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Abstract

A method is sought to decompose errors in numerical forecasts of the atmosphere into

components that are uncorrelated. This can simplify the process of representing the proba-

bility density function (PDF) of forecast errors, which is needed for data assimilation (DA).

A new method based on potential vorticity (PV), and a simpler method, of partitioning

errors into balanced and unbalanced parts are investigated. The correlations between these

parts in each method are compared. A toy model and an operational forecasting model

are used to show that the PV-based variables are usually less correlated than those of the

simpler approach.
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1 FORECAST ERRORS IN DATA ASSIMILATION

Weather forecasts from numerical weather prediction (NWP) models have improved greatly

since they were flrst produced routinely 50 years ago, partly due to improvements in the model’s

initial conditions, xic. Data assimilation estimates xic by flrst making a short forecast, xf of the

current weather, which will be in error, and then making an adjustment, x0, to flt observations.

The adjusted state, xic = xf + x0, has a smaller error than xf . The adjustment is subject to

an additional constraint prescribed by the forecast error PDF, which restricts the possible x0.

Good forecasts depend on accurate characterization of the PDF, and we report on a practical

approach that may allow it to be represented compactly.

Let forecast error be deflned as "0 in xf = x + "0, where x is the ’true state’. The PDF of

"0, Pf("0), specifles the probability that the forecast has error "0. A Gaussian with mean zero is

the usual choice for Pf("0), which is described by the forecast error covariance matrix, B†

Pf("0) » exp ¡1
2

"0TB¡1
† "0: (1)

The PDF, Pf , is combined with observational information to give Pcomb(x), which is used in

the DA problem. By (1) and Bayes’ rule [1], Pcomb(x) is

Pcomb(x) » exp ¡1
2

(x ¡ xf)TB¡1
† (x ¡ xf) £ Pob(y



2 THE NUMERICAL MODELS AND THEIR BALANCE RE-

LATIONS

2.1 One-dimensional shallow water equation model of the atmosphere

The shallow water equations (SWEs) for a rotating °uid describe air motion in a layer. We

consider the SWEs for a 1-D atmosphere. Katz et al.[2] introduce the SWEs for u and v (°uid

velocities in the x and y-directions), and h (depth of the layer), but we show equations for ˆ

(streamfunction), ´ (velocity potential) and h
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For the UM, B† is too large to use, but the problem can be reduced with a transformation

to variables whose errors are decoupled. Our strategy is to flnd variables whose errors are

expected to be decoupled, and the properties of PV are used to do this for the SWEs and UM.
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3 THE POTENTIAL VORTICITY

For the SWEs and UM, a useful quantity called PV, q, can be deflned [4]. For the SWEs the

PV is qSWE = h¡1(f + @2ˆ=@x2). A linearised perturbation form, q0
SWE, is used here [2]

q0
SWE =

1
„h

µ
@2ˆ0

@x2
¡ „qh0

¶
; (6)

where an overbar is a reference state quantity. For the UM, the appropriate PV is called Ertel

PV, qErtel, which is approximated as follows [5] („fi, „fl, „° and „· are specifled in [5])

q0
Ertel = „fir2

hˆ0 + „flp0 + „°
@p0

@z
+ „·

@2p0

@z2
: (7)

PV is useful because it can be inverted: given PV, suitable boundary conditions and a

balance relation, the ’balanced’ component of the °ow - ie (ˆ0
b; ´0

b; h0
b) in the case of the SWEs

and (ˆ0
b; ´0

b; p0
b) in the case of the UM - can be diagnosed (´0

b = 0 as ´0 does not contribute to

PV). It is not possible to make this diagnosis using a LBE alone since this gives h0
b (or p0

b) only

if ˆ0
b is known (or vice-versa), unless a special assumption is made. A common assumption is

that ˆ0
b is equal to the total perturbation ˆ0, which is known. We will call this the ’balanced

vorticity approximation’ (BVA), which avoids the need to use PV (Sec. 4.2). The BVA is good

when the horizontal scale of the °ow is much less than the Rossby radius [6], LR =
p

gh=f ,

which holds in the tropics where f is small.
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4 NEW VARIABLES BASED ON POTENTIAL VORTICITY

Diagnosis of the balanced °ow is useful because this component is believed to evolve in a way

that is largely decoupled from the unbalanced °ow. Let v0
PV be a representation of forecast

error, "0, but in terms of the following balanced/unbalanced variables.

† For the balanced fleld we choose ˆ0
b, which is described entirely in terms of PV.

† For the flrst unbalanced fleld we choose ´0 which has no associated PV.

† For the second unbalanced fleld we choose unbalanced height, h0
u, for the SWEs and

unbalanced pressure, p0
u, for the UM, which too have no associated PV.

Illustrating for the SWE, v0
PV = (ˆ0

b; ´0; h0
u)T , which has error covariance matrix

BPV =

0
BB@

Bˆ0
bˆ0

b
Bˆ0

b´0 Bˆ0
bh0

u

BT
ˆ0

b´0 B´0´0 B´0h0
u

BT
ˆ0

bh0
u

BT
´0h0

u
Bh0

uh0
u

1
CCA : (8)
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If variables in v0
PV are uncorrelated then this matrix will simplify: Bˆ0

b´0 = 0, Bˆ0
bh0

u
= 0, and

B´0h0
u

= 0. Then v0
PV can be used in a transformed form of (1) with B† ! BPV [7]. The

hypothesis that BPV is block diagonal is expected to hold in a linear system, but neither the

SWE or UM systems are linear, and the UM includes parametrizations for radiative, moist and

sub-grid-scale processes which lead to correlations. The hypothesis that BPV is block diagonal

is tested for each system and compared with the simpler choice of variables under the BVA.

4.1 Transformations using potential vorticity

The PV and the LBE are used to compute v0
PV. The method is shown for the SWEs, but the

principle extends to the UM. A forecast error from (3) (ˆ0; ´0; h0)T is to be determined in terms

of (ˆ0
b; ´0; h0

u)T. The flrst variable, ˆ0
b, is described by PV. This means that (6) can be written

as

q0
SWE =

1
„h

µ
@2ˆ0

@x2
¡ „qh0

¶
=

1
„h

µ
@2ˆ0

b

@x2
¡ „qh0

b

¶
=

µ
@2ˆ0

b

@x2
¡ „qf

g
ˆ0

b

¶
; (9)

using the LBE (4). The solution, ˆ0
b, is unique as long as „qf is positive, which is expected to

hold. This equation can be solved by Fourier transforms, but the analogous 3-D equation for

the UM is more di–cult to solve (we use the Generalised Conjugate Residual solver).

The second variable, ´0, is already a prognostic variable in (3) and so needs no processing.

For the third variable, h0
u, substitute in (4) ˆ0 and h0. This will not give zero since only the

balanced parts will satisfy (4). The residual is called the ’linear imbalance’ or ’anti-PV’, ‡ 0
a

‡ 0
a = f

@2ˆ0

@x2
¡ g

@2h0

@x2
= f

@2ˆ0
u

@x2
¡ g

@2h0
u

@x2
: (10)

The full perturbations have balanced and unbalanced parts, ˆ0 = ˆ0
b +ˆ0

u and h0 = h0
b +h0

u, and

since the balanced parts satisfy (4), ‡ 0
a is equivalently expressed with the unbalanced parts only,

as has been done in (10). The unbalanced flelds have zero PV and so from (6), @2ˆ0
u=@x2 = „qh0

u.

The term @2ˆ0
u=@x2 can be eliminated from (10) giving

f
@2ˆ0

@x2
¡ g

@2h0

@x2
= f „qh0

u ¡ g
@2h0

u

@x2
: (11)

The solution, h0
u, is unique as long as „qf is positive. This is similar to (9) and is solved in a

similar way. An analogous 3-D equation for p0
u exists for the UM system.

4.2 Transformations using the balanced vorticity approximation

Unlike in Sec. 4.1, the streamfunction is taken to be completely balanced under the BVA. Then

the following set of flelds are used to describe forecast errors.

† The ’balanced’ variable is ˆ0 - this is already a forecast perturbation fleld.

† The flrst unbalanced variable is ´0 - this is also already a forecast perturbation fleld.

† The second unbalanced variable is called h0
r. It is the unbalanced height under the BVA,

and is found from the residual of the LBE (4), h0
r = h0 ¡ h0

b = h0 ¡ (f=g)ˆ0.
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Figure 1: Correlations between balanced wind and unbalanced height errors for the SWEs.

For the BVA, v0
BVA = (ˆ0; ´0; h0

r)T, (with h0
r ! p0

r for the UM system). The assumption that ˆ0,

rather than ˆ0
b, describes the ’balance’ is often unrealistic. In Sec. 5 the correlations between



latitude

Figure 2: Correlations between balanced wind and unbalanced pressure errors for the UM.

Negative values are dotted and the zero line is thick. Contours are spaced every 0.1.

5.2 Correlations for the Unifled Model

In the UM it is not easy to control Bu or Ro. In Fig. 2 are latitude/height sections of cor(ˆ0
b; p0

u)

in v0
PV and cor(ˆ0; p0

r) in v0
BVA. Correlations for PV variables (Fig. 2a) are not small. It is

unclear whether this is because of the nature of the UM, or whether the solutions of the UM’s

equivalent of (9) and (11) have not been achieved to su–cient accuracy (the 3-D solver left

residuals). Correlations for BVA variables (Fig. 2b) are even larger, showing that there is an

advantage to using PV variables. On average, cor(ˆ0
b; p0

u) are smaller than cor(ˆ0; p0
r) by 0.1.

||||||||||||||||||||||||||-

6 SUMMARY

Potential vorticity, used with a balance relation, can help deflne a new set of variables that

partition forecast errors into balanced and unbalanced parts. The hypothesis that these are
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