


Abstract

In the algorithmic process of data assimilation, errors are contributed both

from the mis-calculation of observations and the mis-estimation of the back-

ground state. The specification of these errors is important as they respec-

tively determine the extent to which the observations and background in-

fluence the analysis. For ease of computation, observation errors are often

assumed to be independent of each other, i.e., uncorrelated; however, in a

reality where instrument noise and model error are present this is not the

case.
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observation information content for different observation error covariance matrices.

Conclusions and discussion of future work will then be given.
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2 Satellite Data Assimilation and the Inverse

Problem

Typically a satellite instrument measures a radiance L and relates it to geophysical



between the measured quantity and the desired one. Taking m measurements for

n





ρij is the observation error correlation between observation i and observation j, and

σ2
i is the observation error variance of observation i.

Error correlations are very important when we have a high resolution model and

a low density of observations, or vice-versa, as they specify how the observations

will be smoothed. Correct correlation specifications are vital to the accuracy of

observation weightings. Positive error correlations reduce the weight given to the

average of observations but give more relative importance to differences between

observed values. Taking correlations into account could therefore give the analysis of

atmospheric quantities which are calculated using the difference of some measurable

quantity a larger dependence on the observations.

The major problem with observation error correlations is their complexity; for

example, satellite data retrieval processes can create artificial correlations, and in-

terpolation errors are correlated whenever observations are dense compared to the

resolution of the model. Characterisation of observation errors is easier for raw radi-

ances because of the fewer processing steps involved, but still in many models, error

correlations are taken to be zero and the R matrix diagonal. This is perhaps a rea-

sonable assumption when observations are taken by separate immovable instruments

(i.e, surface observation networks) but not for radiosonde or satellite measurements,

where the same instrument in used. We will examine the repercussions of making

this assumption later in the paper.

2.2 Background Error Covariance Matrix

The background error covariance matrix is produced from estimates of the error

variance in the forecast, and if it is badly specified, we will not have an accurate

idea of the variance of the final analysis value xa. Various methods for calculating

this matrix are described in [7].

Although in this report we do not concentrate our attention on background error

correlations, they have two very important roles in an assimilation system: informa-

tion spreading/smoothing, and conveyance of the balance properties between model

variables [3]. In regions of dense noisy observations, background error correlations
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3 Information Theory

When we ignore observation error correlations and use processes such as data thin-

ning and superobbing to assimilate satellite data, we are neglecting a portion of this

data, and so information that could perhaps be utilised is lost. Ideally we would

select the optimal subset of observations such that the important information is

retained in a numerically cheap way.

The information content of a set of observations is the number of linearly inde-

pendent pieces of information contained in the set. For an observation to contain

useful information it is required that the natural variability of the observation vector

is greater than the measurement error. Considering the system given by [15]

ỹ = H̃x̃ + ε̃, (11)

where x̃ is the transformed state vector,

x̃ = B−1/2(x − xb), (12)

and ỹ is the transformed measurement vector,

ỹ = R−1/2y, (13)

this condition reduces to, the singular value of H̃ = R−1/2HB1/2 related to the

observation being approximately greater than unity.

This is purely a requirement for measurable information; there are several dif-

ferent ways to calculate the information content of an observation set.

3.1 Shannon Information Content

This is a measure of the reduction of entropy (number of distinct internal states).

Using pdfs as a measure of knowledge of the system, and working in state space,

suppose p(x) is the knowledge before the observation, p(x|y) is the knowledge after,

and S(p) is the entropy. Then the Shannon Information Content, SIC, as defined

by [15] is
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SIC = S[p(x)] − S[p(x|y)] (14)

where

S[p(x)] = −
∫

p(x) lg2[p(x)]dx, (15)

S[p(x|y)] = −
∫

p(x|y) lg2[p(x|y)]dx. (16)

In the linear Gaussian case, which we will be considering, it is algebraically

convenient to use natural logs as opposed to lg2. Such a change purely results

in a slight rescaling of the entropy definition by ln 2 = 0.69, but makes equation

manipulation considerably easier. Using this approach, we get the equations:

S[p(x)] = n ln(2πe)1/2 +
1

2
ln |B|

S[p(x|y)] = n ln(2πe)1/2 +
1

2
ln |Sa|

where |B| and |Sa| are the determinants of matrices B and Sa respectively.

SIC =
1

2
ln

∣∣S−1
a B

∣∣
=

1

2
ln

∣∣(HT R−1H + B−1)B
∣∣

=
1

2
ln

∣∣HT R−1HB + I
∣∣

=
1

2
ln

∣∣B1/2HT R−1HB1/2 + I
∣∣

=
1

2
ln

∣∣∣H̃T H̃ + I
∣∣∣

=
1

2

m∑
i=1

ln(1 + λ2
i ) (17)

where λi are the singular values of H̃.

Physically entropy can be thought of as a ‘measure of the volume of the state

space occupied by a pdf which describes the knowledge of the state’, and by taking

an observation, the volume of uncertainty is reduced.
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3.2 Degrees of Freedom of Signal

Statistically degrees of freedom can be considered as the number of values in a





So, an alternative representation of dofs is,

dofs = N − trace(Λ), (22)

and correspondingly for dofn,

dofn = trace(Λ). (23)

This approach is equivalent to that of finding singular values of H̃ , [8]; the benefit

of using it over the statistical method will be seen later in the chapter.

3.3 Fisher Information Content

When estimating a parameter of a distribution, we want to obtain an estimate of

maximum likelihood. In a Bayesian setting, this procedure is based on obtaining a

set of measurements and maximising the probability of these measurements having

occurred given a certain state vector, p(y|x). In maximising the likelihood that we

assign the correct value to a parameter, we are minimising the error in incorrectly

estimating it; the Fisher Information Content, F , is a measure of this minimisation.

Rather than maximising the likelihood function p(y|x), normally the log likeli-

hood function is algebraically simpler to maximise and achieves the same goal. So,

considering the function, as defined by [15],

ln p(y|x) = −1

2
(y − Hx)T R−1(y − Hx) + a constant, (24)

the quantity

F = E

[(
δ ln p(y|x)

δx

)2
]

(25)

is known as the Fisher Information Matrix. This can also be written in the form,

F = E

[(
δ ln[p(x|y)/p(x)]

δx

)2
]

= E

[(
δ ln p(x|y)

δx
− δ ln p(x)

δx

)2
]

(26)

where p(x) was the initial knowledge of the system and p(x|y) was the knowledge

after the observations.
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Rewriting the SIC, we can see that a link exists between the two:

SIC =



covariance matrix, to get

SIC =
1

2
ln |S∗

a
−1B|

=
1

2
ln |[(HT R−1

f H + B−1)−1 + AR′AT ]−1B|, (32)

which does not reduce down to a nice expression with singular values of H̃, but is

still possible to evaluate.

To calculate the degrees of freedom of signal it is easiest to manipulate the

formulas produced from the linear algebra analysis as they are given directly in

terms of Sa. So, from equations (20), (21) and (22),

dofs = N − tr(Λ∗) (33)

where XT LS∗
aLT X = XT S∗

aX = Λ∗.

However, we could argue that we always knowingly use an incorrect R matrix, as

it is impossible to know observation errors exactly, and hence we should be consistent

with our analysis. So, in cases where we use an incorrect observation error covariance

matrix, the analysis covariance matrix Sa should just be evaluated at the incorrect

R matrix, Rf .

So to summarise, we have three approaches to evaluating the information content:

Approach 1 : Assume that we are using the correct R matrix, Rt,

and evaluate Sa at this value

Sa = (HT R−1
t H + B−1)−1

Approach 2 : We knowingly use an incorrect R matrix and include an

additional term in the error covariance matrix to

accurately model this

S∗
a = (HT R−1

f H + B−1)−1 + AR′AT
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Approach 3 : Accept that we are using an incorrect R matrix,

Rf , and evaluate Sa at this value

Sa = (HT R−1
f H + B−1)−1
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4 Observation Error Correlations - Traditional

Approaches

As mentioned in Section 2, the complexity of observation error correlations usually

means that the R matrix is taken to be diagonal despite knowing this not to be the

case. In most cases, to compensate for the lack of correlation, the variances in the R

matrix are inflated, so that the observations have a lower weighting in the analysis.

The benefits of this approach are debatable.

In [4] the impact on the analysis of using uncorrelated R matrices with differ-

ent levels of inflated variance, compared to that of the true correlated R matrix

was examined. Results showed that error variances can be made at most 2-4 times

larger than the standard deviation of the true R matrix before the model field be-

comes degraded through excessive error amplification. So, whatever benefit variance

enlargement has, it is limited by the need for a physically accurate model represen-

tation. The paper also concluded overall that ‘if the real observation matrix has

significant correlations, the approximation of a diagonal error covariance will not

realise the full potential of the observations‘, i.e, information will be lost.

Another approach to the problem of correlated errors is the process of superob-

bing [1], which uses a weighted average of the differences between observations and

collocated backgrounds within a 3-d box to create one superob. This lowers the ef-

fect of correlated error by reducing the data density, and reduces uncorrelated error

through averaging. The benefits of this approach are the lowered risk of smooth-

ing atmospheric features, and better optimisation of data compared to conventional

methods such as data thinning.

Suppose we have N observations in a 3-d box (yi) with corresponding background

values (xi
b), then the superob value will be,

s = x0
b +

N∑
i=1

wi(yi − xi
b), (34)

where x0
b is the background value at the superob location and wi are the weightings,

assumed in this case to be 1/N .
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Under the assumption that innovations are equally weighted, superobbing has

been found to be most effective in boxes where uncorrelated error dominates. It

is further suggested that this random error reduced by superobbing is not the pri-

mary source of error. So again, the process has a limited benefit on the case when

correlated observation errors are present.

Suberobbing is a method of data thinning. Data thinning can be beneficial



5 Calculation of Quantative Information Content

for Atmospheric Motion Vectors

We know that to optimally extract essential information from a set of observations

in an assimilation system, a good specification of observation error



where rij is the level spacing between point i and point j, and L is the length scale.

Taking the correlated part of the AMV error as the square root of the variance, we

assume that all error covariances are the same.

We will use the results from the satellite GOES-10 in the northern hemisphere

(high latitude mid-level AMVs) to compute the information content for different

sizes of grid: L = 190, r = 200, and σ = 3.5

Values of SIC and dofs, for the three approaches we are considering are calcu-

lated via the various methods described in Section 3.

For Approach 1, the observation correlation matrix C is computed from the

correlation function (35), and then combined with the p2 by p2 matrix of diagonal

variances,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

12.25 0 . . . 0

0 12.25 . . . 0
...

. . .
. . .

...

0 0 . . . 12.25

⎞
⎟⎟⎟⎟⎟⎟⎠

,

via the formula R = D1/2CD1/2, to get the covariance matrix R. We assume this R

matrix is correct, and denote it Rt.

Assuming that we observe every desired atmospheric property directly, and we

have uniform uncorrelated background errors, H = I = B, we can calculate the

singular values λi of H̃ = R
−1/2
t HB1/2 = R

−1/2
t . From these we can deduce the

Shannon Information Content (17).

For ease of calculation, consider the linear algebra approach to dofs. Since the R



of the full R matrix, Rt, with the correlations ignored, i.e,

Rf =

⎛
⎜⎜⎜⎜⎜⎜⎝

12.25 0 . . . 0

0 12.25 . . . 0
...

. . .
. . .

...

0 0 . . . 12.25

⎞
⎟⎟⎟⎟⎟⎟⎠

The values for SIC and dofs are given by evaluating equations (32) and (33) for

Rf , under the assumption H = I = B.

Approach 3 is the evaluation of equations (17) and (22) as in Approach 1,

only now with Rf as the observation error correlation matrix.
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6 Results

6.1 Shannon Information Content and Degrees of Freedom

of Signal



of the eigenvalues of Sa will be equal to the sum of the eigenvalues of S∗
a. Therefore,

under Approach 2 and Approach 3, the dofs will be the same.

This just one specific case; under what general conditions would dofs be the same

for Approach 2 and Approach 3? Firstly, suppose our assumption of H = I = B

still holds, and that the observation error variances in Rf are not necessarily the

same as those in Rt, i.e, Rt − Rf does not necessarily have zeros on the diagonal.

Here, (I + Rf )−1 is still diagonal, and if we define μ2
i as the approximated error

variance of observation i in Rf , and ki as the difference in variance between Rt and

Rf , then the requirement for equal degrees of freedom of signal becomes

n∑
i=1

ki

(1 + μ2
i )

2 = 0. (36)

So, if we use the correct variances in our approximation of the full observation error

covariance matrix, then the number of degrees of freedom of signal will be the same

for both Approach 2 and Approach 3.

However, if H �= I �= B, then we are evaluating more complicated equations in

(22) and (33). For Approaches 2 and 3 to produce the same degrees of freedom,

we require:

trace[AR′AT ] = 0, (37)

which expanded is,

trace[BHT (HBHT + Rf)−1(Rt − Rf )(HBHT + Rf )−1T
HBT ] = 0. (38)

This equation cannot be simplified into a nice condition as in the case H = I = B,

and is unlikely to hold in more realistic models.

From Figures 1 and 2 we can see that the Shannon Information Content and

number of dofs are directly proportional to the square of the number of columns

(or rows) of the grid, ie. the number of observation points. The figures further

demonstrate that, as the size of the grid increases, there is an increased difference

between the information content using Approach 1, and the information content

using Approach 2 and 3. Note that in Figure 2, the line for Approach 2 is

underneath the line for Approach 3 since the number of dofs are the same for

these two methods.
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6.2 Fisher Information Content

Using the assumptions of a linear Gaussian data distribution and

H = B = I, the Fisher Information Matrix, given by (28), takes the form:

Approach 1 F = R−1
t + I (39)

Approach 2 F = [(R−1
f + I)−1

+(I + Rf )−1(Rt − Rf)(I + Rf )−1T
]−1 (40)

Approach 3 F = R−1
f + I (41)

The Fisher Information Matrix is a measure of the minimum error in estimating

our variables. We have assumed that all our variables were observed directly, and

so this error is purely measurement based when we assume that we are using the

correct matrices.

For a full R matrix, as in Approach 1, F will contain non-diagonal elements

representing correlations between measurement errors. In Approach 2, we are using

a diagonal R matrix which we are know is incorrect, so F will also have non-diagonal

elements. However, these elements correspond to additionally accepted observation





S
iz

e
of

E
n
tr

op
y

A
p

p
ro

a
ch

1
A

p
p

ro
a
ch

2
A

p
p

ro
a
ch

3

G
ri

d
B

ef
or

e
E

n
tr

op
y

af
te

r
S

I
C

E
n
tr

op
y

af
te

r
S

I
C

E
n
tr

op
y

af
te

r
S

I
C







2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

p

S
qu

ar
e 

ro
ot

s 
of

 d
of

s

Square root of dofs for different sizes of grid

Approach 1
Approach 2
Approach 3

Figure 2: Relationship between grid size and dofs
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7 Conclusions and Future Work

Implications that using a diagonal error covariance matrix as opposed to a fully

correlated one results in a significant loss in information, could possibly lead to a

re-evaluation of the assumptions made when obtaining initial conditions through the

solution of the inverse problem. So, it is important that any trends in information

loss are identified and explained if possible.

For all sizes of grid (p × p) analysed, using the full R matrix (Approach 1), as

opposed a diagonal one (Approach 2 or 3), gives a greater Shannon Information

Content and a greater number of degrees of freedom of signal. So, as suspected, we

lose information by using a diagonal R matrix.

For all three approaches, the SIC and number of dofs are directly proportional

to the number of observation points. However the gradient of proportionality varies;

from Figure 1 and 2 we see that the gradient of the line for Approach 1 is steeper

than that for Approach 2 or 3. So, as we take more observations, the more

important it becomes, in a sense of information optimisation, that we have a fully

specified R matrix.

Comparing Approach 2 and Approach 3, we find that Approach 2 gives a

greater reduction in uncertainty, i.e, a greater SIC, and more useful information,

i.e, a greater number of dofs. This implies that by using Bayesian philosophy, we

have actually reduced the uncertainty more than we might think we have if we had

simply used Rf as our ‘correct’ R matrix. In practice, we must always use this

Bayesian philosophy of Approach 2, where we make calculations based on our best

knowledge, which is never the truth.

Variance enlargement in a diagonal R



The structure of this experiment is obviously very basic, and the assumptions

of regular observation spacing and identical error variances are in reality not the

case; but simplification is required, and modifying other factors in the experiment is

likely to result in a more significant and telling change. The data we used from [2]

was assumed to be directly observed, and any background error, uncorrelated and

uniform. It would be more interesting to examine raw radiance data, or data directly

converted from radiances for variables related to those that we are interested in (i.e,

H �= I). This could be done under the further assumption of correlated background

errors; the subject and definition of which is examined in many papers.

Although our results suggest that it would be significantly beneficial, in terms

of information utilised, to use a fully correlated R matrix when solving the inverse

problem, we have not addressed the problems in implementing this. Obviously the

inverse of R is considerably more computationally expensive to calculate when R is

non-diagonal, especially as our grid size becomes larger, and hence more realistic.



balance property enables us to extract more information from the observations would

also be interesting to investigate.
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