discussion so far has concerned derivation of variational principles whose
natural conditions include the unsteady shallow water equations of motion devel-
oped both from principles whose natural conditions are the equations of motion
of a free surface flow and independently. We now seek to apply these principles
to steady state conditions.

The steady state equations of motion in shallow water for a domain with
constant undisturbed depth can be deduced from the unsteady equations (3.4).
The steady state condition assumes that all of the flow variables — mass flow,
energy, depth and velocity — are independent of time. The potential is not a
flow variable and cannot therefore be assumed to be independent of time although
its general form can be deduced.

The irrotationality condition is



and thus

Therefore is of the form

( )= +0) (41)

where the energy A, the steady counterpart of , is a constant. The expression
(4.1) will prove useful in reducing functionals for unsteady motion to functionals
for steady motion.

The steady state equations are given by

=0 conservation of mass (4.2)
o= conservation of momentum (4.3)
= irrotationality (4.4)

where and  are given by

— (4.5)
oy (4.6)
I |
Q
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1 1 2
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+/2Q $(C — Q.n)dy — /m /Qnds,  (1.10)
L, = //D(—R(v,d) + Qv+ Ed+ ¢V.Q)drdy

—|—/EQ</S(C—Q.n) dZ—/E¢fQ.ndZ, (4.11)

where Ly = L[5(Q,d, ¢), Lz = L3(Q, ¢) and Ly = L4(Q,d, v, ¢).

The natural conditions of the steady state variational principles
5[/1 — 5[/2 - 5[/3 - 5[/4 - 0

are expected to include the shallow water equations of motion (4.2) and (4.4) and
possibly (4.5) or (4.6). Equation (4.3) is satisfied exactly since the energy FE is
regarded as a given constant.

The natural conditions of 6L; = 0, the ‘p’ principle, are
pw+Q =0
v—V¢ = 0 in
vQ =0

C—-Qn = 0 on Xg,
o—f =0 on Yy,

the first equation being
v 1 .
—(E—V.V)—I—QZO n
g 2

The natural conditions of 6Ly = 0, the ‘t” principle, are

rq—Vo = 0
re+F = 0 in
vQ =0
C—-Qn = 0 on Xg,
o—f =0 on Yy,

the first two equations being
9 _ve =0 ,
in
—ied+ B =0

The natural conditions of 6Lz = 0, the ‘P’ principle, are

Pa—Vé = 0 _
m
vQ =0



= 0 on Yg

= 0 on
the first equation being

= in

where is a function of and  using (4.5) and (4.6).

The natural conditions of 4 = 0, the ‘R’ principle, are

v+ =
d+ =0 .
in

=0

= 0 on Yg

= 0 on X,

the first two equations being
+ = .
in

1 + = 0

2
Thus the natural conditions of the steady state motion variational princi-
ples derived from free surface unsteady motion variational principles include the

steady state equations in shallow water — (4.2) and (4.4). In order that the



Consider the integrands of the functionals (4.8)-(4.11). In Section 3 emphasis
was placed on the structure of the integrands of the ‘p’ and ‘r’ functionals —
they were expressed as a function plus a multiple of a conservation law or the

irrotationality condition. For steady flows the ‘p” and ‘P’ functionals also exhibit






In Section 3 four functionals, related to one another by Legendre transforma-
tions, are defined. These are the pressure function p, the Lagrangian density r, the
flow stress P and the function R which, when integrated over the space domain,
gives the total energy of the flow. In [10] Benjamin and Bowman consider conser-
vation laws and symmetry properties of Hamiltonian systems including shallow
water, for which they derive four functions. Two of these — identified by them
as a Hamiltonian density and a flow force — have the values of the functions R
and P respectively, apart from constant multipliers.

That the function R is indeed the Hamiltonian density for shallow water flow

can be seen by considering the ‘Legendre transformation’ of the Lagrangian L.

Let
L(Q,d) = //D r(Q, d) de dy (5.16)

where r(Q, d) is the Lagrangian density. Then the functional derivatives L /dd
and JL/0Q can be defined by

oL oL
5L = (5d, 8d) + (5Q, 8Q) :

where the inner product (o, ) is given by

(a, B) = //D affdz dy.

Thus
6L_ EQ.Q_d 8L_9

ad = 2 a2 9 a9Q T 4

The Hamiltonian H(v,d) is given, in a form somewhat analogous to (1.2), by

H(V7d) = (Vv Q) - L(de)v

and thus it is easily seen that

H(v.d) = //D R(v,d)de dy

where R is the Hamiltonian density.

The analogy with (1.2) would have been closer if we had started with a La-
grangian L(v,d), with density r(dv,d), and deduced a Hamiltonian H(Q, d) with
density R(Q/d,d). This alteration identifies v as the vector of generalised ve-
locities and Q = dv as the vector of conjugate momenta. We can, of course,
redefine the Lagrangian and Hamiltonian densities in terms of the variables v, d
and Q, d respectively, to achieve the structure mentioned. The redefined densities
are themselves linked by a Legendre transformation with v and Q active and d
passive, but the quartet of densities obtained by taking r(dv,d) as the starting

point does not include a quantity identifiable as the flow stress or the energy F as
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